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Coalescence theory as a tool for population genetics
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Dictionary
co•a•lesce |ˌkōəˈles|
verb [ intrans. ]
come together and form one mass or whole : the puddles had

coalesced into shallow streams | the separate details coalesce to
form a single body of scientific thought.
• [ trans. ] combine (elements) in a mass or whole : to help
coalesce the community, they established an office.

DERIVATIVES

co•a•les•cence |-ˈlesəns| noun

co•a•les•cent |-ˈlesənt| adjective

ORIGIN mid 16th cent. (in the sense [bring together, unite] ):
from Latin coalescere, from co- (from cum ‘with’ ) +
alescere ‘grow up’ (from alere ‘nourish’ ).

Thesaurus
coalesce
verb
the puddles had coalesced into shallow streams: MERGE, unite, join

together, combine, fuse, mingle, blend; amalgamate,
consolidate, integrate, homogenize, converge.

Wikipedia
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Tree of individuals of same species
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Little resolution

Tree building method should take into
account that lineages are not independent
of each other.
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Interaction among individuals Life cyle
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Adult TadpoleTadpoleAdult

Wright-Fisher population model

All individuals live one generation and get replaced by their offspring

All have same chance to reproduce, all are equally fit

The number of individuals in the population is constant



Population model Wright-Fisher
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Population model Wright .
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Sewall Wright evaluated the probability that two randomly chosen
individuals in generation t have a common ancestor in
generation t− 1. If we assume that there are 2N chromosomes
then the probability of sharing a common ancestor in the last generation is

t− 1

t
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Sewall Wright evaluated the probability that two randomly chosen
individuals in generation t have a common ancestor in
generation t− 1. If we assume that there are 2N chromosomes
then the probability of sharing a common ancestor in the last generation is

1.0

t− 1
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Sewall Wright evaluated the probability that two randomly chosen
individuals in generation t have a common ancestor in
generation t− 1. If we assume that there are 2N chromosomes
then the probability of sharing a common ancestor in the last generation is

1.0× 1

2N

t− 1

t
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Sewall Wright evaluated the probability that two randomly chosen
individuals in generation t have a common ancestor in
generation t− 1. If we assume that there are 2N chromosomes
then the probability of sharing a common ancestor in last generation is

1

2N

t− 1

t

t− 1

t

The probability that two randomly picked chromosome do not have a common
ancestor is

1− 1

2N



Population model Wright .
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If we know the genealogy of the two individuals then we can
calculate the probability as

P(τ |N) =

(
1− 1

2N

)τ (
1

2N

)
where τ is the number of generations with no coalescence.
This formula is the Geometric Distribution and we can calculate
the expectation of the waiting time until two random individuals
coalesce:

E(τ) = 2N
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Population model Wright-Fisher
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Probability Distribution 2N=20
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0.05
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generations

P

10000 random draw from a population with size
2N = 20 leads to this distribution of times
until two randomly chosen individuals have a
common ancestor. The observed mean waiting
time of 2N=20.34



Observations Coalescence of two
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For the time of coalescence in a sample of two, we will wait on average 2N
generations assuming it is a Wright-Fisher population

The model assumes that the generations are discrete and non-overlapping

Real populations do not necessarily behave like a Wright-Fisher (the ‘ideal’
population)

We assume that calculation using Wright-Fisher populations can be
extrapolated to real populations.



Other population models
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Wright-Fisher Canning Moran



Sample larger than TWO Wright-Fisher
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Sample larger than TWO Wright-Fisher
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Past Present



Samples larger than two
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Sir J. F. C. Kingman described in 1982 the n-coalecent. He
showed the behavior of a sample of size n, and its probability
structure looking backwards in time.

