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Relationship between population genetics and phylogenetics

@ Population genetics: Study of genetic variation within a population

@ Phylogenetics: Use genetic variation between taxa (species, populations) to
infer evolutionary relationships
@ Previously:

» Each taxon is represented by a single sequence — “exemplar sampling”

» We have data for a single gene and wish to estimate the evolutionary history
for that gene (the gene tree or gene phylogeny)
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Relationship between population genetics and phylogenetics

@ Given current technology, we can do much more:

» Sample many individuals within each taxon (species, population, etc.)
» Sequence many genes for all individuals

@ Need models at two levels:

» Model what happens within each population
[population genetics — coalescent model]

> Link each within-population model on a phylogeny
[phylogenetics]
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Recall several facts from Peter's lecture

@ Under the Wright-Fisher model, the number of generations back into the past

until two lineages coalesce ~ Geometric(ﬁ)

e Kingman's approximation: consider continuous time and a sample of k

lineages. Then, the time back into the past until two lineages coalesce, U, is

exponentially distributed with rate (’;)ﬁ

» The probability density function is g(u) = (g)ﬁe_(;)ﬁ foru>0

. 4N
» The mean is kk—1)

@ Peter showed us how to use this model to compute the probability density of
a “population tree”.
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Fitting population trees into a phylogeny

. l \ -

@ Focus on just one speciation interval and a sample of k = 2 lineages.

o Then, (5) =1 and we have an exponential distribution with rate 5L and
mean 2.

@ Suppose N =5,000. Let's find the probability that the two lineages coalesce
in an interval of a particular length.
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Fitting population trees into a phylogeny

e N = 5,000 and consider the times: 12,000, 20,000 and 40,000 generations
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Fitting population trees into a phylogeny

@ What happens if we change the population size, N7
@ Recall that we have an exponential distribution with rate ﬁ and mean 2N.

@ Now suppose N = 3,000 and look at the same speciation interval lengths.
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Fitting population trees into a phylogeny
e N =5,000

0 7o) o)
=1 =1 =3
@ @ &
© © ©
z z z
2 2 2
88 88 88
@ @ @
< < <
= =) =)
S =3 =3
° 0 20000 40000 60000 0 20000 40000 60000 S 0 20000 40000 60000
coalescent time coalescent time coalescent time
o N = 3,000
o) © ©
3 3 3
S S 1]
=1 =1 =
=] c =]
=) =) =)
3 3 3
28 28 z8
2o 2o 2o
g 5] g
S C S
=] =1 =]
S =3 =]
S 34 1]
=] =) =
o =1 =]
=) Q o
S S S
S S S
8 : ! 8 ! 8 ! !
S 0 10000 30000 S 6 10600 30600 S 6 10000 30000
coalescent time coalescent time coalescent time

Laura Kubatko Species Tree Inference from Multi-locus Data February 3, 2015 8 /85



Fitting population trees into a phylogeny

@ What about the effect of sample size, k7
@ Consider N = 5,000 again, but now use k = 5.

» Rate is (2)& = % (was ﬁ)
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Fitting population trees into a phylogeny

Y

@ Define a common unit of time: coalescent unit, t = T

@ Examples:
» k = 2 — exponential distribution with rate 1 and mean 1
» k =5 — exponential distribution with rate 10 and mean 0.1
o t “large” is now relative to population size, but the trends are the same:

» Longer times lead to a higher probability of coalescence having occurred.
» Coalescent events happen more quickly when the population size is smaller.

» Coalescent events happen more quickly when the sample size is larger.

@ What does this mean for species trees estimation 777
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Fitting population trees into a phylogeny

@ Recall our goal to integrate the population process with the phylogeny:

Fi w

@ Can use our previous results to get the following:

» The probability that u lineages coalesce into v lineages in time t is given by
(Tavare, 1984; Watterson, 1984; Takahata and Nei, 1985; Rosenberg, 2002)

- —j(i—1)t/2 2j — ™ ] v u-
Pu(t) =3 e ”vléj—v'((vﬂ—l)n +uy+(y .

