


New Illumina sequencer launched 

 

 

 

 

http://biomickwatson.wordpress.com/ 
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HiSeq X10 



General queries 

• Technical replicates 

• http://genomebiology.com/2011/12/3/R22#B18 

• http://genomebiology.com/2011/12/3/R22#B19 

• Allele drop out for double-digest RAD 

• http://www.ncbi.nlm.nih.gov/pubmed/23110526 
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Alignment of reads to a reference 

  ..ACTGGGTCATCGTACGATCGATCGATCGATCGATCGGCTAGCTAGCTA.. 

  ..ACTGGGTCATCGTACGATCGATAGATCGATCGATCGCTAGCTAGCTA.. 

Reference  

Sample  



Why is short read alignment hard? 

The shorter a read, the 
less likely it is to have a 
unique match to a 
reference sequence 



Why do we generate short reads? 

• Sanger reads lengths ~ 800-2000bp 
 
• Generally we define short reads as anything below 200bp 

− Illumina (50bp – 300bp) 
− SoLID (80bp max) 
− Ion Torrent (200-400bp max...) 
− Roche 454 – 400-800bp 

 
• Even with these platforms it is cheaper to produce short reads (e.g. 50bp) 
rather than 100 or 200bp reads 
 
• Diminishing returns: 

− For some applications 50bp is more than sufficient 
− Resequencing of smaller organisms 
− ChIP-Seq 
− Digital Gene Expression profiling 
− Bacterial RNA-seq 

 
 
 



Short read alignment applications 

Genotyping: 

 Methylation 
 SNPs  
 Indels 
  

Classify and measure peaks:  
 ChIP-Seq 
 RNA-Seq 
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Dot Matrix Method 
- Aligning by eye 

13 

http://arbl.cvmbs.colostate.edu/molkit/dnadot/index.html 



Sequence Alignment 

ATCGATACG  

 ATGGATTACG 

3 possibilities 

Mismatch 

…C… 

…G… 

Indel 

…-… 

…T… 

Match 

…A… 

…A… 
| 

ATCGAT-ACG  

ATGGATTACG 



A very simple alignment scoring system 

 

 
Points for a matching letter:           1 
 
Points for a non-matching letter:   0 
 
Points for inserting a gap:              0 



Global Pair-wise Alignment 

ATCGAT-ACG 

ATGGATTACG 

ATCGATACG, ATGGATTACG 

|| ||| ||| 

+1 +1 +1 +1 +1 +1 +1 +1 Matches: = +8 

0 Mismatches: = 0 

0 Gaps: = 0 

Total score = +8 

But, what does this score mean??  
Could we get a better alignment? 



How to choose the best alignment? 

• Sequence 1: ACTGAGC 

• Sequence 2: ATGATGC 

 

• Some possible alignments: 

 

ACTGAGC-- ACTGA-GC A----CTGAGC 

A-TGA-TGC A-TGATGC ATGAT----GC 



Global alignment – Needleman-Wunsch 

A global alignment covers the entire lengths of the 

sequences involved 

  

The Needleman-Wunsch algorithm finds the best global 
alignment between 2 sequences across their whole length 

 



Step 1: Initialise 

A C T G A G C 

A 0 

T 0 

G 0 

A 0 

T 0 

G 0 

C 0 1 0 0 0 0 1 

Fill in far-right column and bottom row with: 
 0 for a mis-match 
 1 for a match 



Step 2: 

A C T G A G C 

A 0 

T 0 

G 0 

A 0 

T 0 

G 0 

C 0 1 0 0 0 0 1 

For each box, find the highest number out of the blue boxes 



Step 3: 

A C T G A G C 

A 0 

T 0 

G 0 

A 0 

T 0 

G 1+1=2 0 

C 0 1 0 0 0 0 1 

If there is a match in the yellow box as, take the highest value from the 
blue boxes and add 1 to it  

G matches G in the yellow box, so add 1 to the 1 in the blue box 



Step 2: 

A C T G A G C 

A 0 

T 0 

G 0 

A 0 

T 0 

G 0+0=0 2 0 

C 0 1 0 0 0 0 1 

A does not match G. So add zero to the zero in the blue box. 



Step 2: 

A C T G A G C 

A 0 

T 0 

G 0 

A 0 

T 0 

G 0+1=1 1 2 0 

C 0 1 0 0 0 0 1 

If there is a match as here, take the highest value and add 1 to it 
 

G matches G so add 1 to zero in the blue box 



Step 2: 

A C T G A G C 

A 0 

T 0 

G 0 

A 0 

T 0 

G 0+0=0 1 0 2 0 

C 0 1 0 0 0 0 1 

If there is a match as here, take the highest value and add 1 to it  
 

T does not match G. So add zero. 



Step 2: 

A C T G A G C 

A 0 

T 0 

G 0 

A 0 

T 0+1=1 0 

G 0 0 0 1 0 2 0 

C 0 1 0 0 0 0 1 

Highest out of the blue boxes is zero  
 

. 



Step 2: 

A C T G A G C 

A 0 

T 0 

G 0 

A 0 

T 2+0=2 1 0 

G 0 0 0 1 0 2 0 

C 0 1 0 0 0 0 1 

Highest out of the blue boxes is 2 
 

A does not match T  
 

. 



Step 2: 

A C T G A G C 

A 0 

T 0 

G 0 

A 0 

T 2+0=2 2 1 0 

G 0 0 0 1 0 2 0 

C 0 1 0 0 0 0 1 

Highest out of the blue boxes is 2 
 

G does not match T  
 

. 



Step 2: 

A C T G A G C 

A 0 

T 0 

G 0 

A 0 

T 3 2 2 1 0 

G 0 0 0 1 0 2 0 

C 0 1 0 0 0 0 1 

Highest out of the blue boxes is 2 
 

T does match T  
 

. 



Step 2: 

A C T G A G C 

A 0 

T 0 

G 0 

A 0 

T 2+0=2 3 2 2 1 0 

G 0 0 0 1 0 2 0 

C 0 1 0 0 0 0 1 

Highest out of the blue boxes is 2 
 

C does not match T  
 

. 



Step 2: 

A C T G A G C 

A 0 

T 0 

G 0 

A 0 

T 2 2 3 2 2 1 0 

G 0 0 0 1 0 2 0 

C 0 1 0 0 0 0 1 

Do the same for all remaining rows 
 

. 



Step 2: 

A C T G A G C 

A 0 

T 0 

G 0 

A 1+0=0 0 

T 2 2 3 2 2 1 0 

G 0 0 0 1 0 2 0 

C 0 1 0 0 0 0 1 

Do the same for all remaining rows 
 

. 