General findings:

coalescence rate =

(
n

2

)
=
n(n− 1)

2

Once a coalescence happened n is reduced to n− 1 because
two lineages merged into one. He then imposed a continuous
approximation of the Canning’s exchangeable model to get
results.
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Looking backward in time, the first
coalescence between two random
individuals is the result of a waiting
process that depends on the sample n and
the total population size N .
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Looking backward in time, the first
coalescence between two random
individuals is the result of a waiting
process that depends on the sample n and
the total population size N .

Using Kingman’s coalescence rate and
imposing a time scale we can approximate
the process with a exponential distribution:
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u0

u1

u3

u4

Looking backward in time, the first
coalescence between two random
individuals is the result of a waiting
process that depends on the sample n and
the total population size N .

Using Kingman’s coalescence rate and
imposing a time scale we can approximate
the process with an exponential distribution:

P(uj|N) = e−ujλλ

with the scaled coalescence rate

λ =

(
k

2

)
1

2N
× Prob(others do not coalesce)
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u0

u1

u3

u4

Looking backward in time, the first
coalescence between two random
individuals is the result of a waiting
process that depends on the sample n and
the total population size N .

Using Kingman’s coalescence rate and
imposing a time scale we can approximate
the process with a exponential distribution:

P(uj|N) = e−ujλλ

with the scaled coalescence rate

λ =

(
k

2

)
1

2N
=
k(k − 1)

2(2N)
=
k(k − 1)

4N



Chance of coalescence in a particular generation
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The standard coalescence uses the assumption that only one coalescence
happen within a particular generation. This is a questionable assumption, but
does it matter?

Here are the exact probabilities of 0, 1, or more coalescences with 10 lineages
in populations of different sizes:

N 0 1 >1
100 0.796 0.187 0.017

1000 0.978 0.022 0.000
10000 0.998 0.002 0.000

Note that increasing the population size by a factor of 10 reduces the coalescent
rate for pairs by about 10-fold, but reduces the rate for triples (or more) by about
100-fold.



Samples larger than two the coalescent

43 of 99 – c©2015 Peter Beerli

u0

u1

u3

u4

We are now able to calculate the probability
of a whole relationship tree (Genealogy
G). We assume that each coalescence is
independent from any other:

P(G|N)
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We are now able to calculate the probability
of a whole relationship tree (Genealogy
G). We assume that each coalescence is
independent from any other:

P(G|N) = P(u0|N, i1, i2)

×
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We are now able to calculate the probability
of a whole relationship tree (Genealogy
G). We assume that each coalescence is
independent from any other:

P(G|N) = P(u0|N, i1, i2)

× P(u1|N, i3, i4)
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We are now able to calculate the probability
of a whole relationship tree (Genealogy
G). We assume that each coalescence is
independent from any other:

P(G|N) = P(u0|N, i1, i2)

× P(u1|N, i3, i4)

× P(u3|N, i3,4, i5)



Samples larger than two the coalescent
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We are now able to calculate the probability
of a whole relationship tree (Genealogy
G). We assume that each coalescence is
independent from any other:

P(G|N) = P(u0|N, i1, i2)

× P(u1|N, i3, i4)

× P(u3|N, i3,4, i5)

× P(u4|N, i1,2, i3,4,5)



Samples larger than two the coalescent
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u0

u1

u3

u4

We are now able to calculate the probability
of a whole relationship tree (Genealogy
G). We assume that each coalescence is
independent from any other:

P(G|N) = P(u0|N, i1, i2)

× P(u1|N, i3, i4)

× P(u3|N, i3,4, i5)

× P(u4|N, i1,2, i3,4,5)

P(G|N) =

T∏
j=0

e−uj
kj(kj−1)

4N
2

4N



Samples larger than two the coalescent
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u0

u1

u3

u4

Each interval uj is independent of
the others, the expected length of
the interval is the inverse of the
coalescent rate. Thus we can
sum these expectations to get to
expectation of the depth of the
genealogy.