Jj=v y=0
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Fitting population trees into a phylogeny
@ When u and v are small, these are easy to compute. For example,

P,1(t) = probability that 2 lineages coalesce to 1 lineage in time ¢t
= probability of 1 coalescent event in time t when k = 2
= P(T <t), where T ~ Exp(p =1)

t
= / e Xdx=1—¢"
0

[Note: this is the formula for the gray area in the graphs]

@ Similarly,

Px(t) = prob. of no coalescence in time t for 2 lineages
= P(T>t)

o0
/ e Xdx =¢et
t
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Putting it together ...the coalescent model along a species tree

@ Assumptions:

» Events that occur in one population are independent of what happens in other
populations within the phylogeny.

» More specifically, given the number of lineages entering and leaving a
population, coalescent events within populations are independent of other
populations.

» [t is also important to recall an assumption we “inherit” from our population
genetics model: all pairs of lineages are equally likely to coalesce within a
population.

> No gene flow occurs following speciation.

> No other evolutionary processes (e.g., horizontal gene flow, duplication, . . .)
have led to incongruence between gene trees and the species tree.
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Putting it together ...the coalescent model along a species tree

@ When talking about gene tree distributions, there are two cases of interest:

» The gene tree topology distribution

» The joint distribution of topologies and branch lengths

@ Start with the simple case of 3 species with 1 lineage sampled in each and
look at the gene tree topology distribution
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Example: Computation of Gene Tree Topology Probabilities for the 3-taxon Case

Example of gene tree probability computation:
(a) Prob =1 —e™% (b), (c), (d) Prob = 1e~*

Aﬁ@

Gene tree is (A(BC)) Gene lree is (A(BC)
Gene lree is (C(AB)) Gene lree is (B(AC))
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Example: Computation of Gene Tree Topology Probabilities for the 3-taxon Case

@ Thus, we have the following probabilities:
» Gene tree (A,(B,C)): prob =1—¢t —+ %e—t =1 %e—t
> Gene tree (B,(A,C)): prob = e *
> Gene tree (C,(A,B)): prob = 5e*

@ Note: There are two ways to get the first gene tree. We call these histories.

@ The probability associated with a gene tree topology will be the sum over all
histories that have that topology.
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Example: Computation of Gene Tree Topology Probabilities for the 3-taxon Case

@ What are these probabilities like as a function of t, the length of time
between speciation events?

(b) (c)
e
B¢ A B ¢ A % 2
prob = 1-exp(-t) prob = (1/3)exp(-t) '8 g 4
o
>
g3
8
N
2w
A />\ = °
8 A ¢ B ¢ A o |
° T T T T T
prob = (1/3)exp(~t) prob = (1/3)exp(~t) 0.0 05 1.0 15 20

t (Coalescent Units)
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Example: a slightly larger case

@ Consider 4 taxa — the human-chimp-gorilla problem

)i\

Human Chimp Gorilla  Orangutan

Laura Kubatko Species Tree Inference from Multi-locus Data February 3, 2015 18 / 85



Coalescent histories for the 4-taxon example

@ There are 5 possibilities for this example:

Human Chimp Gorilla  Orangutan Human Chimp Gorilla  Orangutan

Human  Chimp Gorilla  Orangutan

Human Chimp  Gorila Orangutan Human  Chimp  Gorilla  Orangutan
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Enumerating Histories

TABLE 3. The number of valid coalescent histories when the gene
tree and species tree have the same topology. The number of his-
tories is also the number of terms in the outer sum in equation (12).

Number of histories

Taxa Asymmetric trees Symmetric trees Number of topologies
4 5 4 15
5 14 10 105
6 42 25 945
7 132 65 10,395
8 429 169 135,135
9 1430 481 2,027,025

10 4862 1369 34,459,425

12 58,786 11,236 13,749,310,575

16 9,694,845 1,020,100 6.190 X 10'°

20 1,767,263,190 100,360,324 8.201 x 102!

