

New Illumina sequencer launched

http://biomickwatson.wordpress.com/

Next-seq 500 HiSeq 2500 Mi-seq

http://biomickwatson.wordpress.com/
http://biomickwatson.wordpress.com/
http://biomickwatson.wordpress.com/
http://biomickwatson.wordpress.com/
http://biomickwatson.wordpress.com/
http://biomickwatson.wordpress.com/

HiSeq X10

General queries

• Technical replicates

• http://genomebiology.com/2011/12/3/R22#B18

• http://genomebiology.com/2011/12/3/R22#B19

• Allele drop out for double-digest RAD

• http://www.ncbi.nlm.nih.gov/pubmed/23110526

http://genomebiology.com/2011/12/3/R22
http://genomebiology.com/2011/12/3/R22
http://genomebiology.com/2011/12/3/R22
http://genomebiology.com/2011/12/3/R22
http://www.ncbi.nlm.nih.gov/pubmed/23110526

Dr Konrad Paszkiewicz

University of Exeter, UK

k.h.paszkiewicz@exeter.ac.uk

Workshop on Genomics
Short read alignment:

An introduction

Contents

• Alignment algorithms for short-reads

 Background – Blast (why can’t we use it?)

 Adapting hashed seed-extend algorithms to work with
shorter reads

 Suffix/Prefix Tries

 Indels

 Other alignment considerations

 Typical alignment pipeline

 SNP calling

Alignment of reads to a reference

 ..ACTGGGTCATCGTACGATCGATCGATCGATCGATCGGCTAGCTAGCTA..

 ..ACTGGGTCATCGTACGATCGATAGATCGATCGATCGCTAGCTAGCTA..

Reference

Sample

Why is short read alignment hard?

The shorter a read, the
less likely it is to have a
unique match to a
reference sequence

Why do we generate short reads?

• Sanger reads lengths ~ 800-2000bp

• Generally we define short reads as anything below 200bp

− Illumina (50bp – 300bp)
− SoLID (80bp max)
− Ion Torrent (200-400bp max...)
− Roche 454 – 400-800bp

• Even with these platforms it is cheaper to produce short reads (e.g. 50bp)
rather than 100 or 200bp reads

• Diminishing returns:

− For some applications 50bp is more than sufficient
− Resequencing of smaller organisms
− ChIP-Seq
− Digital Gene Expression profiling
− Bacterial RNA-seq

Short read alignment applications

Genotyping:

 Methylation
 SNPs
 Indels

Classify and measure peaks:
 ChIP-Seq
 RNA-Seq

Contents

• Alignment algorithms for short-reads

 Background – Blast (why can’t we use it?)

 Global alignment

 Local alignment

 Adapting hashed seed-extend algorithms to work with shorter reads

 Indel detection

 Suffix/Prefix Tries

 Other alignment considerations

 Typical alignment pipeline

 New methods of SNP calling

Dot Matrix Method
- Aligning by eye

13

http://arbl.cvmbs.colostate.edu/molkit/dnadot/index.html

Sequence Alignment

ATCGATACG

 ATGGATTACG

3 possibilities

Mismatch

…C…

…G…

Indel

…-…

…T…

Match

…A…

…A…
|

ATCGAT-ACG

ATGGATTACG

A very simple alignment scoring system

Points for a matching letter: 1

Points for a non-matching letter: 0

Points for inserting a gap: 0

Global Pair-wise Alignment

ATCGAT-ACG

ATGGATTACG

ATCGATACG, ATGGATTACG

|| ||| |||

+1 +1 +1 +1 +1 +1 +1 +1 Matches: = +8

0 Mismatches: = 0

0 Gaps: = 0

Total score = +8

But, what does this score mean??
Could we get a better alignment?

How to choose the best alignment?

• Sequence 1: ACTGAGC

• Sequence 2: ATGATGC

• Some possible alignments:

ACTGAGC-- ACTGA-GC A----CTGAGC

A-TGA-TGC A-TGATGC ATGAT----GC

Global alignment – Needleman-Wunsch

A global alignment covers the entire lengths of the

sequences involved

The Needleman-Wunsch algorithm finds the best global
alignment between 2 sequences across their whole length

Step 1: Initialise

A C T G A G C

A 0

T 0

G 0

A 0

T 0

G 0

C 0 1 0 0 0 0 1

Fill in far-right column and bottom row with:
 0 for a mis-match
 1 for a match

Step 2:

A C T G A G C

A 0

T 0

G 0

A 0

T 0

G 0

C 0 1 0 0 0 0 1

For each box, find the highest number out of the blue boxes

Step 3:

A C T G A G C

A 0

T 0

G 0

A 0

T 0

G 1+1=2 0

C 0 1 0 0 0 0 1

If there is a match in the yellow box as, take the highest value from the
blue boxes and add 1 to it

G matches G in the yellow box, so add 1 to the 1 in the blue box

Step 2:

A C T G A G C

A 0

T 0

G 0

A 0

T 0

G 0+0=0 2 0

C 0 1 0 0 0 0 1

A does not match G. So add zero to the zero in the blue box.

Step 2:

A C T G A G C

A 0

T 0

G 0

A 0

T 0

G 0+1=1 1 2 0

C 0 1 0 0 0 0 1

If there is a match as here, take the highest value and add 1 to it

G matches G so add 1 to zero in the blue box

Step 2:

A C T G A G C

A 0

T 0

G 0

A 0

T 0

G 0+0=0 1 0 2 0

C 0 1 0 0 0 0 1

If there is a match as here, take the highest value and add 1 to it

T does not match G. So add zero.

Step 2:

A C T G A G C

A 0

T 0

G 0

A 0

T 0+1=1 0

G 0 0 0 1 0 2 0

C 0 1 0 0 0 0 1

Highest out of the blue boxes is zero

.

Step 2:

A C T G A G C

A 0

T 0

G 0

A 0

T 2+0=2 1 0

G 0 0 0 1 0 2 0

C 0 1 0 0 0 0 1

Highest out of the blue boxes is 2

A does not match T

.

Step 2:

A C T G A G C

A 0

T 0

G 0

A 0

T 2+0=2 2 1 0

G 0 0 0 1 0 2 0

C 0 1 0 0 0 0 1

Highest out of the blue boxes is 2

G does not match T

.

Step 2:

A C T G A G C

A 0

T 0

G 0

A 0

T 3 2 2 1 0

G 0 0 0 1 0 2 0

C 0 1 0 0 0 0 1

Highest out of the blue boxes is 2

T does match T

.