E(τMRCA) = Sum of the expectation of each time interval =

J∑
j=0

4N

kj(kj − 1)

lim
k→∞

E(τMRCA) = 2N +
2

3
N +

1

3
N +

1

5
N +

2

15
N + ... = 4N lim

k→∞
σ(τMRCA) = 4N



What is it good for? Coalescence
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If we know the genealogy G with certainty then we can calculate the population
size N . Finding the maximum probability P(G|N, k) is simple, we evaluate all
possible values for N and pick the value with the highest probability.
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If we know the genealogy G with certainty then we can calculate the population
size N . Finding the maximum probability P(G|N, k) is simple, we evaluate all
possible values for N and pick the value with the highest probability.
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If we know the genealogy G with certainty then we can calculate the population
size N . Finding the maximum probability P(G|N, k) is simple, we evaluate all
possible values for N and pick the value with the highest probability.



Population size estimation using an oracle
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If an oracle gives us the true relationship tree G then we can calculate the
population size N .

p(G|N,n) =

n∏
k=2

exp

(
−uk

k(k− 1)

4N

)
2

4N
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If an oracle gives us the true relationship tree G then we can calculate the
population size N .

p(G|N,n) =
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4N

)
2

4N
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If an oracle gives us the true relationship tree G then we can calculate the
population size N .
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If an oracle gives us the true relationship tree G then we can calculate the
population size N .

p(G|N,n) =
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If an oracle gives us the true relationship tree G then we can calculate the
population size N .
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If an oracle gives us the true relationship tree G then we can calculate the
population size N .

p(G|N,n) =

n∏
k=2

exp

(
−uk

k(k− 1)

4N

)
2

4N



Population size estimation
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There are at least two problems with the oracle-approach:

There is no oracle to gives us clear information!

We do not record genealogies, our data are sequences, microsatellite loci!

What about the variability of the coalescence process?



Variability of the coalescent process Coalescence
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All genealogies were simulated with the same population size Ne = 10, 000



Variability of the coalescent process Coalescence
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20 40 60 80 100

5.

10.

15.

20.

25.

[10-6]

[103 generations]
Time to MRCA 

freq.

MRCA = most recent common ancestor (last node in the genealogy)



Kingman’s n-coalescent is an approximation Sample size
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All individuals have the same fitness (no selection).

All individuals have the same chance to be in the sample (random sampling).

The coalescent allows only merging two lineages per generation. This
restricts us to to have a much smaller sample size than the population size.

n << N

Yun-Xin Fu (2005) described the exact coalescent for the Wright-Fisher model
and derived a maximal sample size n <

√
4N for a diploid population.

Although this may look like a severe restriction for the use of the coalescence
in small populations, it turned out that the coalescence is rather robust and
that even sample sizes close to the effective population size are not biasing
immensely.



Kingman’s n-coalescent is an approximation Sample size
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Kingman’s n-coalescent is an approximation Sample size
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Observations Coalescence
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Large samples coalesce on average in 4N generations.

The time to the most recent common ancestor (TMRCA) has a large variance

Even a sample with few individuals can most often recover the same TMRCA
as a large sample.

The sample size should be much smaller than the population size, although
severe problems appear only with sample sizes of the same magnitude
as the population size, or with non-random samples because Kingman’s
coalescence process assumes that maximally two sample lineages coalesce
in any generation.

With a known genealogy we can estimate the population size. Unfortunately,
the true genealogy of a sample is rarely known.



Genealogy and data our data looks like this:
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Finding the best genealogy from such data is difficult

Genealogy and data our data looks like this:
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Genetic data and the coalescent
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Finite populations loose alleles due to genetic drift

Mutation introduces new alleles into a population at rate µ

With 2N chromosomes we can expect to see every generation 2Nµ new
mutations. The population sizeN is positively correlated with the the mutation
rate µ.

With genetic data sampled from several individuals we can use the mutational
variability to estimate the population size.



Population size
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The observed genetic variability

S = f(N,µ, n).