Degnan and Salter, Evolution, 2005
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Computing the Topology Distribution by Enumerating Histories

@ In the general case, we have the following:

The probability of a gene tree g gives the species tree S is given by

P{G =g|S} = Y P{G =g, history|S}

histories

@ Implemented in the software COAL (Degnan and Salter, Evolution, 2005)

o A more efficient method has been proposed (Wu, Evolution, 2012)
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Applications of the topology distribution - example 1

@ Motivation: Paper by Ebersberger et al. 2007. Mol. Biol. Evol.
24:2266-2276

@ Examined 23,210 distinct alignments for 5 primate taxa: Human, Chimp,
Gorilla, Orangutan, Rhesus

@ Looked at distribution of gene trees among these taxa - observed strongly
supported incongruence only among the Human-Chimp-Gorilla clade.
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Applications of the topology distribution - example 1

Chimp Gorilla Gorilla
Human Human Chimp
Gorilla Chimp Human
Orangutan Orangutan Orangutan

o = = .
Laura Kubatko Species Tree Inference from Multi-locus Data



Applications of the topology distribution - example 1

Chimp Gorilla Gorilla
Human Human Chimp
Gorilla Chimp Human
Orangutan Orangutan Orangutan
76.6% 11.4% 11.5%

Observed proportions of each
gene tree among ML phylogenies
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Applications of the topology distribution - example 1

Chimp Gorilla Gorilla
Human Human Chimp
Gorilla Chimp Human
Orangutan Orangutan Orangutan
76.6% 11.4% 11.5%
79.1% 9.9% 9.9%

Observed proportions of each gene tree  Predicted proportions using parameters
among ML phylogenies from Rannala & Yang, 2003.
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Applications of the topology distribution - example 2

@ In the previous example, one topology is clear preferred
@ Must the distribution always look this way?

@ Examine the entire distribution when the number of taxa is small
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Applications of the topology distribution - example 2

@ Consider 4 taxa: A, B, C, and D

@ Species tree:

@ Look at probabilities of all 15 tree topologies for values of x, y, and z
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Applications of the topology distribution - example 2
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Applications of the topology distribution - example 2
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Applications of the topology distribution - example 2

o y=1, x=1 0 , x=0.001
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Applications of the topology distribution - example 2

@ The existence of anomalous gene

trees has implications for the

inference of species trees
Degnan and Rosenberg, PLoS Genetics,
2006

Rosenberg and Tao, Systematic Biology,
2008

o F = DA
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Applications of the topology distribution - example 3

@ What about mutation? How does this affect data analysis?

@ The coalescent gives a model for determining gene tree probabilities for each
gene.

@ View DNA sequence data as the results of a two-stage process:

» Coalescent process generates a gene tree topology.

> Given this gene tree topology, DNA sequences evolve along the tree.
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Applications of the topology distribution - example 3

@ Given this model, how should inference be carried out?

o = = = Do
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Applications of the topology distribution - example 3

Given this model, how should inference be carried out?

Hypothesis: As more data (genes) are added, the process of estimating
species trees from concatenated data can be statistically inconsistent

o May fail to converge to any single tree topology if there are many equally
likely trees.

@ May converge to the wrong tree when a gene tree that is topologically
incongruent with the species tree has the highest probability.
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Applications of the topology distribution - example 3

Species Tree
Generate gene Generate sequence Estimate tree
trees in COAL data in Seg-Gen
A B C D .
Repeat 100 times

using concatenation

Laura Kubatko
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Applications of the topology distribution - example 3

Simulation Study 1
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Applications of the topology distribution - example 3

Simulation Study 2
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Applications of the topology distribution - example 3

@ Performance of the Concatenation Approach:

» Can be statistically inconsistent when branch lengths in the species phylogeny
are sufficiently small

» May perform poorly even when branch lengths are only moderately short

» Bootstrap procedure can be positively misled in this situation

@ Question: How does the bootstrap perform in these cases?
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The concatenation approach — performance of the bootstrap

@ Hypothesis: The bootstrap may provide strong support for the incorrect tree
when gene trees that are incongruent with the species trees are fairly
probably

@ Simulation study to examine the performance of the bootstrap:

n=100 loci

x=0.01, y=1.0

0=0.001

B=200 bootstrap samples per repetition
Repeated 500 times

vVYyVvVYVvyy
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The concatenation approach — performance of the bootstrap

