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Population genetics can help us to find answers

We are interested in questions like

– How big is this population?
– Are these populations isolated? How common is migration?
– How fast have they been growing or shrinking?
– What is the recombination rate across this region?
– Is this locus under selection?

All of these questions require comparison of many individuals.



Coalescent-based studies

How many gray whales were there prior to whaling?

When was the common ancestor of HIV lines in a Libyan hospital?

Is the highland/lowland distinction in Andean ducks recent or ancient?

Did humans wipe out the Beringian bison population?

What proportion of HIV virions in a patient actually contribute to the
breeding pool?

What is the direction of gene flow between European rabbit populations?



Basics: Wright-Fisher population model

All individuals release many gametes and new individuals for the next
generation are formed randomly from these.



Wright-Fisher population model

Population size N is constant through time.

Each individual gets replaced every generation.

Next generation is drawn randomly from a large gamete pool.

Only genetic drift affects the allele frequencies.



Other population models

Other population models can often be equated to Wright-Fisher

The N parameter becomes the effective population size Ne

For example, cyclic populations have an Ne that is the harmonic mean
of the various sizes



The big trick

We have a model for the progress of a population forward in time

What we observe is the end product: genetic data today

We want to reverse this model so that it tells us about the past of our
sequences



The Coalescent

Sewall Wright showed that the probability
that 2 gene copies come from the same
gene copy in the preceding generation is

Prob (two genes share a parent) =
1

2N



The Coalescent

Present

Past

In every generation, there is a chance of 1/2N to coalesce. Following the
sampled lineages through generations backwards in time we realize that it
follows a geometric distribution with

E(u) = 2N [the expectation of the time of coalescence u of two tips is 2N ]



The Coalescent

JFC Kingman generalized this for k gene
copies.

Prob (k copies are reduced to k − 1 copies) =
k(k − 1)

4N



Kingman’s n-coalescent

Present

Past



Kingman’s n-coalescent

Present

Past
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p(G|N) =
∏

i exp(−ui
k(k−1)

4N ) 1
2N

The expectation for the time
interval uk is

E(uk) =
4N

k(k − 1)



The Θ parameter

The n-coalescent is defined in terms of Ne and time.

We cannot measure time just by looking at genes, though we can measure
divergence.

We rescale the equations in terms of Ne, time, and the mutation rate µ.

We can no longer estimate Ne but only the composite parameter Θ.

Θ = 4Neµ in diploids.

Multiple time point data can separate Ne and µ



What is this coalescent thing good for?



Utopian population size estimator

1. We get the correct genealogy from an infallible oracle

2. We know that we can calculate p(Genealogy|N)



Utopian population size estimator

1. We get the correct genealogy from an infallible oracle

2. We remember the probability calculation

p(G|N) = p(u1|N, k)
1

2N
× p(u2|N, k− 1)

1

2N
× .....



Utopian population size estimator

1. We get the correct genealogy from an infallible oracle

2. We remember the probability calculation

p(Genealogy|N) =

T∏
j

e−uj
kj(kj−1)

4N
1

2N



Utopian population size estimator



Utopian population size estimator



Utopian population size estimator

N = 2270

N = 12286



Lack of infallible oracles

We assume we know the true genealogy including branch lengths

We don’t really know that

We probably can’t even infer it:

– Tree inference is hard in general
– Population data usually don’t have enough information for good tree

inference



Non-likelihood use of coalescent

Summary statistics

– Watterson’s estimator of θ
– FST (estimates θ and/or migration rate)
– Hudson’s and Wakeley’s estimators of recombination rate

Known-tree methods

– UPBLUE (Yang)
– Skyline plots (Strimmer, Pybus, Rambaut)

These methods are conceptually easy, but not always powerful, and they
are difficult to extend to complex cases.



Genealogy samplers

Acknowledge that there is an underlying genealogy–

– but we don’t know it
– we can’t infer it with high certainty
– we can’t sum over all possibilities

A directed sample of plausible genealogies–

– can capture much of the information in the unknown true genealogy
– takes a long time but not forever

These are genealogy sampler methods
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What is the effective population size of red drum?

Red drum, Sciaenops ocellatus, are large fish found in the Gulf of Mexico.

Turner, Wares, and Gold
Genetic effective size is three orders of magnitude smaller than adult census
size in an abundant, estuarine-dependent marine fish
Genetics 162:1329-1339 (2002)



What is the effective population size of red drum?

Census population size: 3,400,000

Effective population size: ?

Data set:

– 8 microsatellite loci

– 7 populations

– 20 individuals per population



What is the effective population size of red drum?

Three approaches:

1. Allele frequency fluctuation from year to year

Measures current population size
May be sensitive to short-term fluctuations

2. Coalescent estimate from Migrate

Measures long-term harmonic mean of population size
May reflect past bottlenecks or other long-term effects

3. Demographic models

Attempt to infer genetic size from census size
Vulnerable to errors in demographic model
Not well established for long-lived species with high reproductive
variability



Population model used for Migrate

Multiple populations along Gulf coast

Migration allowed only between adjacent populations

Allowing for population structure should improve estimates of population
size





What is the effective population size of red drum?

Estimates:

Census size (N): 3,400,000
Allele frequency method (Ne): 3,516 (1,785-18,148)
Coalescent method (Ne): 1,853 (317-7,226)

The demographic model can be made consistent with these only by assuming
enormous variance in reproductive success among individuals.



What is the effective population size of red drum?

Allele frequency estimators measure current size

Coalescent estimators measure long-term size

Conclusion: population size and structure have been stable



What is the effective population size of red drum?