Step 2: 

A C T G A G C 

A 0 

T 0 

G 0 

A 2+1=3 1 0 

T 2 2 3 2 2 1 0 

G 0 0 0 1 0 2 0 

C 0 1 0 0 0 0 1 

Do the same for all remaining rows 
 

. 



Step 2: 

A C T G A G C 

A 0 

T 0 

G 0 

A 2+0=2 3 1 0 

T 2 2 3 2 2 1 0 

G 0 0 0 1 0 2 0 

C 0 1 0 0 0 0 1 

Do the same for all remaining rows 
 

. 



Step 2: 

A C T G A G C 

A 0 

T 0 

G 0 

A 2+0=2 2 3 1 0 

T 2 2 3 2 2 1 0 

G 0 0 0 1 0 2 0 

C 0 1 0 0 0 0 1 

Do the same for all remaining rows 
 

. 



Step 2: 

A C T G A G C 

A 6 5 4 3 3 1 0 

T 4 4 5 3 2 0 0 

G 3 3 3 4 2 1 0 

A 4 3 2 2 3 1 0 

T 2 2 3 2 2 1 0 

G 0 0 0 1 0 2 0 

C 0 1 0 0 0 0 1 

Do the same for all remaining rows 
 

. 



Step 3: Backtracking 

A C T G A G C 

A 6 5 4 3 3 1 0 

T 4 4 5 3 2 0 0 

G 3 3 3 4 2 1 0 

A 4 3 2 2 3 1 0 

T 2 2 3 2 2 1 0 

G 0 0 0 1 0 2 0 

C 0 1 0 0 0 0 1 

Follow largest numbers starting from top-left going down and to the 
right 

. 



Step 3: Backtracking 

A C T G A G C 

A 6 5 4 3 3 1 0 

T 4 4 5 3 2 0 0 

G 3 3 3 4 2 1 0 

A 4 3 2 2 3 1 0 

T 2 2 3 2 2 1 0 

G 0 0 0 1 0 2 0 

C 0 1 0 0 0 0 1 

Follow largest numbers starting from top-left going down and to the 
right 

. 



Step 3: Backtracking 

A C T G A G C 

A 6 5 4 3 3 1 0 

T 4 4 5 3 2 0 0 

G 3 3 3 4 2 1 0 

A 4 3 2 2 3 1 0 

T 2 2 3 2 2 1 0 

G 0 0 0 1 0 2 0 

C 0 1 0 0 0 0 1 

Follow largest numbers starting from top-left going down and to the 
right 

. 



Step 3: Backtracking 

A C T G A G C 

A 6 5 4 3 3 1 0 

T 4 4 5 3 2 0 0 

G 3 3 3 4 2 1 0 

A 4 3 2 2 3 1 0 

T 2 2 3 2 2 1 0 

G 0 0 0 1 0 2 0 

C 0 1 0 0 0 0 1 

Follow largest numbers starting from top-left going down and to the 
right 

. 



Step 4: Generate alignment 

A C T G A G C 

A 6 5 4 3 3 1 0 

T 4 4 5 3 2 0 0 

G 3 3 3 4 2 1 0 

A 4 3 2 2 3 1 0 

T 2 2 3 2 2 1 0 

G 0 0 0 1 0 2 0 

C 0 1 0 0 0 0 1 

Horizontal seq     A 

Vertical seq       A 



Step 4: Generate alignment 

A C T G A G C 

A 6 5 4 3 3 1 0 

T 4 4 5 3 2 0 0 

G 3 3 3 4 2 1 0 

A 4 3 2 2 3 1 0 

T 2 2 3 2 2 1 0 

G 0 0 0 1 0 2 0 

C 0 1 0 0 0 0 1 

Horizontal seq     ACT 

Vertical seq       A-T 

Gap 



Step 4: Generate alignment 

A C T G A G C 

A 6 5 4 3 3 1 0 

T 4 4 5 3 2 0 0 

G 3 3 3 4 2 1 0 

A 4 3 2 2 3 1 0 

T 2 2 3 2 2 1 0 

G 0 0 0 1 0 2 0 

C 0 1 0 0 0 0 1 

Horizontal seq     ACTG 

Vertical seq       A-TG 



Step 4: Generate alignment 

A C T G A G C 

A 6 5 4 3 3 1 0 

T 4 4 5 3 2 0 0 

G 3 3 3 4 2 1 0 

A 4 3 2 2 3 1 0 

T 2 2 3 2 2 1 0 

G 0 0 0 1 0 2 0 

C 0 1 0 0 0 0 1 

Horizontal seq     ACTGA 

Vertical seq       A-TGA 



Step 4: Generate alignment 

A C T G A G C 

A 6 5 4 3 3 1 0 

T 4 4 5 3 2 0 0 

G 3 3 3 4 2 1 0 

A 4 3 2 2 3 1 0 

T 2 2 3 2 2 1 0 

G 0 0 0 1 0 2 0 

C 0 1 0 0 0 0 1 

Horizontal seq     ACTGA- 

Vertical seq       A-TGAG 



Step 4: Generate alignment 

A C T G A G C 

A 6 5 4 3 3 1 0 

T 4 4 5 3 2 0 0 

G 3 3 3 4 2 1 0 

A 4 3 2 2 3 1 0 

T 2 2 3 2 2 1 0 

G 0 0 0 1 0 2 0 

C 0 1 0 0 0 0 1 

Horizontal seq     ACTGA-C 

Vertical seq       A-TGAGC 



Optimal global alignment 
 

 

ACTGA-C 

| ||| | 

A-TGAGC 
 



Local alignment 

A global alignment is often not appropriate as only parts 
of sequences may be conserved   

 

A local alignment only covers parts of the sequences 

 The Smith-Waterman algorithm finds the best local alignment between 2 

sequences 

 Global alignment 

  

 

 Local alignment 

 

  

  

Q K E S G P S S S Y C  

V Q Q E S G L V R T T C 

|   | | |           | 

    E S G 

      E S G 

    | | | 



Local alignment 

A local alignment of 2 sequences is an alignment 
between parts of the 2 sequences 

  

E.g. Two proteins may be very similar in a functional site, but be very dissimilar 
outside that region 

 

 A global alignment of such sequences would have: 

  (i) lots of matches in the region of high sequence similarity 

 (ii) lots of mismatches & gaps (insertions/deletions) outside the region  of 
similarity   

 

 It makes sense to find the best local alignment instead 

  

  



Alignment of an orthologous protein in  
D.melanogaster vs H.sapiens 

 

Not suitable for global alignment 

 

2 main regions of similarity  

 

Better to use local alignment 

 