A ML Topology is MT B ML Topology is MT
o o
| |
. g
2 o o
S8 H
=
o< <
i s L
° T T T T 1 ° T T T T 1
0 20 40 60 80 100 0 20 40 60 80 100
ML Topology is S1 ML Topology is S1
° °
8 8
. s
2 o o
58 8
S
eIl :
'S
° T T T T 1 ° T T T T 1
0 20 40 60 80 100 0 20 40 60 80 100
ML Topology is ST ML Topology is ST
S S
8 8
3" g
58 8
El
g < <
'S
° T T T T 1 ° T T T T 1
0 20 40 60 80 100 0 20 40 60 80 100

Percent Bootstrap Support for (A,B) Percent Bootstrap Support for (B,C,D)

Laura Kubatko Species Tree Inference from Multi February 3, 2015 38/ 85



The concatenation approach — performance of the bootstrap

@ The bootstrap can be positively misleading — show strong support for an
incorrect clade

@ Important note: This is NOT a failing of the bootstrap methodology; the

observed “poor” performance is due to the use of an incorrect model
(concatenation)

@ Question: Is there a better way to estimate species phylogenies?

Explicitly model the coalescent process!

Laura Kubatko Species Tree Inference from Multi-locus Data February 3, 2015 39 /85



Model Underlying Coalescent-based Species Tree Inference

SPECIES TREE

AN = AN

ACCGIG...
ACCCIG...
AGCCTG...
[ = = DAy



Model Underlying Coalescent-based Species Tree Inference

SPECIES TREE GENE TREE
SPECIES Sequence
ACCGIG...
Inference AccCTG.
AGCCTG...
o o = z 9ace
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Model Underlying Coalescent-based Species Tree Inference

Summary statistics
methods

eguence
ACCGIG...

ACCCTG...

AGCCTG...
[ = DAy
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Coalescent-based methods for species tree inference

@ Summary statistics methods: Start with estimated gene trees

» Using estimated branch lengths:

*

*

STEM (Kubatko et al. 2009)

STEAC (Liu et al. 2009)

» Using topology information only:

*

*

STAR (Liu et al. 2009)

Minimize Deep Coalescences (PhyloNet; Than & Nakhleh 2009)
MP-EST (Liu et al. 2010)

ST-ABC (Fan and Kubatko 2011)

STELLS (Wu 2011)

ASTRAL (Mirarab et al. 2014)

Statistical binning (Bayzid et al. 2014)
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Coalescent-based methods for species tree inference

@ Methods that utilize the full data: Input is aligned sequences
» BEST (Liu and Pearl 2007)
» *BEAST (Heled and Drummond 2010)
» SNAPP (Bryant et al. 2012)
» SVDquartets (Chifman and Kubatko 2014)
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Coalescent-based method for species tree inference

o Comparison of approaches:
» Summary statistics methods
* Advantage: Quick
* Disadvantage: Ignore information in the data
* Most current implementations do not easily allow assessment of uncertainty
» Full data methods
* Advantage: Fully model-based framework

* Disadvantage: Computationally intensive, sometimes prohibitively so
* BEST, *BEAST, and SNAPP utilize a Bayesian framework and involve MCMC
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Likelihood function

@ Suppose that we have available alignments for N genes, denoted by
Di1,D,,...,Dy

@ We would like to find the likelihood of the species phylogeny given these N
alignments, assuming that

> individual gene trees are randomly generated according to the coalescent

» evolution of sequences along fixed gene trees occurs following a standard
nucleotide-based Markov model

> the data for the genes are independent given the species tree and associated

parameters
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Likelihood function

@ Recall the Felsenstein equation from Peter's lecture, except that now we
replace 6 with S, the species tree. Use this to form the species tree likelihood
for a multi-locus data set:

-

N
L(S|Dy, Ds,...Dn) = H P(D;i|S) [loci conditionally independent]
N

G
11> P(Dilg)f(glS)

i=1 j=1

where S is the species tree (topology and branch lengths) and gj represents
a gene tree.