Step 2:

A C T G A G C

A 0

T 0

G 0

A 0

T 2+0=2 3 2 2 1 0

G 0 0 0 1 0 2 0

C 0 1 0 0 0 0 1

Highest out of the blue boxes is 2

C does not match T

.

Step 2:

A C T G A G C

A 0

T 0

G 0

A 0

T 2 2 3 2 2 1 0

G 0 0 0 1 0 2 0

C 0 1 0 0 0 0 1

Do the same for all remaining rows

.

Step 2:

A C T G A G C

A 0

T 0

G 0

A 1+0=0 0

T 2 2 3 2 2 1 0

G 0 0 0 1 0 2 0

C 0 1 0 0 0 0 1

Do the same for all remaining rows

.

Step 2:

A C T G A G C

A 0

T 0

G 0

A 2+1=3 1 0

T 2 2 3 2 2 1 0

G 0 0 0 1 0 2 0

C 0 1 0 0 0 0 1

Do the same for all remaining rows

.

Step 2:

A C T G A G C

A 0

T 0

G 0

A 2+0=2 3 1 0

T 2 2 3 2 2 1 0

G 0 0 0 1 0 2 0

C 0 1 0 0 0 0 1

Do the same for all remaining rows

.

Step 2:

A C T G A G C

A 0

T 0

G 0

A 2+0=2 2 3 1 0

T 2 2 3 2 2 1 0

G 0 0 0 1 0 2 0

C 0 1 0 0 0 0 1

Do the same for all remaining rows

.

Step 2:

A C T G A G C

A 6 5 4 3 3 1 0

T 4 4 5 3 2 0 0

G 3 3 3 4 2 1 0

A 4 3 2 2 3 1 0

T 2 2 3 2 2 1 0

G 0 0 0 1 0 2 0

C 0 1 0 0 0 0 1

Do the same for all remaining rows

.

Step 3: Backtracking

A C T G A G C

A 6 5 4 3 3 1 0

T 4 4 5 3 2 0 0

G 3 3 3 4 2 1 0

A 4 3 2 2 3 1 0

T 2 2 3 2 2 1 0

G 0 0 0 1 0 2 0

C 0 1 0 0 0 0 1

Follow largest numbers starting from top-left going down and to the
right

.

Step 3: Backtracking

A C T G A G C

A 6 5 4 3 3 1 0

T 4 4 5 3 2 0 0

G 3 3 3 4 2 1 0

A 4 3 2 2 3 1 0

T 2 2 3 2 2 1 0

G 0 0 0 1 0 2 0

C 0 1 0 0 0 0 1

Follow largest numbers starting from top-left going down and to the
right

.

Step 3: Backtracking

A C T G A G C

A 6 5 4 3 3 1 0

T 4 4 5 3 2 0 0

G 3 3 3 4 2 1 0

A 4 3 2 2 3 1 0

T 2 2 3 2 2 1 0

G 0 0 0 1 0 2 0

C 0 1 0 0 0 0 1

Follow largest numbers starting from top-left going down and to the
right

.

Step 3: Backtracking

A C T G A G C

A 6 5 4 3 3 1 0

T 4 4 5 3 2 0 0

G 3 3 3 4 2 1 0

A 4 3 2 2 3 1 0

T 2 2 3 2 2 1 0

G 0 0 0 1 0 2 0

C 0 1 0 0 0 0 1

Follow largest numbers starting from top-left going down and to the
right

.

Step 4: Generate alignment

A C T G A G C

A 6 5 4 3 3 1 0

T 4 4 5 3 2 0 0

G 3 3 3 4 2 1 0

A 4 3 2 2 3 1 0

T 2 2 3 2 2 1 0

G 0 0 0 1 0 2 0

C 0 1 0 0 0 0 1

Horizontal seq A

Vertical seq A

Step 4: Generate alignment

A C T G A G C

A 6 5 4 3 3 1 0

T 4 4 5 3 2 0 0

G 3 3 3 4 2 1 0

A 4 3 2 2 3 1 0

T 2 2 3 2 2 1 0

G 0 0 0 1 0 2 0

C 0 1 0 0 0 0 1

Horizontal seq ACT

Vertical seq A-T

Gap

Step 4: Generate alignment

A C T G A G C

A 6 5 4 3 3 1 0

T 4 4 5 3 2 0 0

G 3 3 3 4 2 1 0

A 4 3 2 2 3 1 0

T 2 2 3 2 2 1 0

G 0 0 0 1 0 2 0

C 0 1 0 0 0 0 1

Horizontal seq ACTG

Vertical seq A-TG

Step 4: Generate alignment

A C T G A G C

A 6 5 4 3 3 1 0

T 4 4 5 3 2 0 0

G 3 3 3 4 2 1 0

A 4 3 2 2 3 1 0

T 2 2 3 2 2 1 0

G 0 0 0 1 0 2 0

C 0 1 0 0 0 0 1

Horizontal seq ACTGA

Vertical seq A-TGA

Step 4: Generate alignment

A C T G A G C

A 6 5 4 3 3 1 0

T 4 4 5 3 2 0 0

G 3 3 3 4 2 1 0

A 4 3 2 2 3 1 0

T 2 2 3 2 2 1 0

G 0 0 0 1 0 2 0

C 0 1 0 0 0 0 1

Horizontal seq ACTGA-

Vertical seq A-TGAG

Step 4: Generate alignment

A C T G A G C

A 6 5 4 3 3 1 0

T 4 4 5 3 2 0 0

G 3 3 3 4 2 1 0

A 4 3 2 2 3 1 0

T 2 2 3 2 2 1 0

G 0 0 0 1 0 2 0

C 0 1 0 0 0 0 1

Horizontal seq ACTGA-C

Vertical seq A-TGAGC

Optimal global alignment

ACTGA-C

| ||| |

A-TGAGC

Local alignment

A global alignment is often not appropriate as only parts
of sequences may be conserved

A local alignment only covers parts of the sequences

 The Smith-Waterman algorithm finds the best local alignment between 2

sequences

 Global alignment

 Local alignment

Q K E S G P S S S Y C

V Q Q E S G L V R T T C

| | | | |

 E S G

 E S G

 | | |

Local alignment

A local alignment of 2 sequences is an alignment
between parts of the 2 sequences

E.g. Two proteins may be very similar in a functional site, but be very dissimilar
outside that region

 A global alignment of such sequences would have:

 (i) lots of matches in the region of high sequence similarity

 (ii) lots of mismatches & gaps (insertions/deletions) outside the region of
similarity

 It makes sense to find the best local alignment instead

Alignment of an orthologous protein in
D.melanogaster vs H.sapiens

Not suitable for global alignment

2 main regions of similarity

Better to use local alignment

Local alignment – Smith-Waterman algorithm

0 - G A T C

- 0

G

A

C

Example – align GATC to GAC

Local alignment – Smith-Waterman algorithm

0 - G A T C

- 0 -2 -4 -6 -8

G

A

C

Local alignment algorithm

Points for match = +1
Points for mismatch = -1
Points for a gap insertion = -2

GATC

||||

Local alignment – Smith-Waterman algorithm

0 - G A T C

- 0 -2 -4 -6 -8

G -2

A -4

C -6

Local alignment algorithm

Points for match = +1
Points for mismatch = -1
Points for a gap insertion = -2

GAC

|||

Local alignment – Smith-Waterman algorithm

+ MATCH + GAP

+ GAP

0 - G A T C

- 0 -2 -4 -6 -8

G -2

A -4

C -6

+1

Max= 1

Points for match = +1
Points for mismatch = -1
Points for a gap insertion = -2

GATC

|

Local alignment – Smith-Waterman algorithm

0 - G A T C

- 0 -2 -4 -6 -8

G -2

A -4

C -6

 1

Points for match = +1
Points for mismatch = -1
Points for a gap insertion = -2

 -1

Dynamic Programming

0 - G A T C

- 0 -2 -4 -6 -8

G -2 1 -1 -3 -5

A -4 -1 2 0 -2

C -6 -3 0 1 1

Local alignment algorithm

Points for match = +1
Points for mismatch = -1
Points for a gap insertion = -2

56

Backtracking and final alignment

- G A T C

- 0 -2 -4 -6 -8

G -2 1 -1 -3 -5

A -4 -1 2 0 -2

C -6 -3 0 1 1

GATC

GA-C
|| |

Smith-Waterman – more details

http://www.youtube.com/watch?v=IVRSFaGCGeE

http://www.youtube.com/watch?v=IVRSFaGCGeE

Dynamic programming

• Needleman-Wunsch and Smith-Waterman are a
class of methods known as ‘Dynamic
Programming’

• Guaranteed to give you the best possible
alignment

• In biology, this algorithm is very inefficient
because most sequences are not similar to each
other

• Therefore it takes a long time to run

BLAST –
Basic Local Alignment Search Tool

Background – BLAST

• Primarily designed to identify homologous sequences

 Blast is a hashed seed-extend algorithm

 Negative selection

 Only some parts of a sequence are usually constrained

BLAST - Original version

A C G A A G T A A G G T C C A G T

C

 C

 C

 T

 T

 C

C

T

 G

 G

 A

T

 T

 G

C

 G

 A

Example:

Seed size = 4,

No mismatches in seed

The matching word GGTC
initiates an alignment

Extension to the left and right
with no gaps until alignment
score falls below 50%

Output:

GTAAGGTCC

GTTAGGTCC

BLAST - Original algorithm

• Finding seeds significantly increases the speed of BLAST
compared to doing a full local alignment over a whole sequence

• Will not guarantee the best solution

• BLAST first finds highly conserved or identical sequences which
are then extended with a local alignment.

BLAST – Speed (or lack thereof)

• Typically BLAST will take approximately 0.1 – 1 second to search
1 sequence against a database

• Depends on size of database, e-value cutoff and number of hits to
report selected

• 60 million reads equates to 70 CPU days!

• Even on multi-core systems this is too long!

• Especially if you have multiple samples!

• This is still true of FPGA and SIMD (vectorised) implementations
of BLAST

When NOT to use BLAST

• A typical situation: you have lots DNA sequences and want to
extend it or find where on a genome it maps.

• In other words, you want an exact or near-exact match to a
sequence that is part of an assembled genome.

• Short reads require very fast algorithms for finding near-exact
matches in genomic sequences:

− BLAT

− Highly recommended: the BLAT paper (Kent WJ (2003) Genome Res
12:656-64) – very well written

− SOAP

− Bowtie/Bowtie 2

− MAQ

− BWA

− Shrimp2

Contents

• Alignment algorithms for short-reads

 Background – Blast (why can’t we use it?)

 Adapting hashed seed-extend algorithms to work with shorter reads

 Indel detection

 Suffix/Prefix Tries

 Other alignment considerations

 Typical alignment pipeline

 New methods of SNP calling

Adapting hashed seed-extend algorithms to work
with shorter reads

• Improve seed matching sensitivity

− Allow mismatches within seed

− BLAST

− Allow mismatches + Adopt spaced-seed approach

− ELAND, SOAP, MAQ, RMAP, ZOOM

− Allow mismatches + Spaced-seeds + Multi-seeds

− SSAHA2, BLAT, ELAND2

• Above and/or Improve speed of local alignment for seed extension

− Single Instruction Multiple Data

− Shrimp2, CLCBio

− Reduce search space to region around seed

Hashed seed-extend algorithms

• These are most similar to BLAST

• Are not designed to work with large databases

• 2 step process

− Identify a match to the seed sequence in the reference

− Extend match using sensitive (but slow) Smith-
Waterman algorithm (dynamic programming)

Seed-extend algorithm

Reference sequence:

...ACTGGGTCATCGTACGATCGATCGATCGATCGATCGGCTAGCTAGCTA...

Short read:

GTCATCGTACGATCGATAGATCGATCGATCGGCTA

Note that the short read has 1 difference wrt to reference

Seed-extend algorithm

Reference sequence:

...ACTGGGTCATCGTACGATCGATCGATCGATCGATCGGCTAGCTAGCTA...

Short read:

GTCATCGTACG ATCGATAGATCG ATCGATCGGCTA

11bp word 11bp word 11bp word

The algorithm will try to match each word to the reference. If there
is a match at with any single word it will perform a local alignment
to extend the match

Seed-extend algorithm

Reference sequence:

...ACTGGGTCATCGTACGATCGATCGATCGATCGATCGGCTAGCTAGCTA...

Short read:

GTCATCGTACG ATCGATAGATCG ATCGATCGGCTA

Seed Extend with Smith Waterman

Here the algorithm is able to match the short read with a word length of

11bp

GTCATCGTACG

ATCGAACGATCGATCGATCGGCTA

Seed-extend algorithm

Reference sequence:

...ACTGGGTCATCGTACGATCGATCGATCGATCGATCGGCTAGCTAGCTA...