 



Local alignment – Smith-Waterman algorithm 

  

0 - G A T C

- 0

G

A

C

Example – align GATC to GAC 



Local alignment – Smith-Waterman algorithm 

  

0 - G A T C

- 0 -2 -4 -6 -8

G

A

C

Local alignment algorithm 

Points for match              = +1 
Points for mismatch         = -1 
Points for a gap insertion = -2 

 

GATC 

||||     

____ 

 

 



Local alignment – Smith-Waterman algorithm 

  

0 - G A T C

- 0 -2 -4 -6 -8

G -2

A -4

C -6

Local alignment algorithm 

Points for match              = +1 
Points for mismatch         = -1 
Points for a gap insertion = -2 

 

GAC 

|||     

___ 

 

 



Local alignment – Smith-Waterman algorithm 

  

+ MATCH + GAP

+ GAP

0 - G A T C

- 0 -2 -4 -6 -8

G -2

A -4

C -6

+1 

Max= 1 

Points for match              = +1 
Points for mismatch         = -1 
Points for a gap insertion = -2 

GATC 

|      

 



Local alignment – Smith-Waterman algorithm 

  

0 - G A T C

- 0 -2 -4 -6 -8

G -2

A -4

C -6

     1 

Points for match              = +1 
Points for mismatch         = -1 
Points for a gap insertion = -2 

           -1 



Dynamic Programming  

  

0 - G A T C

- 0 -2 -4 -6 -8

G -2 1 -1 -3 -5

A -4 -1 2 0 -2

C -6 -3 0 1 1

Local alignment algorithm 

Points for match              = +1 
Points for mismatch         = -1 
Points for a gap insertion = -2 
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Backtracking and final alignment 

  

- G A T C

- 0 -2 -4 -6 -8

G -2 1 -1 -3 -5

A -4 -1 2 0 -2

C -6 -3 0 1 1

GATC 

GA-C 
|| | 



Smith-Waterman – more details 

http://www.youtube.com/watch?v=IVRSFaGCGeE 

http://www.youtube.com/watch?v=IVRSFaGCGeE


Dynamic programming 

• Needleman-Wunsch and Smith-Waterman are a 
class of methods known as ‘Dynamic 
Programming’ 

• Guaranteed to give you the best possible 
alignment 

• In biology, this algorithm is very inefficient 
because most sequences are not similar to each 
other 

• Therefore it takes a long time to run 



BLAST –  
Basic Local Alignment Search Tool 



Background – BLAST 

• Primarily designed to identify homologous sequences  

 Blast is a hashed seed-extend algorithm 

 Negative selection 

 Only some parts of a sequence are usually constrained 

 

 

 



BLAST - Original version 

A   C   G   A   A   G   T  A   A   G   G  T   C   C  A   G   T 

C
  
 C

  
 C

  
 T

  
 T

  
 C

  
C

  
T

  
 G

  
 G

  
 A

  
T

  
 T

  
 G

  
C

  
 G

  
 A

 

Example: 

 

Seed size  = 4, 

No mismatches in seed 

 

The matching word GGTC 
initiates an alignment 

 

Extension to the left and right 
with no gaps until alignment 
score falls below 50% 

 

Output: 

GTAAGGTCC 

GTTAGGTCC 



BLAST - Original algorithm 

• Finding seeds significantly increases the speed of BLAST 
compared to doing a full local alignment over a whole sequence 

• Will not guarantee the best solution 

• BLAST first finds highly conserved or identical sequences which 
are then extended with a local alignment.  

 



BLAST – Speed (or lack thereof) 

• Typically BLAST will take approximately 0.1 – 1 second to search 
1 sequence against a database 

• Depends on size of database, e-value cutoff  and number of hits to 
report selected 

• 60 million reads equates to 70 CPU days! 

• Even on multi-core systems this is too long!  

• Especially if you have multiple samples! 

• This is still true of FPGA and SIMD (vectorised) implementations 
of BLAST 

 



When NOT to use BLAST 

• A typical situation: you have lots DNA sequences and want to 
extend it or find where on a genome it maps. 

• In other words, you want an exact or near-exact match to a 
sequence that is part of an assembled genome. 

• Short reads require very fast algorithms for finding near-exact 
matches in genomic sequences: 

− BLAT 

− Highly recommended: the BLAT paper (Kent WJ (2003) Genome Res 
12:656-64) – very well written 

− SOAP  

− Bowtie/Bowtie 2  

− MAQ 

− BWA 

− Shrimp2 



Contents 

• Alignment algorithms for short-reads 

 Background – Blast (why can’t we use it?) 

 Adapting hashed seed-extend algorithms to work with shorter reads 

 Indel detection 

 Suffix/Prefix Tries 

 Other alignment considerations 

 Typical alignment pipeline 

 New methods of SNP calling 

 



Adapting hashed seed-extend algorithms to work 
with shorter reads 

• Improve seed matching sensitivity 

− Allow mismatches within seed  

− BLAST 

− Allow mismatches + Adopt spaced-seed approach  

− ELAND, SOAP, MAQ, RMAP, ZOOM 

− Allow mismatches + Spaced-seeds + Multi-seeds 

− SSAHA2, BLAT, ELAND2 

• Above and/or Improve speed of local alignment for seed extension 

− Single Instruction Multiple Data 

− Shrimp2, CLCBio 

− Reduce search space to region around seed 

 



Hashed seed-extend algorithms 

• These are most similar to BLAST 

• Are not designed to work with large databases 

 

• 2 step process 

− Identify a match to the seed sequence in the reference 

− Extend match using sensitive (but slow) Smith-
Waterman algorithm (dynamic programming) 

 



Seed-extend algorithm 

Reference sequence: 

 

...ACTGGGTCATCGTACGATCGATCGATCGATCGATCGGCTAGCTAGCTA... 

 

 

    

 

Short read: 

 

GTCATCGTACGATCGATAGATCGATCGATCGGCTA 

Note that the short read has 1 difference wrt to reference  



Seed-extend algorithm 

Reference sequence: 

 

...ACTGGGTCATCGTACGATCGATCGATCGATCGATCGGCTAGCTAGCTA... 

 

 

    

 

Short read: 

 

GTCATCGTACG    ATCGATAGATCG      ATCGATCGGCTA 

11bp word  11bp word  11bp word  

The algorithm will try to match each word to the reference. If there 
is a match at with any single word it will perform a local alignment 
to extend the match 



Seed-extend algorithm 

Reference sequence: 

 

...ACTGGGTCATCGTACGATCGATCGATCGATCGATCGGCTAGCTAGCTA... 