@ This likelihood is difficult to evaluate directly, because of the dimension of he
inner sum (which is really an integral) [recall Peter's “galaxy slide”]

o To deal with this, either assume gene trees are known (summary statistics
methods), use Bayesian techniques (full data approaches), or think about

small problems ®.

Laura Kubatko Species Tree Inference from Multi-locus Data February 3, 2015 47 / 85



STEM: The gene tree-species tree likelihood function

@ A simpler problem is to suppose that our data consist of a set of gene trees

Let g1, to,...,gn be a set of N gene trees with branch lengths

o Consider a species tree, S (topology and branch lengths)
@ The likelihood function is
N
L(S|Dy, Dy, ..., Dy) = [ [ f(glS)
j=1

where f(g|S) is given by Rannala and Yang (2003).
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Maximum likelihood estimate of the species tree

o Liu et al. (2009) showed that the ML estimate of the species tree can be
computed by sequentially clustering minimum observed divergence times
between pairs of species across genes.

@ They have shown that when gene trees are known without error, the ML
species tree is a consistent estimator.

@ A similar result was obtained by Roch & Mossel (2010) — they call their
estimator the GLASS tree (an acronym for Global LAteSt Split, based on the
algorithm they developed to compute it).

@ STEM computes the ML estimate of the species tree this way.

o Note the important and undesirable assumption of STEM (and other
summary statistics methods) that the gene trees are known without error!
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Full data methods: BEST, *BEAST, SNAPP

N = AN
@ Model the entire process of data

generation SPECIES TREE GENE TREE

@ Goal of these methods is to ﬂ
estimate the posterior distribution
of the species tree and associated
model parameters

o BEST and *BEAST use MCMC by considering both gene trees and the
species tree, but their implementations are different

@ SNAPP uses a clever two-step peeling algorithm to carry out the integration
over gene trees, allowing it to consider a reduced space — but currently
limited to biallelic data.
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An Empirical Example: Sistrurus Rattlesnakes

@ North American Rattlesnakes - Joint work with Dr. Lisle Gibbs (EEOB at
0OSu)

o Of interest evolutionarily because of the diversity of venoms present in the
various species and subspecies.

@ Of conservation interest because population sizes in the eastern subspecies
are very small.

[Pictures by Jimmy Chiucchi and Brian Fedorko]
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Geographic Distribution of Snake Populations
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e Data: 7 (sub)species, 26 individuals (52 sequences), 19 genes

Species Location No. of individuals per gene
S. catenatus catenatus Eastern U.S. and Canada 9
S. c. edwardsii Western U.S. 4
S. c. tergeminus Western and Central U.S. 5
S. miliarius miliarius Southeastern U.S. 1
S. m. barbouri Southeastern U.S. 3
S. m. streckerii Southeastern U.S. 2
Agkistrodon sp. (outgroup) u.s. 2

Laura Kubatko Species Tree Inference from Multi-locus Data

February 3, 2015

53 / 85



Individual Gene Tree Estimates

Some are very informative:

-0.01

Laura Kubatko
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Individual Gene Tree Estimates

Some are a little informative:

-Sct—-KS1
Sce—-AZ
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Individual Gene Tree Estimates
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Example: Sistrurus rattlesnakes

STEM, STEAC
-S. m. barbouri
4(£S. m. streckeri
-S. m. miliarius
. C. tergeminus
ES. c. edwardsii
S. . catenatus

sp.

BEST, Parsimony & MrBayes
(concatenated data)

S. m. miliarius
Es. m. barbouri
S. m. streckeri
S. c. tergeminus
Es. c. edwardsii
S. c. catenatus

sp.

Laura Kubatko
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BEAST (concatenated data), ¥BEAST

-S. m. miliarius
ES. m. streckeri
-S. m. barbouri
-S. c. tergeminus
ES. c. edwardsii
S. c. catenatus

SD.

PhyloNet, STAR

S. m. barbouri
S. m. streckeri
S. m. miliarius
S. c. tergeminus
S. c. edwardsii

. C.

sp.
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Example: Sistrurus rattlesnakes

@ Some observations:

» Estimate from PhyloNet places S. c. catenatus as sister to the entire clade — it
turns out this is due to only two gene trees. If those genes are removed, the
estimate agrees with STEM.