Different N and appropriate µ can give the same number of mutations. For
example, for 100 loci sampled from 20 individuals with 1000bp each, we get :

N µ 4Nµ Ŝ σ2
S

1250 10−5 0.05 153.95 16.25

12500 10−6 0.05 152.89 16.05

Using genetic variability alone therefore does not allow to disentangle N and µ.

With multiple dated samples and known generation time we can estimate N and
µ independently.



Mutation-scaled population size
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By convention we express most results as the compound Nµ and an inheritance
scalar x, for simplicity we call this the mutation-scaled population size

Θ = xNµ,

where µ is the mutation rate per generation and per site. With a mutation rate
per locus we use θ.

for diploids: Θ = 4Nµ.

for haploids: Θ = 2Nµ.

For mtDNA in diploids with strictly maternal inheritance this leads to Θ =
2Nfµ, and if the sex ratio is 1 : 1 then Θ = Nµ

Most real populations do not behave exactly like Wright-Fisher populations,
therefore we subscriptN and call it the effective population sizeNe, and consider
Θ the mutation-scaled EFFECTIVE population size.



Mutation-scaled population size
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Gag Grouper starts out
as a female and later in
live becomes male.

By convention we express most results as the compoundNµ and an inheritance
scalar x, for simplicity we call this the mutation-scaled population size

Θ = xNµ,

where µ is the mutation rate per generation and per site. With a mutation rate
per locus we use θ.

for diploids: Θ = 4Nµ.

for haploids: Θ = 2Nµ.

For mtDNA in diploids with strictly maternal inheritance this leads to Θ =
2Nfµ, and if the sex ratio is 1 : 1 then Θ = Nµ

Most real populations do not behave exactly like Wright-Fisher populations,
therefore we subscriptN and call it the effective population sizeNe, and consider
Θ the mutation-scaled EFFECTIVE population size.

[ t]this is a test



Historical humpback whale population size
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Humpback whales in the North Atlantic: Census population size around 12,000.



Historical humpback whale population size
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using the data by Joe Roman and Stephen R. Palumbi (Science 2003 301: 508-
510)

Θ = 2N~µ 0.01529 Population size of the North
Atlantic population, estimated
using migrate

N~ = Θ
2µ 31,854 with µ = 2.0×10−8bp−1year−1 and

a generation time of 12 years

Ne = N~ +N| 63,708 Sex ratio is 1:1

NB = 2Ne 127,417 ratio NB/Ne assumed, using other
data

NT = NB
Njuveniles+Nadults

Nadults
203,867 from catch and survey data (used

a ratio of 1.6)



Genetic data and the coalescent Watterson’s θ
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Using the infinite sites model we use the number of variable sites S per locus to
calculate the mutation-scaled population size:

θW =
S

n−1∑
k=1

1
k

from a sample of n individuals. For a single population the Watterson’s estimator
works marvelously well, but it is vulnerable to population structure.

Watterson’s θW uses a mutation rate per locus! To compare with other work use
mutation rate per site.



Construction of a versatile estimator Modern inference
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For Bayesian inference we want to calculate the probability of the model
parameters given the data p(model|D).

Coalescent to describe the population genetic processes.

Mutation model to describe the change of genetic material over time.



Construction of a versatile estimator Modern inference
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We calculate the Posterior distribution p(Θ|D) using Bayes’ rule

p(Θ|D) =
p(Θ)p(D|Θ)

p(D)

where p(D|Θ) is the likelihood of the parameters.



(almost) Felsenstein equation aka Likelihood calculation
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p(D|Θ, G) = p(G|Θ)p(D|G)

p(G|Θ) The probability of a genealogy given parameters.

p(D|G) The probability of the data for a given genealogy.
Phylogeneticists know this as the tree-likelihood.