 

 

    

 

Short read: 

 

GTCATCGTACG    ATCGATAGATCG      ATCGATCGGCTA 

Seed Extend with Smith Waterman  

Here the algorithm is able to match the short read with a word length of 

11bp 

GTCATCGTACG 
 

ATCGAACGATCGATCGATCGGCTA 



Seed-extend algorithm 

Reference sequence: 

 

...ACTGGGTCATCGTACGATCGATCGATCGATCGATCGGCTAGCTAGCTA... 

 

 

    

 

Short read: 

 

GTCATCGTACGATCGATCGATCGATCGATCGGCAA 

Note that the short read has 3 differences 
Possibly sequencing errors, possibly SNPs 



Seed-extend algorithm 

Reference sequence: 

 

...ACTGGGTCATCGTACGATCGATCGATCGATCGATCGGCTAGCTAGCTA... 

 

 

    

 

Short read: 

 

GTCATCGTACG  ATCGATCGATCG  ATCGATCGGCAA 

Note that the short read has 3 differences 

11bp word  11bp word  11bp word  



Seed-extend algorithm 

Reference sequence: 

 

...ACTGGGTCATCGTACGATCGATCGATCGATCGATCGGCTAGCTAGCTA... 

 

 

    

 

No seeds match 
  

Therefore the algorithm would find no hits at all! 

Short read: 

 

GTCATCGTACG  ATCGATCGATCG  ATCGATCGGCAA 





Adapting hashed seed-extend algorithms to work 
with shorter reads 

• Improve seed matching sensitivity 

− Allow mismatches within seed  

− BLAST 

− Allow mismatches + Adopt spaced-seed approach  

− ELAND, SOAP, MAQ, RMAP, ZOOM 

− Allow mismatches + Spaced-seeds + Multi-seeds 

− SSAHA2, BLAT, ELAND2 

• Above and/or Improve speed of local alignment for seed extension 

− Single Instruction Multiple Data 

− Shrimp2, CLCBio 

− Reduce search space to region around seed 

 



Adapting hashed seed-extend algorithms to work 
with shorter reads 

• Improve seed matching sensitivity 

− Allow mismatches within seed  

− BLAST 

− Allow mismatches + Adopt spaced-seed approach  

− ELAND, MAQ, RMAP, ZOOM 

− Allow mismatches + Spaced-seeds + Multi-seeds 

− SSAHA2, BLAT, ELAND2 

• Above and/or Improve speed of local alignment for seed extension 

− Single Instruction Multiple Data 

− Shrimp2, CLCBio 

− Reduce search space to region around seed 

 



Consecutive seed 

CCACTGTCCTCCTACATAGGAACGA 

Consecutive seed 9bp with no mismatches: 

ACTCCCATCGTCATCGTACTAGGGATCGTAACA 

SNP ‘heavy’ read 

Reference sequence 

Even allowing for 2 mismatches in 
the seed - no seeds match.  
No hits! 

Cannot find seed match due to A->C SNP 
and G->C SNP 

TCATCGTAC 

TCCTCCTAC 



Spaced seeds 

To increase sensitivity we can used spaced-seeds: 

11111111111 

11001100110011001 

Consecutive seed template with length 9bp 

Spaced-seed template with weight 9bp 

ACTATCATCGTACACAT 

TCATCGTAC 

ACTATCATCGTACACAT 

ACTCTCACCGTACACAT 

Reference 

Query 

Reference 

Query 



Spaced seeds 

CCACTGTAATCGTACATGGGAACGA 

Spaced seed with weight 9bp and no mismatches: 

ACTCCCATTGTCATCGTACTTGGGATCGTAACA 

SNP ‘heavy’ read 

Reference sequence 

Can now extend with Smith-Waterman or other local alignment 

Despite SNPs – seed matched with 0 
mismatches 

CCATTGTCATCGTACAT 

CCXXTGXXATXXTAXXT 



Spaced seeds 

Ma, B. et al. PatternHunter. Bioinformatics Vol 18, No 3, 2002    

Spaced seeds: 

• A seed template ‘111010010100110111’ is 55% more sensitive than 
BLAST’s default template ‘11111111111’ for two sequences of 70% 
similarity 
• Typically seeds of length ~30bp and allow up to 2 mismatches in short 
read datasets 
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• Alignment algorithms for short-reads 

 Background – Blast (why can’t we use it?) 

 Adapting hashed seed-extend algorithms to work with shorter reads 

 Suffix/Prefix Tries 

 Indel detection 

 Other alignment considerations 

 Typical alignment pipeline 

 New methods of SNP calling 

 



Suffix-Prefix Trie 

• Trie – data structure which stores the suffixes (i.e. ends of a sequence)  

• A family of methods which uses a Trie structure to search a reference 
sequence 

− Bowtie 

− BWA aln (<70bp reads) and MEM algorithm (>70bp reads) 

− SOAP version 2 

• Key advantages: 

− Alignment of multiple copies of an identical sequence in the 
reference only needs to be done once  

− Use of an FM-Index to store Trie can drastically reduce memory 
requirements (e.g. Human genome can be stored in 2Gb of RAM) 

− Burrows Wheeler Transform to perform fast lookups 



Suffix Trie 

Heng Li & Nils Homer. 
Sequence alignment 
algorithms for next-
generation sequencing. 
Briefings in 
Bioinformatics. Vol 11. 
No 5. 473 483, 2010 

Read 
AGGAGC 



Suffix Trie 



Burrows-Wheeler Algorithm 

• Encodes data so that it is easier to compress 

• Burrows-Wheeler transform of the word BANANA 

• Can later be reversed to recover the original word 

 



More Burrows-Wheeler 

Input SIX.MIXED.PIXIES.SIFT.SIXTY.PIXIE.DUST.BOXES 

Burrows-Wheeler Output TEXYDST.E.IXIXIXXSSMPPS.B..E.S.EUSFXDIIOIIIT 

Repeated characters mean that it is easier to compress 
 

Suffix Trie for a bacterial genome would be > 1Tb 
 

We have to compress it 
 

Use FM-Index/BW transform to do this compression 



Bowtie/BWA example 



Bowtie/BWA example 



Bowtie/BWA example 



Bowtie/BWA example 



Bowtie/BWA example 



Bowtie/BWA example 



Bowtie/BWA example 



Bowtie/BWA example 



Bowtie/BWA example 



Bowtie/Soap2 vs. BWA 

• Bowtie 1 and Soap2 cannot handle gapped alignments 
− No indel detection => Many false SNP calls 

 

CCATTGTCATCGTACTTGGGATCTA 

ACTCCCATTGTCATCGTACTTGGGATCGTAACA Reference 

      TCATCGTACTTGGGATCTA 

       TTGGGATCTA 
False SNPs 

Bowtie/Soap2: 