Short read:

GTCATCGTACGATCGATCGATCGATCGATCGGCAA

Note that the short read has 3 differences
Possibly sequencing errors, possibly SNPs

Seed-extend algorithm

Reference sequence:

...ACTGGGTCATCGTACGATCGATCGATCGATCGATCGGCTAGCTAGCTA...

Short read:

GTCATCGTACG ATCGATCGATCG ATCGATCGGCAA

Note that the short read has 3 differences

11bp word 11bp word 11bp word

Seed-extend algorithm

Reference sequence:

...ACTGGGTCATCGTACGATCGATCGATCGATCGATCGGCTAGCTAGCTA...

No seeds match

Therefore the algorithm would find no hits at all!

Short read:

GTCATCGTACG ATCGATCGATCG ATCGATCGGCAA

Adapting hashed seed-extend algorithms to work
with shorter reads

• Improve seed matching sensitivity

− Allow mismatches within seed

− BLAST

− Allow mismatches + Adopt spaced-seed approach

− ELAND, SOAP, MAQ, RMAP, ZOOM

− Allow mismatches + Spaced-seeds + Multi-seeds

− SSAHA2, BLAT, ELAND2

• Above and/or Improve speed of local alignment for seed extension

− Single Instruction Multiple Data

− Shrimp2, CLCBio

− Reduce search space to region around seed

Adapting hashed seed-extend algorithms to work
with shorter reads

• Improve seed matching sensitivity

− Allow mismatches within seed

− BLAST

− Allow mismatches + Adopt spaced-seed approach

− ELAND, MAQ, RMAP, ZOOM

− Allow mismatches + Spaced-seeds + Multi-seeds

− SSAHA2, BLAT, ELAND2

• Above and/or Improve speed of local alignment for seed extension

− Single Instruction Multiple Data

− Shrimp2, CLCBio

− Reduce search space to region around seed

Consecutive seed

CCACTGTCCTCCTACATAGGAACGA

Consecutive seed 9bp with no mismatches:

ACTCCCATCGTCATCGTACTAGGGATCGTAACA

SNP ‘heavy’ read

Reference sequence

Even allowing for 2 mismatches in
the seed - no seeds match.
No hits!

Cannot find seed match due to A->C SNP
and G->C SNP

TCATCGTAC

TCCTCCTAC

Spaced seeds

To increase sensitivity we can used spaced-seeds:

11111111111

11001100110011001

Consecutive seed template with length 9bp

Spaced-seed template with weight 9bp

ACTATCATCGTACACAT

TCATCGTAC

ACTATCATCGTACACAT

ACTCTCACCGTACACAT

Reference

Query

Reference

Query

Spaced seeds

CCACTGTAATCGTACATGGGAACGA

Spaced seed with weight 9bp and no mismatches:

ACTCCCATTGTCATCGTACTTGGGATCGTAACA

SNP ‘heavy’ read

Reference sequence

Can now extend with Smith-Waterman or other local alignment

Despite SNPs – seed matched with 0
mismatches

CCATTGTCATCGTACAT

CCXXTGXXATXXTAXXT

Spaced seeds

Ma, B. et al. PatternHunter. Bioinformatics Vol 18, No 3, 2002

Spaced seeds:

• A seed template ‘111010010100110111’ is 55% more sensitive than
BLAST’s default template ‘11111111111’ for two sequences of 70%
similarity
• Typically seeds of length ~30bp and allow up to 2 mismatches in short
read datasets

Contents

• Alignment algorithms for short-reads

 Background – Blast (why can’t we use it?)

 Adapting hashed seed-extend algorithms to work with shorter reads

 Suffix/Prefix Tries

 Indel detection

 Other alignment considerations

 Typical alignment pipeline

 New methods of SNP calling

Suffix-Prefix Trie

• Trie – data structure which stores the suffixes (i.e. ends of a sequence)

• A family of methods which uses a Trie structure to search a reference
sequence

− Bowtie

− BWA aln (<70bp reads) and MEM algorithm (>70bp reads)

− SOAP version 2

• Key advantages:

− Alignment of multiple copies of an identical sequence in the
reference only needs to be done once

− Use of an FM-Index to store Trie can drastically reduce memory
requirements (e.g. Human genome can be stored in 2Gb of RAM)

− Burrows Wheeler Transform to perform fast lookups

Suffix Trie

Heng Li & Nils Homer.
Sequence alignment
algorithms for next-
generation sequencing.
Briefings in
Bioinformatics. Vol 11.
No 5. 473 483, 2010

Read
AGGAGC

Suffix Trie

Burrows-Wheeler Algorithm

• Encodes data so that it is easier to compress

• Burrows-Wheeler transform of the word BANANA

• Can later be reversed to recover the original word

More Burrows-Wheeler

Input SIX.MIXED.PIXIES.SIFT.SIXTY.PIXIE.DUST.BOXES

Burrows-Wheeler Output TEXYDST.E.IXIXIXXSSMPPS.B..E.S.EUSFXDIIOIIIT

Repeated characters mean that it is easier to compress

Suffix Trie for a bacterial genome would be > 1Tb

We have to compress it

Use FM-Index/BW transform to do this compression

Bowtie/BWA example

Bowtie/BWA example

Bowtie/BWA example

Bowtie/BWA example

Bowtie/BWA example

Bowtie/BWA example

Bowtie/BWA example

Bowtie/BWA example

Bowtie/BWA example

Bowtie/Soap2 vs. BWA

• Bowtie 1 and Soap2 cannot handle gapped alignments
− No indel detection => Many false SNP calls

CCATTGTCATCGTACTTGGGATCTA

ACTCCCATTGTCATCGTACTTGGGATCGTAACA Reference

 TCATCGTACTTGGGATCTA

 TTGGGATCTA
False SNPs

Bowtie/Soap2:

N.B. Bowtie2 can handle gapped alignments

Bowtie/Soap2 vs. BWA

• Bowtie 1 and Soap2 cannot handle gapped alignments
− No indel detection => Many false SNP calls

CCATTGTCATCGTACTTGGGATC-TA

ACTCCCATTGTCATCGTACTTGGGATCGTAACA Reference

 TCATCGTACTTGGGATC-TA

 TTGGGATC-TA

BWA:

N.B. Bowtie2 can handle gapped alignments

Comparison

Indexed Suffix/Prefix Trie

• Requires <2Gb of memory

• Runs 30-fold faster

• Is much more complicated
to program

• Least sensitive

Hash referenced spaced seeds

• Requires ~50Gb of memory

• Runs 30-fold slower

• Is much simpler to
program

• Most sensitive

There are limits however

CCATTGTCAACCATCTAGTAGCT-TA

ACTCCCATTGTCATCGTACTTGGGATCGTAACA Reference

 TCAACCATCTAGTAGCT-TA

 ACCATCTA-TA

With longer 100-300 bp reads, multiple indels or variable regions
longer than a few bp are likely to be missed

You only find what you are looking for

• What happens if there are SNPs and Indels in the same region?