Effective population size at least 1000 times smaller than census

This result was highly surprising

Red drum has the genetic liabilities of a rare species

Turner et al. hypothesize an “estuary lottery”

Unless the eggs are in exactly the right place, they all die
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Coalescent estimation of population parameters

Mutation model: Steal a likelihood model from phylogeny inference

Population genetics model: the Coalescent



Coalescent estimation of population parameters

L(Θ) = P (Data|Θ)



Coalescent estimation of population parameters

L(Θ) = P (Data|Θ) =
∑
G

P (Data|G)P (G|Θ)



Coalescent estimation of population parameters

L(Θ) = P (Data|Θ) =
∑
G

P (Data|G)P (G|Θ)

P (Data|G) comes from a mutational model



Coalescent estimation of population parameters

L(Θ) = P (Data|Θ) =
∑
G

P (Data|G)P (G|Θ)

P (G|Θ) comes from the coalescent



Coalescent estimation of population parameters

L(Θ) = P (Data|Θ) =
∑
G

P (Data|G)P (G|Θ)

∑
G is a problem



Can we calculate this sum over all genealogies?

Tips Topologies

3 3

4 18

5 180

6 2700

7 56700

8 1587600

9 57153600

10 2571912000

15 6958057668962400000

20 564480989588730591336960000000

30 4368466613103069512464680198620763891440640000000000000

40 30273338299480073565463033645514572000429394320538625017078887219200000000000000000

50 3.28632 × 10112

100 1.37416 × 10284



A solution: Markov chain Monte Carlo

If we can’t sample all genealogies, could we try a random sample?

– Not really.

How about a sample which focuses on good ones?

– What is a good genealogy?
– How can we find them in such a big search space?



A solution: Markov chain Monte Carlo

Metropolis recipe

0. first state

1. perturb old state and calculate
probability of new state

2. test if new state is better than
old state: accept if ratio of new
and old is larger than a random
number between 0 and 1.

3. move to new state if accepted
otherwise stay at old state

4. go to 1



How do we change a genealogy?

z
A B

C D

1

2
j

k



MCMC walk result
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MCMC walk result–with problems
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Improving our MCMC walker: Heating

Metropolis Coupled Markov chain Monte Carlo (AKA MC3)

Run several independent parallel chains: each has a different temperature

After some sampling of genealogies, swap the genealogies of a pair of
chains if the ratio between probabilities in the cold and the hot chain is
larger than a random number drawn between 0 and 1.



Improving our MCMC walker: MCMCMC or MC3



better MCMC walk result
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Likelihood and Bayesian approaches

All genealogy samplers search among genealogies

All of them require some type of guide value (“driving value”) to
determine which genealogies will be proposed

Two major approaches: Likelihood-based and Bayesian

Major ideological difference, relatively small practical one



Likelihood samplers

Use arbitrary values of the parameters to guide the search

Sample genealogies throughout the search

At the end of the search, evaluate P (G|Θ) for sampled genealogies

Correct for the influence of the driving values

Iterate to improve driving values



Bayesian samplers

Propose new driving values throughout the run

New driving values drawn from a prior

Accept or reject driving values based on P (G|Θ)

Final conclusions based on histogram of driving values



Likelihood analysis

We will approximate:

L(Θ) =
∑
G

P (Data|G)P (G|Θ)



Likelihood analysis

We will approximate:

L(Θ) =
∑
G

P (Data|G)P (G|Θ)

by sampling n genealogies from P (Data|G)P (G|Θ0):

L(Θ) =
1

n

∑
G∗

P (Data|G)P (G|Θ)

P (Data|G)P (G|Θ0)/L(Θ0)

Here the G∗ are no longer random genealogies; they are sampled from a
distribution that depends on the driving value Θ0



Likelihood analysis

L(Θ) =
1

n

∑
G

P (Data|G)P (G|Θ)

P (Data|G)P (G|Θ0)/L(Θ0)

Isn’t this circular? We have a solution for the unknown L(Θ) in terms of
the unknown L(Θ0).



Likelihood analysis

L(Θ) =
1

n

∑
G

P (Data|G)P (G|Θ)

P (Data|G)P (G|Θ0)/L(Θ0)

Isn’t this circular? We have a solution for the unknown L(Θ) in terms of
the unknown L(Θ0).

L(Θ)

L(Θ0)
=

1

n

∑
G

P (Data|G)P (G|Θ)

P (Data|G)P (G|Θ0)

This doesn’t give us the actual value of L(Θ) but it does allow us to
compare various values of Θ and choose the best.



Likelihood analysis

This approach is only asymptotically correct

For finite sample sizes, it has a bias toward its driving value

We can greatly reduce this:

– Start with an arbitrary Θ0

– Run the sampler a while and estimate the best Θ
– It will be biased toward Θ0, but...
– Use it as the new Θ0 and start over



Bayesian approach

A Bayesian analysis requires us to provide priors for all parameters

These could be based on detailed knowledge of the biology

In practice, uninformative flat priors are used























































Advantages of Bayesian analysis

Easier to interpret probabilities than likelihoods

Smoothing a histogram is quicker than finding maxima of a likelihood
curve

Not dependent on starting driving values

Parameter values near zero estimated more accurately

Prior information can be incorporated (in theory)

Trendy!



Disdvantages of Bayesian analysis

No information currently available on correlation of parameters

Dependent on good priors; results can be severely distorted by bad priors



Bottom line

Kuhner 2006: Bayes and likelihood almost identical

Beerli 2006: Bayes has edge with sparse data

My recommendations:

– Use Bayes if you think a parameter is very close to zero
– Otherwise, with rich data either method is good
– With poor data, do you really want to be doing this analysis at all?
– When using Bayes, be careful of your priors!

If the genealogy search is inadequate, both methods will fail (and fail in
similar ways)



Break