» The portion of the tree that differs between STEM, *BEAST, and BEST is
the arrangement of the S. miliarius subspecies — all three arrangements are
observed.

» Both BEST and *BEAST have trouble converging: BEST did not converge in
the branch length parameters, while *BEAST did not converge in the effective
population size parameters, especially for the tip species (same problem?).

» *BEAST was much faster than BEST (days vs. months for ~ 350 million
iterations) — but with an older version of BEST.
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Full data methods: SVDquartets

Goal of this work:

Develop a full data approach that is computationally feasible for large-scale data

o = = = Do
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Full data methods: SVDquartets

Goal of this work:

Develop a full data approach that is computationally feasible for large-scale data
How?

@ Summarize data differently, so that model requires less computation
@ Develop theory to infer relationships among quartets of taxa very accurately
@ Use a quartet assembly method to build a large tree
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Methods — data representation

Taxon Sequence
1 ACCAATGCCGATGCCAAA
2 ACCATTGCCGATGCCATA
12 3 4 3 ACGAAAGCGGAAGCGAAA
4 ATGAAAGCGGAAGCCAAA
[AA]  [AC] [AG] [AT] [CA]
[AA]  pasaa  PAAAC  PAAAG  PAAAT  PAACA
[AC] pacan Ppacac  pacac  PAcaT  Pacca
Flatio34(P) = | [AG] pacaa PAGAC PAGAG PAGAT  PAGCA
[AT] pataa  PATAC  PATAG PATAT  PATCA
[CA]  pcana Ppcaac  Pcaac  PcaaT  Pcaca
February 3, 2015
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Methods — data representation

Taxon Sequence
1 ACCAATGCCGATGCCAAA
2 ACCATTGCCGATGCCATA
12 3 4 3 ACGAAAGCGGAAGCGAAA
4 ATGAAAGCGGAAGCCAAA
Al Al [AG] 1AT] [CA
[AA] 5 PAAAC  PAAAG  PAAAT  PAACA
[AC] pacan Ppacac Ppacac  Pacat  Ppacca
Flatio34(P) = | [AG] Ppacaa PAGAC PAGAG PAGAT  PAGcA
[AT] pataa  PATAC  PATAG  PATAT  PATCA
[CA]  pcana Ppcaac  Pcasc  PcaaT  Pcaca
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Methods — data representation

1 2 3 4
[AA]
[AC]
F/at12‘34(P) = [AG]
[AT]
[CA]

[AA]

PAcAA
PAGAA
PATAA
PcAAA

Taxon  Sequence
1 ACCAATGCCGGAGCCCAAA
2 ACCATTGACGGAGCCAATA
3 ACGAAAGACGGAAGCAAAA
4 ATGAAAGTCGGAAGCTAAA
[ACl [AG] [AT] [cA
PAAAC PAAAG PAAAT PAACA
PACAC PACAG PACAT PACCA
PAGAC PAGAG PAGAT PAGCA
PATAC PATAG PATAT PATCA
PcAAC

PCcAAG 2 Pcaca
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Methods — data representation

Taxon  Sequence
1 ACCAATGCCGGAGCCCAAA
2 ACCATTGACGGAGCCAATA
12 3 4 3 ACGAAAGACGGAAGCAAAA
4 ATGAAAGTCGGAAGCTAAA
Al (AC [AG] [AT] [cA]
[AA] 5 PAAAC  PAAAG  PAAAT  PAACA
[AC] pacaa Ppacac  PACAG  PACAT  Pacca
Flatiz34(P) = | [AG] pacaa DPacac  PAGAG  PAGAT  PAcca
[AT] pataa  Patac  PATAG  PATAT  PATCA
[CA]  pcana pcanc  pcaac 2 Pcaca
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Methods — data representation

1.2 3 4
[AA]
[AC]
Fl3t12‘34(P) = [AG]
[AT]
[CA]

[AA]