Let’s assume that the SNP caller made this call of a single SNP:

ATGTATGTA
ATGTGTGTA

and the indel caller produced this call of a 3 base deletion:

ATGTATGTA
ATGT- - - TA

Should we assume this is a heterozygous SNP opposite a
heterozygous Indel or a more complex locus?

• Bowtie's reported 30-fold speed increase over hash-based methods with
 small loss in sensitivity
• Limitations to Trie-based approaches:

− Only able to find alignments within a certain 'edit distance’
− Important to quality clip reads (-q in BWA)
− Non-A/C/G/T bases on reads are often treated as mismatches
− Make sure Ns are removed!

Hash based approaches are more suitable for divergent alignments
• Rule of thumb:

− <2% divergence -> Trie-based
− E.g. human alignments

− >2% divergence -> Seed-extend based approach
− E.g. wild mouse strain alignments

Comparison

 Precision and recall by amount of variation for 4
datasets, by polymorphism:
(number of SNPs, Indel size)

David M et al. Bioinformatics 2011;27:1011-1012

 False discovery rates for variants were ascertained using

cFDR for three fungal NGS datasets

http://www.nature.com/srep/2013/130321/srep01512/full/srep01512.html

http://www.nature.com/srep/2013/130321/srep01512/full/srep01512.html

Summary of open-source short read alignment programs

Heng Li & Nils Homer. Sequence alignment algorithms for next-generation sequencing.
Briefings in Bioinformatics. Vol 11. No 5. 473 483, 2010

* Bowtie1 does not support gapped alignments

Program Algorithm SoLID Long reads Gapped

alignment

Paired-end Quality

scores

used?

Bfast Hashing ref Yes No Yes Yes No

Bowtie2* FM-Index Yes Yes Yes Yes Yes

Blat Hashing ref No Yes Yes No No

BWA FM-Index Yes Yes Yes Yes No

MAQ Hashing reads Yes No Yes Yes Yes

Mosaik Hashing ref Yes Yes Yes Yes No

Novoalign Hashing ref No No Yes Yes Yes

Shrimp2 Hashing ref Yes Yes Yes Yes Yes

SOAP2 FM-Index No No No Yes Yes

SSAHA2 Hashing ref. No No No Yes Yes

Aligner phylogeny

Whole genome Short read
Pairwise heuristic Sensitive global aligners

Alignment format for short reads – Sequence AlignMent
(SAM format)

• Plain text format – human readable (sort-of)

• Eleven mandatory fields and a variable amount of optional fields.

• The optional fields are a key-value pair of TAG:TYPE:VALUE. These store
extra information

• Can be converted to Binary AlignMent format (BAM) to save space and speed
up look-up operations using SAMTools

Alignment format for short reads – Sequence AlignMent
(SAM format)

SAM format – Optional fields

SAM output

Contents

• Alignment algorithms for short-reads

 Background – Blast (why can’t we use it?)

 Adapting hashed seed-extend algorithms to work with shorter reads

 Indel detection

 Suffix/Prefix Tries

 Other alignment considerations

 Typical alignment pipeline

 New methods of SNP calling

Other alignment considerations

• Indel detection

• Effect of paired-end alignments

• Using base quality to inform alignments

• PCR duplicates

• Methylation experiments – bisulfite treated reads

• Multi-mapping reads

• Aligning spliced-reads from RNA-seq experiments

• Local realignment to improve SNP/Indel detection

• Platform specific errors

• Unmapped reads

Indel detection

CCATTGTCATGTACTTGGGATCGT

Spaced seed with weight 9bp and no mismatches:

ACTCCCATTGTCATCGTACTTGGGATCGTAACA

Read containing a
deletion

Reference sequence

No seed match. No alignment!

Seed not matched due to frame shift caused
by gap

CCATTGTCATCGTACAT

CCXXTGXXATXXACXXG

Indel detection

Reference sequence:

...ACTGGGTCATCGTACGATCGATCGATCGATCGATCGGCTAGCTAGCTA...

Seed Extend with Smith Waterman

Most alignment programs can only detect gaps in
Smith-Waterman phase

 once a seed has been identified. Some algorithms (e.g.
Bowtie) do not allow gaps at this stage to improve

speed

This reduces sensitivity especially with multiple
insertions in a small region

GTCATCGTACG

ATCGA-CGATCGATCGATCGGCTA

Indel detection

• Some algorithms do allow gaps within seed

− Indel seeds for homology search Bioinformatics (2006) 22(14): e341-e349
doi:10.1093/bioinformatics/btl263

− Weese D, Emde AK, Rausch T, et al. RazerS–fast read mapping with
sensitivity control. Genome Res 2009;19:1646–54

− Rumble SM, Lacroute P, Dalca AV, et al. SHRiMP: accurate mapping of
short color-space reads. PLoS Comput Biol 2009;5:e1000386

• Use of multiple seeds

− Especially useful for longer reads (>50bp)

− Li R, Li Y, Kristiansen K, et al. SOAP: short oligonucleotide alignment
program. Bioinformatics 2008;24:713–4

− Jiang H, Wong WH. SeqMap: mapping massive amount of oligonucleotides
to the genome. Bioinformatics 2008;24: 2395–6

Paired-end reads are important

Repetitive DNA
Unique DNA

Single read maps to
multiple positions

Paired read maps uniquely

Read 1 Read 2

Known Distance

Effect of paired-end alignments

BWA-MEM

http://arxiv.org/pdf/1303
.3997v2.pdf

http://arxiv.org/pdf/1303.3997v2.pdf
http://arxiv.org/pdf/1303.3997v2.pdf

Effect of coverage on SNP call accuracy

Source – Illumina Tech Note
Human diploid sample

• Depends crucially on ploidy
• Bacterial genomes can get away with 10-20x
• For human genomes and other diploids 20-30x is regarded as
 standard
• Poly-ploids (e.g wheat) may need much higher coverage

PCR duplicates

• 2nd generation sequencers are not single-molecule sequencers

− All have at least one PCR amplification step

− Can result in duplicate DNA fragments

− This can bias SNP calls or introduce false SNPs

• Generally duplicates only make up a small fraction of the results

− Good libraries have < 2-3% of duplicates

− SAMtools and Picard can identify and remove these when aligned
against a reference genome

− Do NOT do this for RNA and ChIP-seq data!