Felsenstein equation aka Likelihood calculation
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p(D|Θ) =

∫
G

p(G|Θ)p(D|G)dG

p(G|Θ) The probability of a genealogy given parameters.

p(D|G) The probability of the data for a given genealogy.
Phylogeneticists know this as the tree-likelihood.



Felsenstein equation aka Likelihood calculation
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p(D|Θ) =
∑
G

p(G|Θ)p(D|G)

p(G|Θ) The probability of a genealogy given parameters.

p(D|G) The probability of the data for a given genealogy.
Phylogeneticists know this as the tree-likelihood.



p(D|Θ) =

∫
G

p(G|Θ)p(D|G)dG

The number of possible genealogies is very
large and for realistic data sets, programs
need to use Markov chain Monte Carlo
methods.

Problem with integration formula
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Naive integration approach Plane of all trees
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Naive integration approach Riemann’s sum
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Another naive integration approach ABC/Monte Carlo
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Metropolis-Hastings algorithm MCMC
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Metropolis-Hastings algorithm MCMC
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Metropolis-Hastings algorithm MCMC
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Metropolis-Hastings algorithm MCMC
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Metropolis-Hastings algorithm MCMC

94 of 99 – c©2015 Peter Beerli



Metropolis-Hastings algorithm MCMC
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Metropolis-Hastings algorithm MCMC
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Around 1930 – Friendly Cove, Vancouver Island

Inference of population size Nuu-Chah-Nulth



Proc. Nati. Acad. Sci. USA
Vol. 88, pp. 8720-8724, October 1991
Evolution

Extensive mitochondrial diversity within a single Amerindian tribe
(population genetics/molecular anthrpolog/Pacific Northwest/human evolution)

R. H. WARD*, BARBARA L. FRAZIER*, KERRY DEW-JAGER*, AND SVANTE PAABOt
*Department of Human Genetics, School of Medicine, University of Utah, Salt Lake City, UT 84132; and tDepartment of Zoology, University of Munich,
Luisenstrasse 14, D-8000 Munich 2, Federal Republic of Germany

Communicated by Michael T. Clegg, June 24, 1991 (received for review February 28, 1991)

ABSTRACT Sequencing ofa 360-nucleotide segment ofthe
mitochondrial control region for 63 individuals from an Am-
erindian tribe, the Nuu-Chah-Nulth of the Pacific Northwest,
revealed the existence of 28 lineages defined by 26 variable
positions. This represents a substantial level of mitochondrial
diversity for a small local population. Furthermore, the se-
quence diversity among these Nuu-Chah-Nulth lineages is
>60% of the mitochondrial sequence diversity observed in
major ethnic groups such as Japanese or sub-Saharan Afri-
cans. It was also observed that the majority of the mitochon-
drial lineages of the Nuu-Chah-Nulth fell into phylogenetic
clusters. The magnitude of the sequence difference between the
lineage clusters suggests that their origin predates the entry of
humans into the Americas. Since a single Amerindian tribe can
contain such extensive molecular diversity, it is unnecessary to
presume that substantial genetic bottlenecks occurred during
the formation of contemporary ethnic groups. In particular,
these data do not support the concept of a dramatic founder
effect during the peopling of the Americas.

Genetic and archeological data support the hypothesis that,
after initially evolving in Africa, modern humans rapidly
expanded into Eurasia and subsequently into Australasia and
the Americas (1-4). Thus, during this last major phase in
human evolution, large geographic areas were rapidly colo-
nized by migrating tribal groups. Analysis of molecular data
has suggested that both the initial and subsequent migratory
expansions of early human populations may have been ac-
companied by substantial reductions in genetic diversity (2,
5). In particular, the distribution of mitochondrial DNA
variants in Amerindians has been interpreted as evidence for
a dramatic bottleneck, which occurred during the peopling of
the Americas (6, 7). These interpretations imply that small
tribal groups-the primary demographic units ofearly human
populations-contain only limited amounts of molecular di-
versity. However, such a conclusion runs counter to the
observation that, for standard genetic markers, the amount of
genetic differentiation within tribes represents an appreciable
fraction of the genetic variability contained within continen-
tal populations (8).
To evaluate how much molecular diversity can be main-