PACAA
PAGAA
PATAA
PCAAA

Taxon  Sequence

1 ACCAATGCCGGAGCCCAAA
2 ACCATTGACGGAGCCAATA
3 ACGAAAGACGGAAGCAAAA
4 ATGAAAGTCGGAAGCTAAA
[AC] [AG]  [AT]  [CA]

PAAAC  PAAAG  PAAAT  PAACA

PAacac  PACAG  PACAT  PaAcca

PAGAC  PAGAG  PAGAT  Pacca

PaTaC  PATAG  PATAT  PaTCA

Pcaac

PcaAG 2 Pcaca

These two columns are identical — matrix rank is reduced by one
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Results

Main Result:

@ Species tree inference: For a flattening matrix constructed on the true
four-taxon tree, the matrix rank is 10 under the following model

> species tree — gene tree ::: coalescent process

> gene tree — data ::: nucleotide substitution models: GTR+I+I" and submodels
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What about the incorrect tree?

1 3 2 4
[AA]
[AC]
FIat13|24(P) = [AG]
[AT]
[CA]

[..]

[AA]
5
PACAA
PAGAA
PATAA
PCAAA

Taxon Sequence

1 ACCAATGCCGGAGCCCAAA
2 ACCATTGACGGAGCCAATA
3 ACGAAAGACGGAAGCAAAA
4 ATGAAAGTCGGAAGCTAAA
AC] [AG]  [AT] [cA)

PAAAC  PAAAG  PAAAT  PAACA

Pacac  PACAG  PACAT  PAcca

PAGAC  PAGAG  PAGAT PAGCA

PAaTaCc  PATAG  PATAT  PATCA

PcaAc

PcAAG 2 Pcaca

These two columns are no longer identical — full rank matrix in both cases

(rank = 16)
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How can we use these facts for inference?

o Basic idea:
» Data: aligned DNA sequences for multiple loci or for a collection of SNPs

» Construct the flattening matrix

» Compute some measure of how close the observed flattening matrix is to a
matrix with rank 10

We use singular value decomposition (SVD) of the flattening matrix — define
the SVD score for a split A|B to be

SVDscore(Flatas(P)) =

where o2 is the i™ singular value of the matrix FlatA‘B(IAD).

> Pick tree relationships that give the best value of the measure in the previous
step
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Application: Species tree estimation under the coalescent

Main idea: use the observed site pattern distribution to provide information about
which of the three possible splits for a set of four taxa is the true split.
A C A B A C

B D C D D B

The program SVDquartets computes a score for each split in a given quartet of
taxa and chooses the split with the best (lowest) score.
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Simulation study 1 — can we detect the correct split?

Simulate data from the Jukes-Cantor model for a 4-taxon tree and examine split scores
First row: 5,000 SNP sites; Second row: 10 genes of 500bp
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Simulation study 1 — can we detect the correct split?

Simulate data from the GTR+I4+I model for a 4-taxon tree and examine split scores
First row: 5,000 SNP sites; Second
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Simulation study 1 — can we detect the correct split?

Change in scores as amount of data increases

Laura Kubatko

Median SVD Score

0.002 0.004

0.000

—— 12|34 split, branch lengths = 0.5
—— 1324 split, branch length:
—— 14|23 split, branch length:
= = 12|34 split, branch length:
~— 13[24 split, branch length:
~ = 14|23 split, branch length:
12|34 split, branch length:
13|24 split, branch length:
- 14|23 split, branch lengths = 2.

T
5000
Number of SNP Sites
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How do we assess variability?

@ How can we measure confidence in the inferred split?