PCR duplicates

Base quality impacts on read mapping

Heng Li & Nils Homer.
Sequence alignment
algorithms for next-
generation sequencing.
Briefings in
Bioinformatics. Vol 11.
No 5. 473 483, 2010

Allele-specific sequencing

http://bioinformatics.oxfordjournals.org/content/25/24/3207.full.pdf

Missing alternate
allele

http://bioinformatics.oxfordjournals.org/content/25/24/3207.full.pdf

Biasing towards and against the reference allele

http://bioinformatics.oxfordjournals.org/content/25/24/3207.full.pdf

http://bioinformatics.oxfordjournals.org/content/25/24/3207.full.pdf

Methylation experiments

Unmethylated cytosine

Methylation experiments

• Directly aligning reads against a reference will fail due to excessive
mismatches in non-methylated regions

• Most aligners deal with this by creating 2 reference sequences

− One has all Cs converted to Ts
− One has all Gs converted to As

• Convert Cs to Ts in all reads aligned against C-T reference
• Convert Gs to As in all reads aligned against G-A reference

• If there are no mutations or sequencing errors the reads will always
map to one of the two references

Multiple mapping reads

• A single read may occur more than once in the reference genome.

• Could be due to:

• Paralogs (duplicated genes).

• Transcripts which share exons.

• Mutations in genotype relative to the reference.

• Transposons and other common repetitive sequences

• Some aligners automatically assign a multi-mapping read to one of the
locations at random (e.g. Tophat)

• Aligners may allow you to chose how these are dealt with – others
may not

Spliced-read mapping

• Need packages which can account for splice variants

• Examples: TopHat, STAR, GSNAP, MapSplice

Spliced-read mapper evaluation

http://www.nature.com/nmeth/journal/v10/n12/full/nmeth.2722.html

http://www.nature.com/nmeth/journal/v10/n12/full/nmeth.2722.html

Local realignment to improve SNP/Indel detection

• Read aligners map each read (or read pair) independently of all
other reads
• Around indels and other variants it can be helpful to make use of
other metrics

e.g. Global median coverage for multi-mapping reads
• Tools such as GATK, SAMtools, Pindel and Breakdancer realign
reads in the vicinity of variants to improve calls

http://www.broadinstitute.org/gsa/wiki/index.php/The_Genome_Analysis_Toolkit

Chen, K. BreakDancer: an algorithm for high-resolution mapping of genomic structural
variation Nature Methods 6, 677 - 681 (2009)
Li H.*, Handsaker B.*, Wysoker A., Fennell T., Ruan J., Homer N., Marth G., Abecasis G.,
Durbin R. and 1000 Genome Project Data Processing Subgroup (2009) The Sequence
alignment/map (SAM) format and SAMtools. Bioinformatics, 25, 2078-9

Figure 6. A visual examination of a spurious gene (CDC27).

Jia P, Li F, Xia J, Chen H, et al. (2012) Consensus Rules in Variant Detection from Next-Generation Sequencing Data. PLoS ONE 7(6): e38470.
doi:10.1371/journal.pone.0038470
http://www.plosone.org/article/info:doi/10.1371/journal.pone.0038470

http://www.plosone.org/article/info:doi/10.1371/journal.pone.0038470

All platforms have errors and artefacts

Illumina PacBio Roche 454 Ion Torrent

1. Removal of low quality bases
2. Removal of adaptor sequences

3. Platform specific artefacts (e.g homopolymers)

Table 2. Spurious genes having mutations detected in 30 samples.

Jia P, Li F, Xia J, Chen H, et al. (2012) Consensus Rules in Variant Detection from Next-Generation Sequencing Data. PLoS ONE 7(6): e38470.
doi:10.1371/journal.pone.0038470
http://www.plosone.org/article/info:doi/10.1371/journal.pone.0038470

http://www.plosone.org/article/info:doi/10.1371/journal.pone.0038470

Illumina artefacts

Nakamura, K. et al. Sequence-specific error profile of Illumina sequencers
Nucl. Acids Res. (2011) May 16, 2011

Illumina artefacts

1. GC rich regions are under represented
a. PCR
b. Sequencing

2. Substitutions more common than insertions
3. GGC/GCC motif is associated with low quality and
mismatches
4. Filtering low quality reads exacerbates low coverage
of GC regions

Alignment software should ideally account for technology

specific bias but generally does not

Its up to you to filter before alignment

Your alignments are only as good as your library prep

• Even if all other artefacts are removed:

• If your library prep is biased, your alignments will also
reflect this bias

Tophat/Cufflinks aside

http://genomebiology.com/2011/12/3/R22

• Applies to random primed
RNA-seq libraries

• Main potential biases:

• Random hexamer priming biases

• Fragments near 5’ or 3’ are likely
to

http://genomebiology.com/2011/12/3/R22

Effect of bias correction

N.B. Out-dated version of Cufflinks used here

http://genomebiology.com/2011/12/3/R22

http://genomebiology.com/2011/12/3/R22

Correcting for GC-bias in RNA-seq

Human Yeast

http://genomebiology.com/2011/12/3/R22

http://genomebiology.com/2011/12/3/R22

Unmapped reads

Unmapped reads

• Can be the result of:
− Sequencing errors (should be small fraction if quality filtering

applied before mapping)
− Contamination
− Excessive matches to repeats
− Highly divergent regions between samples
− Novel genetic material not present in reference
− Plasmids

• Should be assembled de-novo with paired-end information if possible
• Resulting contigs run through MegaBlast against NCBI NT to check
species
• Check against RepBase to remove repetitive contigs
• Call ORFs
• Blast ORFs using BlastP against NCBI NR or Swissprot and Blast2GO
• Run through PFAM

Typical alignment pipeline

QC

• Remove low quality bases

• Remove reads containing adaptor sequences

• Trim or remove reads containing Ns

Alignment

• Generate reference or read index

• Align reads to index

• SAM output file

Post alignment

• Sort SAM file and convert to BAM with SAMtools

• Remove suspected PCR duplicates with SAMtools

• Perform local realignment around indels using GATK

• Supply BAM file to variant caller (e.g. Samtools mpileup)

• Analyse variants (are they within genes, synonymous vs nonsynonymous changes etc)*

• Locate missing genes/regulatory regions

Assemble
unmapped reads

• Assemble unmapped reads (e.g. using Velvet)

• Call Open Reading Frames (ORFs)

• Search for homologous genes (BLASTP), protein families (PFAM)

• Identify novel genes

* http://bioinformatics.net.au/software.nesoni.shtml

Contents

• Alignment algorithms for short-reads

 Background – Blast (why can’t we use it?)