tained within tribal populations, we have carried out a
detailed study of mitochondrial diversity within a single tribe
by determining the distribution of mitochondrial DNA se-
quences within the Nuu-Chah-Nulth (Nootka), a Wakashan-
speaking group of the Pacific Northwest. The rapid rate of
sequence divergence ofmitochondrial DNA makes it suitable
for the analysis of short-term evolutionary phenomena, while
the maternal mode of inheritance allows the evolutionary
relationships between lineages to be defined in terms of their
phylogenetic divergence, without the ambiguities caused by
recombination (9). Since the mitochondrial control region

accumulates substitutions at a much faster rate than other
regions of the molecule (10, 11), we increased the resolution
of the study by enzymatically amplifying and directly se-
quencing the first 360 nucleotides ofthis DNA segment.t This
region has been shown to be informative in detecting se-
quence divergence within other human populations (12, 13).
DNA for the study was extracted from frozen serum samples
selected to represent the geographic subdivisions within the
Nuu-Chah-Nulth. The results were contrasted with the avail-
able data on sequence diversity in much larger regional
populations (Japanese) and continental populations (sub-
Saharan Africans). A phylogenetic analysis defined a molec-
ular genealogy, in which the presence of lineage clusters
suggests considerable heterogeneity in lineage ancestry, in-
dicating that a considerable amount of mitochondrial diver-
sity was introduced into the New World at the time of initial
colonization.

MATERIALS AND METHODS
Population Sample. The Nuu-Chah-Nulth (Nootka) are a

group of Wakashan speakers that comprise 14 bands located
on the western coast ofVancouver Island, plus 1 band on the
Olympic Peninsula of Washington state. The archaeological
record indicates cultural continuity in this area over the past
4000 years (14). Analysis of genetic markers (ABO, MNS,
and Rh blood groups) indicated that individuals born before
1940 had <5% Caucasian admixture. As part of a biomedical
study, the traditional band communities, numbering some
2000-2400 people, were surveyed between 1984 and 1986.
Serum samples were collected from a large proportion (45%)
of the population, and detailed genealogical information was
collected for each band, along with basic demographic data.
To determine the amount of mitochondrial variability, we
selected 63 maternally unrelated individuals whose geneal-
ogy indicated Nuu-Chah-Nulth descent at least as far back as
the late nineteenth century. These individuals were selected
from 13 of the 14 contemporary bands. An additional 5
individuals, each known to be maternally related to 1 of the
63 independent individuals, were also included in the study as
positive controls. This allowed an assessment of the reliabil-
ity of DNA sequences determined from frozen serum sam-
ples, which represents an unusual source of material for
sequence determination.

Since mitochondrial DNA is maternally inherited, the
effective gene number is defined in terms of the number of
breeding females, Nf, and fluctuations in this demographic
parameter will influence the amount of mitochondrial diver-
sity maintained in the population (15, 16). We determined that
approximately two-thirds of the 963 Nuu-Chah-Nulth fe-
males in our survey were of child-bearing age (between 15
and 45 years old), giving an Nf of 600 for the contemporary
population. Unfortunately, it is not clear how accurately this

tThe sequences reported in this paper have been deposited in the
GenBank data base (accession nos. M75991-M76018).
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Bayesian inference: Θ = 0.036

Ward et al calculated ΘEwens = 0.043

With a mutation rate of 0.32/site/million year
and a generation time of 27 years we get
Nfemales = 2082. Assuming same numbers
of men and women and on average 2
children we get N = 8328.

[The Nuu-Cha-Nulth are organized
in 14 nations totaling 8147
(Nuuchahnulth tribal council Indian
registry from February 2006)]
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