N.B. Bowtie2 can handle gapped alignments 



Bowtie/Soap2 vs. BWA 

• Bowtie 1 and Soap2 cannot handle gapped alignments 
− No indel detection => Many false SNP calls 

 

CCATTGTCATCGTACTTGGGATC-TA 

ACTCCCATTGTCATCGTACTTGGGATCGTAACA Reference 

      TCATCGTACTTGGGATC-TA 

       TTGGGATC-TA 

BWA: 

N.B. Bowtie2 can handle gapped alignments 



Comparison 

Indexed Suffix/Prefix Trie 

• Requires <2Gb of memory 

• Runs 30-fold faster 

• Is much more complicated 
to program 

• Least sensitive 

 

Hash referenced spaced seeds 

• Requires ~50Gb of memory 

• Runs 30-fold slower 

• Is much simpler to      
program 

• Most sensitive 

 



There are limits however 

CCATTGTCAACCATCTAGTAGCT-TA 

ACTCCCATTGTCATCGTACTTGGGATCGTAACA Reference 

      TCAACCATCTAGTAGCT-TA 

       ACCATCTA-TA 

With longer 100-300 bp reads, multiple indels or variable regions 
longer than a few bp are likely to be missed 



You only find what you are looking for 

• What happens if there are SNPs and Indels in the same region? 

Let’s assume that the SNP caller made this call of a single SNP: 
 
ATGTATGTA 
ATGTGTGTA 
 
and the indel caller produced this call of a 3 base deletion: 
 
ATGTATGTA 
ATGT- - - TA 
 
Should we assume this is a heterozygous SNP opposite a 
heterozygous Indel or a more complex locus? 
 



•   Bowtie's reported 30-fold speed increase over hash-based methods with 
     small loss in sensitivity 
•   Limitations to Trie-based approaches:  

− Only able to find alignments within a certain 'edit distance’ 
− Important to quality clip reads (-q in BWA) 
− Non-A/C/G/T bases on reads are often treated as mismatches 
− Make sure Ns are removed! 

 
Hash based approaches are more suitable for divergent alignments 
•  Rule of thumb:  

−   <2% divergence -> Trie-based 
− E.g. human alignments 

−   >2% divergence -> Seed-extend based approach 
− E.g. wild mouse strain alignments 

Comparison 



 Precision and recall by amount of variation for 4 
datasets, by polymorphism:  
(number of SNPs, Indel size) 

David M et al. Bioinformatics 2011;27:1011-1012 



 False discovery rates for variants were ascertained using 

cFDR for three fungal NGS datasets 

http://www.nature.com/srep/2013/130321/srep01512/full/srep01512.html 

http://www.nature.com/srep/2013/130321/srep01512/full/srep01512.html


Summary of open-source short read alignment programs 

Heng Li & Nils Homer. Sequence alignment algorithms for next-generation sequencing. 
Briefings in Bioinformatics. Vol 11. No 5. 473 483, 2010 
 
* Bowtie1 does not support gapped alignments 

Program Algorithm SoLID Long reads Gapped 

alignment 

Paired-end Quality 

scores 

used? 

Bfast Hashing ref Yes No Yes Yes No 

Bowtie2* FM-Index Yes Yes Yes Yes Yes 

Blat Hashing ref No Yes Yes No No 

BWA FM-Index Yes Yes Yes Yes No 

MAQ Hashing reads Yes No Yes Yes Yes 

Mosaik Hashing ref Yes Yes Yes Yes No 

Novoalign Hashing ref No No Yes Yes Yes 

Shrimp2 Hashing ref Yes Yes Yes Yes Yes 

SOAP2 FM-Index No No No Yes Yes 

SSAHA2 Hashing ref. No No No Yes Yes 



Aligner phylogeny 

Whole genome  Short read 
Pairwise heuristic  Sensitive global aligners 



Alignment format for short reads – Sequence AlignMent 
(SAM format) 

• Plain text format –  human readable (sort-of) 

• Eleven mandatory fields and a variable amount of optional fields. 

• The optional fields are a key-value pair of TAG:TYPE:VALUE. These store 
extra information 

• Can be converted to Binary AlignMent format (BAM) to save space and speed 
up look-up operations using SAMTools 



Alignment format for short reads – Sequence AlignMent 
(SAM format) 



SAM format – Optional fields 



SAM output 
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Other alignment considerations 

• Indel detection 

• Effect of paired-end alignments 

• Using base quality to inform alignments 

• PCR duplicates  

• Methylation experiments – bisulfite treated reads 

• Multi-mapping reads 

• Aligning spliced-reads from RNA-seq experiments 

• Local realignment to improve SNP/Indel detection 

• Platform specific errors 

• Unmapped reads 



Indel detection 

CCATTGTCATGTACTTGGGATCGT 

Spaced seed with weight 9bp and no mismatches: 

ACTCCCATTGTCATCGTACTTGGGATCGTAACA 

Read containing a  
deletion 

Reference sequence 

No seed match. No alignment! 

Seed not matched due to frame shift caused 
by gap 

CCATTGTCATCGTACAT 

CCXXTGXXATXXACXXG 



Indel detection 

Reference sequence: 

 

...ACTGGGTCATCGTACGATCGATCGATCGATCGATCGGCTAGCTAGCTA... 

 

 

    

 

Seed Extend with Smith Waterman  

Most alignment programs can only detect gaps in 
Smith-Waterman phase 

 once a seed has been identified. Some algorithms (e.g. 
Bowtie) do not allow gaps at this stage to improve 

speed 
 

This reduces sensitivity especially with multiple 
insertions in a small region 

GTCATCGTACG 
 

ATCGA-CGATCGATCGATCGGCTA 



Indel detection 

• Some algorithms do allow gaps within seed 

− Indel seeds for homology search Bioinformatics (2006) 22(14): e341-e349 
doi:10.1093/bioinformatics/btl263  

− Weese D, Emde AK, Rausch T, et al. RazerS–fast read mapping with 
sensitivity control. Genome Res 2009;19:1646–54 

− Rumble SM, Lacroute P, Dalca AV, et al. SHRiMP: accurate mapping of 
short color-space reads. PLoS Comput Biol 2009;5:e1000386 

• Use of multiple seeds 

− Especially useful for longer reads (>50bp) 

− Li R, Li Y, Kristiansen K, et al. SOAP: short oligonucleotide alignment 
program. Bioinformatics 2008;24:713–4 

− Jiang H, Wong WH. SeqMap: mapping massive amount of oligonucleotides 
to the genome. Bioinformatics 2008;24: 2395–6 