 Adapting hashed seed-extend algorithms to work with shorter reads

 Indel detection

 Suffix/Prefix Tries

 Other alignment considerations

 Typical alignment pipeline

 New methods of SNP calling

New methods of SNP calling

• FreeBayes (http://arxiv.org/pdf/1207.3907v2.pdf)

• Warning - unpublished

• Haplotype calling in polyploids

 ACA Reference Genome

 Assume a SNP at both 5’ A->T and 3’ A->G

Do we have a heterozygous?

ACG

TCA

Or do we have a homozygous?

TCG

http://arxiv.org/pdf/1207.3907v2.pdf
http://arxiv.org/pdf/1207.3907v2.pdf

Haplotype issue calling – Long reads to the rescue

New methods of SNP calling

• Why align at all?

• We only do this because of computational constraints

• Ideally we want to assemble denovo and then align to
reference genome

• Cortex is a step in this direction:

• Denovo genome assembler, but keeps track of differences
which could be due to SNPs/Indels

Variant calling with de-novo assembly

Questions!

biosciences.exeter.ac.uk/facilities/sequencing/usefulresources/

Assembly algorithms
for short reads

De-novo sequence assembly

1. Sequence DNA fragments from each end

Insert length

De-novo sequence assembly

1. Sequence DNA fragments from each end

2. Reads aligned to generate contigs

De-novo sequence assembly

1. Sequence DNA fragments from each end

2. Reads aligned to generate contigs

De-novo sequence assembly

1. Sequence DNA fragments from each end

2. Reads aligned to generate contigs

3. Supercontigs derived from paired reads on different
contigs

De-novo sequence assembly

1. Sequence DNA fragments from each end

2. Reads aligned to generate contigs

3. Supercontigs derived from paired reads on different
contigs

4. Ordering of contigs is determined

5. Different insert lengths and read lengths can resolve
ambiguities

6. Insert size can be increased to 2-20kb by using mate-pair
libraries (helps to span repetitive regions)

Mate-pair vs paired-end

• Often causes confusion

• Paired-end usually refers to libraries prepared for the
Illumina platform with insert sizes 50-500bp.

• Mate-pair is a different library preparation protocol and
usually produces insert sizes 2kb-20kb.

Contents

• Alignment algorithms for short-reads

 Background – Blast (why can’t we use it?)

 Adapting hashed seed-extend algorithms to work with shorter reads

 Suffix/Prefix Tries

 Other alignment considerations

 Typical alignment pipeline

• Assembly algorithms for short reads

 Effect of repeats

 Overlap-Consensus

 de Bruijn graphs

 Assembly evaluation metrics

 Typical assembly pipeline

Repetitive sequence

• Main reason for fragmented genome assemblies

• Additional sequencing depth will not help overcome
repeat limited assemblies

Whiteford N, Haslam N, Weber G, et al. An analysis of the
feasibility of short read sequencing. Nucleic Acids Res
2005;33:e171

Repetitive DNA

Unique DNA

Single read maps to
multiple positions

Paired read maps uniquely

Read 1 Read 2

Known Distance

Paired read does not map

Repetitive sequence

Repetitive sequence

http://www.cbcb.umd.edu/research/assembly_primer.shtml

Can try to identify collapsed
repeats by increased relative
coverage

Repetitive sequence

• Main reason for fragmented genome assemblies

• Additional sequencing depth will not help overcome repeat limited
assemblies

• Can estimate the number of repetitive regions, based on relative
coverage

• Only longer reads or paired-end/mate-pair reads can overcome this

• PacBio reads can extend up to 10-20kb but expensive and
impractical for most labs

• Large mate pair insert sizes ~20kb are possible, but library
preparation is inefficient (2-3 days of trial and error). Also a
significant fraction will be error-prone and/or chimeric

Whiteford N, Haslam N, Weber G, et al. An analysis of the
feasibility of short read sequencing. Nucleic Acids Res
2005;33:e171

Assumptions made by de-novo assemblers

Based on Lander-Waterman model

 Number of times a base is sequenced follows a Poisson distribution

 Reads are randomly distributed throughout a genome

 The ability to detect an overlap between two reads is not dependent
on the base-composition of the read

Lander, E.S. and Waterman, M.S. (1988). "Genomic
Mapping by Fingerprinting Random Clones: A
Mathematical Analysis". Genomics 2 (3): 231–239

L = Read length
N = Number of reads
G = Genome size
P = Probability base is sequenced

Assumptions are not true

Paszkiewicz K , Studholme D J Brief Bioinform
2010;11:457-472

© The Author 2010. Published by Oxford University Press. For Permissions, please email:
journals.permissions@oxfordjournals.org

NGS de-novo assemblies are draft quality at best

• 500 contigs covering most of a bacterial genome can be obtained in
1 week from genomic DNA to Genbank submission

• To get 1 contigs covering all genomic sequence could take many
months

• Is the extra effort worth it?

• Short answer: Usually not.

Assembly complexity of

prokaryotic genomes using
short reads

Carl Kingsford , Michael C

Schatz and Mihai Pop
BMC Bioinformatics 2010, 11:21

http://www.biomedcentral.com/1471-2105/11/21/figure/F4?highres=y

Contents

• Alignment algorithms for short-reads

 Background – Blast (why can’t we use it?)