@ Use a nonparametric bootstrap procedure
» Generate bootstrap data sets from the original data matrix
» Compute split scores on all three splits for each bootstrap data matrix

» Record the number of bootstrap data sets for which each split is inferred, and
use the proportion of these as a bootstrap support measure

@ Evaluate performance of the bootstrap procedure using the same simulated
data
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Assessing support using the bootstrap

Simulate data from the Jukes-Cantor

support scores
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Assessing support using the bootstrap

Simulate data from the GTR+I4+I model for a 4-taxon tree and examine bootstrap

support scores
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Extension to larger trees

Algorithm
@ Generate all quartets (small problems) or sample quartets (large problems)
@ Estimate the correct quartet relationship for each sampled quartet

© Use a quartet assembly method to build the tree

00 25000
ATaTrccc OGO OO A G TCCG TG T TAGC AN GOCACECOTCTCGCOTGTTATAGE

ws’;{nﬂ:mmm:sgwgi:iggs:cg:ﬂTncmcmmmﬁmmmﬂcllnmsnswccncc 1 2 | 3 4
e — 196|161 -

e 522(37
=
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Extension to larger trees

@ Multiple lineages are handled as follows:
@ Sample four species
@ Select one lineage at random from each species
@ Estimate the quartet relationships among the four sampled lineages

@ Restore the species labels (but lineage quartets are saved, too)
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T
—

Simulation study 2 — larger trees
average RF distance (range 0 - 14)

black = 500 bp / gene
red = 2,000 bp / gene

blue = No. genes x 500 SNPs

10 genes | 20 genes | 50 genes | 100 genes

Short 451 3.55 1.04 0.2
(0.5) 3.31 1.94 0 0

3.48 1.74 0.32 0.16
Medium 1.59 0.56 0 0
(1.0) 0.80 0.16 0 0

0.76 0.14 0.16 0.32
Long 0.34 0.04 0 0
(2.0) 0.04 0 0 0
0.18 0.04 0 0
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Simulation study 3 — very large trees

@ 100-taxon species tree, 100 loci, 500bp per locus, § = 0.01

@ Look at the effect of number of quartets sampled

@ Compare to concatenation

0.6
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Scaled RF distance
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RAXML SVD.100K SVD.200K SVD.300K SVD.400K SVD.500K SVD.600K

Simulations by Paul Blischak
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Simulation study 3 — very large trees

@ 100-taxon species tree, 50 loci, 500bp per locus, § = 0.01
@ Look at the effect of number of quartets sampled

@ Compare to concatenation
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Simulations by Paul Blischak
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e Data: 7 (sub)species, 26 individuals (52 sequences), 19 genes

Species Location No. of individuals per gene
S. catenatus catenatus Eastern U.S. and Canada 9
S. c. edwardsii Western U.S. 4
S. c. tergeminus Western and Central U.S. 5
S. miliarius miliarius Southeastern U.S. 1
S. m. barbouri Southeastern U.S. 3
S. m. streckerii Southeastern U.S. 2
Agkistrodon sp. (outgroup) u.s. 2
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Empirical example: Sistrurus rattlesnakes
Using 20,000 quartets and 100 bootstrap replicates
~ 10 minutes

99 ac1OUTG1
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Empirical example: Sistrurus rattlesnakes
Using 20,000 quartets and 100 bootstrap replicates

~ 10 minutes

———— Agkistrodon

S.c. catenatus
91

S.c. edwardsii

100

100 S.c. tergeminus

S.m. miliarius

59
S.m. barbouri
S.m. streckeri
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Empirical example 2: soybeans

@ 10 soybeans species, 1,027,026 SNPs
e SVDquartets, 20,000 quartets, < 24 hours
@ SNAPP, 28 days on 1 processor, 2.23 million iterations

(a) (b)
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SVDquartets Summary

@ Advantages:

» Quick! And scales well to large taxon sets and next-gen sequencing data
> Easily parallelized
> Intuitive method for handling missing data

» Potential for application to other data types (codons, amino acids, etc.)

@ Disadvantages:

> Gives only an estimate of the unrooted topology
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Species Tree Inference Summary

@ Failure to incorporate the coalescent model in estimation of the species tree
can lead to statistical inconsistency, even when a method that is statistically
consistent is applied.

@ Many new methods for inferring species trees are being developed — each has
its advantages and disadvantages.

@ In addition, we should continue to think about other ways of using
multi-locus data to its full advantage .... and we should be thinking beyond
estimation of the species tree.

@ Lots of areas emerging: species delimitation, incorporating horizontal events
along the phylogeny, etc. — get involved and have fun!
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