 



Paired-end reads are important 

Repetitive DNA 
Unique DNA 

Single read maps to  
multiple positions 

Paired read maps uniquely 

Read 1 Read 2 

Known Distance 



Effect of paired-end alignments 

BWA-MEM  
 
http://arxiv.org/pdf/1303
.3997v2.pdf 

http://arxiv.org/pdf/1303.3997v2.pdf
http://arxiv.org/pdf/1303.3997v2.pdf


Effect of coverage on SNP call accuracy 

Source – Illumina Tech Note 
Human diploid sample  

• Depends crucially on ploidy 
• Bacterial genomes can get away with 10-20x  
• For human genomes and other diploids 20-30x is regarded as     
   standard 
• Poly-ploids (e.g wheat) may need much higher coverage 



PCR duplicates 

• 2nd generation sequencers are not single-molecule sequencers 

− All have at least one PCR amplification step 

− Can result in duplicate DNA fragments 

− This can bias SNP calls or introduce false SNPs 

 

• Generally duplicates only make up a small fraction of the results 

− Good libraries have < 2-3% of duplicates 

− SAMtools and Picard can identify and remove these when aligned 
against a reference genome 

− Do NOT do this for RNA and ChIP-seq data! 

  



PCR duplicates 



Base quality impacts on read mapping 

Heng Li & Nils Homer. 
Sequence alignment 
algorithms for next-
generation sequencing. 
Briefings in 
Bioinformatics. Vol 11. 
No 5. 473 483, 2010 



Allele-specific sequencing 

http://bioinformatics.oxfordjournals.org/content/25/24/3207.full.pdf 

Missing alternate 
allele 

http://bioinformatics.oxfordjournals.org/content/25/24/3207.full.pdf


Biasing towards and against the reference allele 

http://bioinformatics.oxfordjournals.org/content/25/24/3207.full.pdf 

http://bioinformatics.oxfordjournals.org/content/25/24/3207.full.pdf


Methylation experiments 

Unmethylated cytosine 



Methylation experiments 

• Directly aligning reads against a reference will fail due to excessive 
mismatches in non-methylated regions 
 
• Most aligners deal with this by creating 2 reference sequences 

− One has all Cs converted to Ts 
− One has all Gs converted to As 

 
• Convert Cs to Ts in all reads aligned against C-T reference 
• Convert Gs to As in all reads aligned against G-A reference 
 
• If there are no mutations or sequencing errors the reads will always 
map to one of the two references 
 
 
 



Multiple mapping reads 

• A single read may occur more than once in the reference genome. 

• Could be due to: 

• Paralogs (duplicated genes). 

• Transcripts which share exons. 

• Mutations in genotype relative to the reference. 

• Transposons and other common repetitive sequences 

• Some aligners automatically assign a multi-mapping read to one of the 
locations at random (e.g. Tophat) 

• Aligners may allow you to chose how these are dealt with – others 
may not 

 



Spliced-read mapping 

 

• Need packages which can account for splice variants   

• Examples: TopHat, STAR, GSNAP, MapSplice 



Spliced-read mapper evaluation 

http://www.nature.com/nmeth/journal/v10/n12/full/nmeth.2722.html 

http://www.nature.com/nmeth/journal/v10/n12/full/nmeth.2722.html


Local realignment to improve SNP/Indel detection 

• Read aligners map each read (or read pair) independently  of all 
other reads 
• Around indels and other variants it can be helpful to make use of 
other metrics 

e.g. Global median coverage for multi-mapping reads 
• Tools such as GATK, SAMtools, Pindel and Breakdancer realign 
reads in the vicinity of variants to improve calls 
 

 
 

http://www.broadinstitute.org/gsa/wiki/index.php/The_Genome_Analysis_Toolkit 

Chen, K. BreakDancer: an algorithm for high-resolution mapping of genomic structural 
variation Nature Methods 6, 677 - 681 (2009)  
Li H.*, Handsaker B.*, Wysoker A., Fennell T., Ruan J., Homer N., Marth G., Abecasis G., 
Durbin R. and 1000 Genome Project Data Processing Subgroup (2009) The Sequence 
alignment/map (SAM) format and SAMtools. Bioinformatics, 25, 2078-9  

 

  



Figure 6. A visual examination of a spurious gene (CDC27). 

Jia P, Li F, Xia J, Chen H, et al. (2012) Consensus Rules in Variant Detection from Next-Generation Sequencing Data. PLoS ONE 7(6): e38470. 
doi:10.1371/journal.pone.0038470 
http://www.plosone.org/article/info:doi/10.1371/journal.pone.0038470 

http://www.plosone.org/article/info:doi/10.1371/journal.pone.0038470


All platforms have errors and artefacts 

Illumina PacBio Roche 454 Ion Torrent 

1. Removal of low quality bases 
2. Removal of adaptor sequences 

3. Platform specific artefacts (e.g homopolymers)  



Table 2. Spurious genes having mutations detected in 30 samples. 

Jia P, Li F, Xia J, Chen H, et al. (2012) Consensus Rules in Variant Detection from Next-Generation Sequencing Data. PLoS ONE 7(6): e38470. 
doi:10.1371/journal.pone.0038470 
http://www.plosone.org/article/info:doi/10.1371/journal.pone.0038470 

http://www.plosone.org/article/info:doi/10.1371/journal.pone.0038470


Illumina artefacts 

Nakamura, K. et al. Sequence-specific error profile of Illumina sequencers  
Nucl. Acids Res. (2011) May 16, 2011  



Illumina artefacts 

1. GC rich regions are under represented 
a. PCR 
b. Sequencing 

2. Substitutions more common than insertions 
3.   GGC/GCC motif is associated with low quality and 
mismatches 
4.   Filtering low quality reads exacerbates low coverage 
of GC regions 

Alignment software should ideally account for technology 

specific bias but generally does not 
 

Its up to you to filter before alignment 



Your alignments are only as good as your library prep 

• Even if all other artefacts are removed: 

 

• If your library prep is biased, your alignments will also 
reflect this bias  



Tophat/Cufflinks aside 

http://genomebiology.com/2011/12/3/R22 

 

• Applies to random primed 
RNA-seq libraries 

• Main potential biases: 