 Adapting hashed seed-extend algorithms to work with shorter reads

 Suffix/Prefix Tries

 Other alignment considerations

 Typical alignment pipeline

• Assembly algorithms for short reads

 Effect of repeats

 Overlap-Consensus

 de Bruijn graphs

 Assembly evaluation metrics

 Typical assembly pipeline

Overlap consensus vs. de Bruijn

• 2 main categories of assembly algorithms

− Overlap Consensus (OLC) and de Bruijn graph assemblers

• OLC

− Primarily used for Sanger and hybrid assemblies

− Memory constraints prevent its use beyond 1 million reads or so

• de Bruijn

− Primarily used for NGS assemblies

− Still memory hungry but possible

de Bruijn graph assembly

de Bruijn graph assembly

de Bruijn graph assembly

de Bruijn graph assembly

de Bruijn graph assembly

de Bruijn graph assembly

de Bruijn graph assembly

de Bruijn graph assembly

Diagrams courtesy M. Caccamo, TGAC

Dealing with errors

Thomas Keane and Jan Aerts, Wellcome Trust Sanger

de Bruijn graph assembly error correction

Diagrams courtesy M. Caccamo, TGAC

Errors or rare sequence?

• Depends on the type of data:

− Assumptions are probably true for single haploid genome
data

− Diploid and polyploid expect any branches to have equal
coverage

− Less clear for RNA-seq due to splicing

− Completely false assumption for metagenomic and
metatranscriptomic data!

Short read assemblers

• First de Bruijn based assembler was Newbler

− Adapted to handle main 454 error – indels in homopolymers

• Several other de Bruijn assemblers developed subsequently

− Velvet, Euler-SR, ABySS, ALLPATHS2
− Most can use paired-end and mate-pair information

•Most cannot deal with mammalian sized genomes

− ABySS – distributed genome assembly via MPI
− SOAPde-novo (BGI) Cortex (TGAC)

− Early removal of spurious errors

• Hybrid assemblers
− MIRA – capable of assembling 454, Sanger and short reads
− Memory hungry

•Other approaches
− String graph assemblers
− Fermi, SGA
− Correcting PacBio reads with Illumina

Contents

• Alignment algorithms for short-reads

 Background – Blast (why can’t we use it?)

 Adapting hashed seed-extend algorithms to work with shorter reads

 Suffix/Prefix Tries

 Other alignment considerations

 Typical alignment pipeline

• Assembly algorithms for short reads

 Effect of repeats

 Overlap-Consensus

 de Bruijn graphs

 Assembly evaluation metrics

 Typical assembly pipeline

Thomas Keane and Jan Aerts, Wellcome Trust Sanger

Assembly evaluation – N50

Thomas Keane and Jan Aerts, Wellcome Trust Sanger

Assembly length vs. N50

Thomas Keane and Jan Aerts, Wellcome Trust Sanger

Assembly evaluation metrics

Thomas Keane and Jan Aerts, Wellcome Trust Sanger

Which human assembly is better? Why?

Assembly benchmarking software

Darling et al Mauve Assembly Metrics Bioinformatics (2011) btr451 first published online
August 2, 2011

 http://t.co/BbpbTPz

Types of assemblers

2 main categories, many variations

Each tends to have its own niche

Memory and hardware requirements can differ substantially

Typically a parameter scan is need to get the ‘best’ assembly

This means many assemblies need to be generated

Narzisi G, Mishra B, Comparing De Novo Genome Assembly:
The Long and Short of It. 2011 PLoS ONE 6(4):

De novo assembly of short sequence reads
Paszkiewicz, K. Studholme, D.

Briefings in Bioinformatics
August 2010 11(5): 457-472

Which assembler is best?

• Depends on:

− Type of reads (Illumina, SoLID, 454, Ion Torrent, PacBio,
Sanger etc)

− Paired/mate-pair data?

− Genome

− Repeat content

− Available hardware

• Prokaryote genomes – Velvet

• Larger genomes ABySS or Soapdenovo

Narzisi G, Mishra B, Comparing De Novo Genome Assembly:
The Long and Short of It. 2011 PLoS ONE 6(4):

Merging assemblies

• Often assemblies are produced from 454 or Sanger data
and need to be merged with Illumina data

• In order of preference:

1. Attempt to assemble 454/Sanger reads with
Illumina reads using MIRA

2. Merge assemblies separately using minimus2 or
SSPACE

3. Input 454/Sanger contigs as part of a reference
 guided assembly (e.g. Velvet/Columbus)

Transcriptome assembly

• de-novo transcriptome assembly is also possible

• RNA-seq reads can be assembled and isoform abundance estimated

• Much harder as Lander-Waterman assumptions of randomly
distributed reads are not true

• Also complicated by splice-variants and the need to statistically
model isoform abundance based on read distributions

• Oases/Velvet

• Trans-ABySS

• SOAPde-novo

• Trinity

 Good experimental option for vertebrates and other non-model
organisms where a reference genome is not available

Typical assembly pipeline

QC

•Remove low quality bases

•Remove reads containing adaptor sequences

•Trim or remove reads containing Ns

Assembly

•Generate multiple assemblies using different parameters

Alignment

•Align filtered reads back to contigs for each assembly

•Blast unaligned reads to determine if contaminants are present

•Calculate assembly metrics of N50, total assembly length, number of reads mapping to assembly etc

•Call any relevant SNPs in case of intra-sample variation

Annotation

•Call Open Reading Frames (ORFs)

•de-novo gene prediction (e.g. FGENES, Genemark, Glimmer)

•Search for homologous genes (BLASTP), protein families (PFAM) and/or Interproscan

Alignment to related
species

•Obtain synteny alignments (e.g. Mummer0

•Visualise in Mauve, IGV, GBrowseSyn

Additional sequencing
to improve de-novo

assembly

•Mate-pair libraries to span repeats

•Sanger sequencing to gap -fill

Optimal de-novo sequencing strategy and
review papers

Assessing the benefits of using mate-pairs to resolve
repeats in de novo short-read prokaryotic assemblies

Joshua Wetzel , Carl Kingsford and Mihai Pop
BMC Bioinformatics 2011, 12:95

Comparing De Novo Genome Assembly:
The Long and Short of It.
Narzisi, G. Mishra B.
2011 PLoS ONE 6(4)

De novo assembly of short sequence reads
Paszkiewicz, K. Studholme, D.

Briefings in Bioinformatics
August 2010 11(5): 457-472

A new strategy for genome assembly using

short sequence reads and reduced
representation libraries
Young A.L., Abaan H.O., Zerbino D, et al.
Genome Research 2010;20:249–56.

Variant calling with de-novo assembly

Questions!

biosciences.exeter.ac.uk/facilities/sequencing/usefulresources/

de-Bruijn graph assembly 1

de-Bruijn graph assembly 2

de-Bruijn graph assembly 3