• Random hexamer priming biases 

• Fragments near 5’ or 3’ are likely 
to  

http://genomebiology.com/2011/12/3/R22


Effect of bias correction 

N.B. Out-dated version of Cufflinks used here 

http://genomebiology.com/2011/12/3/R22 

http://genomebiology.com/2011/12/3/R22


Correcting for GC-bias in RNA-seq 

Human Yeast 

http://genomebiology.com/2011/12/3/R22 

http://genomebiology.com/2011/12/3/R22


Unmapped reads 



Unmapped reads 

• Can be the result of: 
− Sequencing errors (should be small fraction if quality filtering 

applied before mapping) 
− Contamination 
− Excessive matches to repeats  
− Highly divergent regions between samples 
− Novel genetic material not present in reference 
− Plasmids 

 
• Should be assembled de-novo with paired-end information if possible 
• Resulting contigs run through MegaBlast against NCBI NT to check 
species 
• Check against RepBase to remove repetitive contigs 
• Call ORFs 
• Blast ORFs using BlastP against NCBI NR or Swissprot and Blast2GO 
• Run through PFAM 
 



Typical alignment pipeline 

QC 

• Remove low quality bases 

• Remove reads containing adaptor sequences 

• Trim or remove reads containing Ns 

Alignment 

• Generate reference or read index 

• Align reads to index 

• SAM output file 

Post alignment  

• Sort SAM file and convert to BAM with SAMtools 

• Remove suspected PCR duplicates with SAMtools 

• Perform local realignment around indels using GATK 

• Supply BAM file to variant caller  (e.g. Samtools mpileup) 

• Analyse variants (are they within genes, synonymous vs nonsynonymous changes etc)* 

• Locate missing genes/regulatory regions 

Assemble 
unmapped reads 

• Assemble unmapped reads (e.g. using Velvet)  

• Call Open Reading Frames (ORFs) 

• Search for homologous genes (BLASTP), protein families (PFAM) 

• Identify novel genes 

* http://bioinformatics.net.au/software.nesoni.shtml 
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New methods of SNP calling  

• FreeBayes (http://arxiv.org/pdf/1207.3907v2.pdf) 

• Warning - unpublished 

• Haplotype calling in polyploids 

  ACA  Reference Genome   

  Assume a SNP at both 5’ A->T and 3’ A->G 

Do we have a heterozygous? 

ACG 

TCA 

Or do we have a homozygous? 

TCG  

 

 

http://arxiv.org/pdf/1207.3907v2.pdf
http://arxiv.org/pdf/1207.3907v2.pdf


Haplotype issue calling – Long reads to the rescue 



New methods of SNP calling 

• Why align at all? 

• We only do this because of computational constraints 

• Ideally we want to assemble denovo and then align to 
reference genome 

 

• Cortex is a step in this direction: 

• Denovo genome assembler, but keeps track of differences 
which could be due to SNPs/Indels 

 



Variant calling with de-novo assembly 



Questions! 

biosciences.exeter.ac.uk/facilities/sequencing/usefulresources/ 



Assembly algorithms 
for short reads 



De-novo sequence assembly 

1. Sequence DNA fragments from each end 

Insert length 



De-novo sequence assembly 

1. Sequence DNA fragments from each end 

2. Reads aligned to generate contigs 



De-novo sequence assembly 

1. Sequence DNA fragments from each end 

2. Reads aligned to generate contigs 



De-novo sequence assembly 

1. Sequence DNA fragments from each end 

2. Reads aligned to generate contigs 

3. Supercontigs derived from paired reads on different 
contigs 



De-novo sequence assembly 

1. Sequence DNA fragments from each end 

2. Reads aligned to generate contigs 

3. Supercontigs derived from paired reads on different 
contigs 

 

 

 

 

 

 

 
 

4. Ordering of contigs is determined 

5. Different insert lengths and read lengths can resolve 
ambiguities 

6. Insert size can be increased to 2-20kb by using mate-pair 
libraries (helps to span repetitive regions) 



Mate-pair vs paired-end 

• Often causes confusion 

• Paired-end usually refers to libraries prepared for the 
Illumina platform with insert sizes 50-500bp.  

• Mate-pair is a different library preparation protocol and 
usually produces insert sizes 2kb-20kb. 
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Repetitive sequence 

• Main reason for fragmented genome assemblies 

• Additional sequencing depth will not help overcome 
repeat limited assemblies 

 

 

 

Whiteford N, Haslam N, Weber G, et al. An analysis of the 
feasibility of short read sequencing. Nucleic Acids Res 
2005;33:e171 



Repetitive DNA 

Unique DNA 

Single read maps to  
multiple positions 

Paired read maps uniquely 

Read 1 Read 2 

Known Distance 

Paired read does not map 

Repetitive sequence 



Repetitive sequence 

http://www.cbcb.umd.edu/research/assembly_primer.shtml 

Can try to identify collapsed 
repeats by increased  relative 
coverage 



Repetitive sequence 

• Main reason for fragmented genome assemblies 

• Additional sequencing depth will not help overcome repeat limited 
assemblies 

 

• Can estimate the number of repetitive regions, based on relative 
coverage 

• Only longer reads or paired-end/mate-pair reads can overcome this 

• PacBio reads can extend up to 10-20kb but expensive and 
impractical for most labs 

• Large mate pair insert sizes ~20kb are possible, but library 
preparation is inefficient (2-3 days of trial and error). Also a 
significant fraction will be error-prone and/or chimeric 

 

 

 

Whiteford N, Haslam N, Weber G, et al. An analysis of the 
feasibility of short read sequencing. Nucleic Acids Res 
2005;33:e171 



Assumptions made by de-novo assemblers 

Based on Lander-Waterman model 

 Number of times a base is sequenced follows a Poisson distribution 

 Reads are randomly distributed throughout a genome 

 The ability to detect an overlap between two reads is not dependent 
on the base-composition of the read 

 

 

Lander, E.S. and Waterman, M.S. (1988). "Genomic 
Mapping by Fingerprinting Random Clones: A 
Mathematical Analysis". Genomics 2 (3): 231–239 

L = Read length 
N = Number of reads 
G = Genome size 
P = Probability base is sequenced 



Assumptions are not true 

Paszkiewicz K , Studholme D J Brief Bioinform 
2010;11:457-472 

© The Author 2010. Published by Oxford University Press. For Permissions, please email: 
journals.permissions@oxfordjournals.org 



NGS de-novo assemblies are draft quality at best 

• 500 contigs covering most of a bacterial genome can be obtained in 
1 week from genomic DNA to Genbank submission 

• To get 1 contigs covering all genomic sequence could take many 
months 

• Is the extra effort worth it? 

• Short answer: Usually not. 

Assembly complexity of 

prokaryotic genomes using 
short reads 

Carl Kingsford , Michael C 

Schatz and Mihai Pop  
BMC Bioinformatics 2010, 11:21 

 

http://www.biomedcentral.com/1471-2105/11/21/figure/F4?highres=y
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Overlap consensus vs. de Bruijn 

• 2 main categories of assembly algorithms 

− Overlap Consensus (OLC) and de Bruijn graph assemblers 

 

• OLC 

− Primarily used for Sanger and hybrid assemblies 

− Memory constraints prevent its use beyond 1 million reads or so 

• de Bruijn 

− Primarily used for NGS assemblies 

− Still memory hungry but possible 





de Bruijn graph assembly 



de Bruijn graph assembly 



de Bruijn graph assembly 



de Bruijn graph assembly 



de Bruijn graph assembly 



de Bruijn graph assembly 



de Bruijn graph assembly 



de Bruijn graph assembly 

Diagrams courtesy M. Caccamo, TGAC 



Dealing with errors 

Thomas Keane and Jan Aerts, Wellcome Trust Sanger 



de Bruijn graph assembly error correction 

Diagrams courtesy M. Caccamo, TGAC 



Errors or rare sequence? 

• Depends on the type of data: 

− Assumptions are probably true for single haploid genome 
data 

− Diploid and polyploid expect any branches to have equal 
coverage 

− Less clear for RNA-seq due to splicing 

− Completely false assumption for metagenomic and 
metatranscriptomic data! 



Short read assemblers 

• First de Bruijn based assembler was Newbler 

− Adapted to handle main 454 error – indels in homopolymers 
 
• Several other de Bruijn assemblers developed subsequently 

− Velvet, Euler-SR, ABySS, ALLPATHS2 
− Most can use paired-end and mate-pair information 

 
•Most cannot deal with mammalian sized genomes 

− ABySS – distributed genome assembly via MPI 
− SOAPde-novo (BGI) Cortex (TGAC) 

− Early removal of spurious errors 
 

• Hybrid assemblers 
− MIRA – capable of assembling 454, Sanger and short reads  
− Memory hungry  
 

•Other approaches 
− String graph assemblers 
− Fermi, SGA  
− Correcting PacBio reads with Illumina  
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Thomas Keane and Jan Aerts, Wellcome Trust Sanger 

Assembly evaluation – N50 



Thomas Keane and Jan Aerts, Wellcome Trust Sanger 

Assembly length vs. N50 



Thomas Keane and Jan Aerts, Wellcome Trust Sanger 

Assembly evaluation metrics 



Thomas Keane and Jan Aerts, Wellcome Trust Sanger 

Which human assembly is better? Why? 



Assembly benchmarking software 

 

 

 

 

 

 

 

 

 

 

 

Darling et al Mauve Assembly Metrics Bioinformatics (2011) btr451 first published online 
August 2, 2011 

 http://t.co/BbpbTPz 



Types of assemblers 

2 main categories, many variations 

Each tends to have its own niche 

Memory and hardware requirements can differ substantially 

Typically a parameter scan is need to get the ‘best’ assembly 

This means many assemblies need to be generated 

Narzisi G, Mishra B, Comparing De Novo Genome Assembly:  
The Long and Short of It. 2011  PLoS ONE 6(4):  

De novo assembly of short sequence reads  
Paszkiewicz, K. Studholme, D.  

Briefings in Bioinformatics 
August 2010 11(5): 457-472 



Which assembler is best? 

• Depends on: 

− Type of reads (Illumina, SoLID, 454, Ion Torrent, PacBio, 
Sanger etc) 

− Paired/mate-pair data? 

− Genome  

− Repeat content 

− Available hardware 

 

• Prokaryote genomes – Velvet  

• Larger genomes ABySS or Soapdenovo 

Narzisi G, Mishra B, Comparing De Novo Genome Assembly:  
The Long and Short of It. 2011  PLoS ONE 6(4):  



Merging assemblies 

• Often assemblies are produced from 454 or Sanger data 
and need to be merged with Illumina data 

• In order of preference: 

1. Attempt to assemble 454/Sanger reads with 
Illumina reads using MIRA 

2. Merge assemblies separately using minimus2 or 
SSPACE 

3.      Input 454/Sanger contigs as part of a reference        
     guided assembly (e.g. Velvet/Columbus) 



Transcriptome assembly 

• de-novo transcriptome assembly is also possible 

• RNA-seq reads can be assembled and isoform abundance estimated 

• Much harder as Lander-Waterman assumptions of randomly 
distributed reads are not true 

• Also complicated by splice-variants and the need to statistically 
model isoform abundance based on read distributions 

 

• Oases/Velvet 

• Trans-ABySS 

• SOAPde-novo  

• Trinity 

 

 Good experimental option for vertebrates and other non-model 
organisms where a reference genome is not available 



Typical assembly pipeline 

QC 

•Remove low quality bases 

•Remove reads containing adaptor sequences 

•Trim or remove reads containing Ns 

Assembly 

•Generate multiple assemblies using different parameters 

Alignment  

•Align filtered reads back to contigs for each assembly 

•Blast unaligned reads to determine if contaminants are present 

•Calculate assembly metrics of N50, total assembly length, number of reads mapping to assembly etc 

•Call any relevant SNPs in case of intra-sample variation 

Annotation 

•Call Open Reading Frames (ORFs) 

•de-novo gene prediction (e.g. FGENES, Genemark, Glimmer) 

•Search for homologous genes (BLASTP), protein families (PFAM) and/or Interproscan 

Alignment to related 
species 

•Obtain synteny alignments (e.g. Mummer0 

•Visualise in Mauve, IGV, GBrowseSyn 

Additional sequencing 
to improve de-novo 

assembly 

•Mate-pair libraries to span repeats 

•Sanger sequencing to gap -fill 



Optimal de-novo sequencing strategy and 
review papers 

Assessing the benefits of using mate-pairs to resolve 
repeats in de novo short-read prokaryotic assemblies 

Joshua Wetzel , Carl Kingsford and Mihai Pop  
BMC Bioinformatics 2011, 12:95 

 
Comparing De Novo Genome Assembly:  
The Long and Short of It. 
Narzisi, G. Mishra B.  
2011  PLoS ONE 6(4)  

De novo assembly of short sequence reads  
Paszkiewicz, K. Studholme, D.  

Briefings in Bioinformatics 
August 2010 11(5): 457-472 

A new strategy for genome assembly using 

short sequence reads and reduced 
representation libraries 
Young A.L., Abaan H.O., Zerbino D, et al. 
Genome Research 2010;20:249–56. 



Variant calling with de-novo assembly 





Questions! 

biosciences.exeter.ac.uk/facilities/sequencing/usefulresources/ 



de-Bruijn graph assembly 1 



de-Bruijn graph assembly 2 



de-Bruijn graph assembly 3 


