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Overview of the session

* Explaining diversity: Transcriptional regulation
— A short story from our recent work

* Dive into RNA-Seq
— The different BLA-Seq libraries. A common theme

— Read mapping (alignment): Placing short reads in the genome

— Reconstruction: Finding the regions that originated the reads
— Quantification:

* Assigning scores to regions

* Finding regions that are differentially represented between two or
more samples.

* How much depth?

* RNA-SeqVignette: non-coding RNA evolution



Why do organisms look the way that they do!?




Why do different cell types do what they do!

However, all this diversity arises from the same genome sequence!
Proteins are very conserved across vertebrates, what is the driving force of variability?



Sequence-based strategy: Comparative genomics
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Comparative genomics genome annotation
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In some cases resolution is astonishing
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However, most binding is not conserved

REPORTS
Five-Vertebrate ChIP-seq Reveals
the Evolutionary Dynamics of
Transcription Factor Binding
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Transcriptional regulation may be a key driver of diversity and
definitively of cell type diversity



Enhancers poorly conserved, cell type specific

Chromatin stretch enhancer states drive cell-specific
gene regulation and harbor human disease
) risk variants

=@ Stephen C. J. Parker®", Michael L. Stitzel*", D. Leland Taylor?, Jose Miguel Orozco?, Michael R. Erdos?,
" Jennifer A. Akiyama®, Kelly Lammerts van Bueren®, Peter S. Chines?, Narisu Narisu®, NISC Comparative Sequencing
Program?, Brian L. Black$, Axel Visel®, Len A. Pennacchio™9, and Francis S. Collins®?

LETTERS

Histone modifications at human enhancers reflect
global cell-type-specific gene expression

Nathaniel D. Heintzman"**, Gary C. Hon'**, R. David Hawkins'*, Pouya Kheradpour®, Alexander Stark>®,
Lindsey F. Harp®, Zhen Ye!, Leonard K. Lee!, Rhona K. Stuart!, Christina W. Ching?, Keith A. Ching!,

Jessica E. Antosiewicz-Bourget’, Hui Liu®, Xinmin Zhang®, Roland D. Green®, Victor V. Lobanenkov’, Ron Stewart’,
James A. Thomson”'°, Gregory E. Crawford'!, Manolis Kellis>® & Bing Ren'*

Enhancer elements are poorly conserved, are cell type specific, How do we find them?



Transcription factor regulation

see:
https://www.youtube.com/watch?v=MkUgkDLp2iE



DNA

is not naked

Nuclear
position

Higher-order
chromatin

Structural RNA

Nucleosome

Histone modifications

DNA methylation ' Histone variants

Nature Reviews | Molecular Cell Biology



Nucleosomes interact with nuclear factors through tails
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Cell identity is determined by its epigenetic state

Histone post-translational Remodelling
DNA methylation modification complexes
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variants RNAs

Catherine Dulac, Nature 2010



Which controls the genome functional elements

Active promote
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Zhou, Goren Berenstein, Nature Rev. Genetics 2011



We seek to map and functionally characterize elements

Estimate the “functional genome” by
finding what is under selection

» Develop informatics
tools for new methods

* Develop models of
transcriptional regulation

» Develop models of
epigenetic interactions

RNA-Protein « Evolution of large non-

interactions coding RNAs

We want to ultimately understand the cell circuits of the cell



For example: wiring of innate immune cells
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How is this response controlled? Amit, Garber et al. Science 2010



Chip-Seq + RNA-Seq to map and relate components
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Sequencing libraries allow us to map output, state and the circuit of the cell



Into specific functional sets
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Sequencing: applications

Counting applications

Profiling

— microRNAs

— Immunogenomics

— Transcriptomics
Epigenomics

— Map histone modifications
— Map DNA methylation

— 3D genome conformation

Nucleic acid Interactions

Polymorphism/mutation discovery

— Bacteria
— Genome dynamics
— Exon (and other target) sequencing
— Disease gene sequencing
Variation and association studies
Genetics and gene discovery

Cancer genomics

— Map translocations, CNVs,
structural changes

— Profile somatic mutations
Genome assembly
Ancient DNA (Neanderthal)
Pathogen discovery
Metagenomics




Sequencing libraries to probe the genome

* RNA-Seq

— Transcriptional output

— Annotation

— miRNA

— Ribosomal profiling
* ChlP-Seq

— Nucleosome positioning

— Open/closed chromatin

— Transcription factor binding
« CLIP-Seq

— Protein-RNA interactions
« Hi-C

— 3D genome conformation



RNA-Seq libraries |:“Standard” full-length

* “Source:intact, high qual. RNA (polyA selected or
ribosomal depleted)

* RNA = ¢cDNA - sequence

¢ Uses:
— Annotation. Requires high depth, paired-end
sequencing. ~50 mill
— Gene expression. Requires low depth, single end
sequence, ~ 5-10 mill

— Differential Gene expression. Requires ~ 5-10 mill,
at least 3 replicates, single end



RNA-Seq libraries |ll: End-sequence libraries

* Target the start or end of transcripts.
* Source: End-enriched RNA

— Fragmented then selected

— Fragmented then enzymatically purified
* Uses:

— Annotation of transcriptional start sites

— Annotation of 3’ UTRs

— Quantification and gene expression

— Depth required 3-8 mill reads

— Low quality RNA samples



RNA-Seq libraries lll: Small RNA libraries

e Source:size selected RNA

* Uses: miRNA, piRNA annotation and
quantification

— Short single end 30-50 bp reads
— Depth: 5-10 mill reads

100 nt =

l Size-select small RM

to clone and sequen

Malonne et al. CSHL protocols, 2011



When you need both annotation and quantification

* Attempt three replicates per condition

Pool libraries to obtain ~15 mill reads per replicate
* Sequence using paired ends

* Analysis:

— Merge replicate alighments for annotation

— Split alignments for differential expression analysis



RNA-Seq libraries: Summary

Poly-A selected RNA
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ChlIP-Seq libraries:

* Crosslinked, immunoprecipitated DNA
 DNA - sequence
* Uses:

— Mapping nucleosomes (huge depth required)
— Mapping histones with specific tails
— Mapping transcription factor sites

— Requires ~ 5-10 mill, at least 2-3 replicates, single
end



ChlIP-Seq protocol
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Sequencing on NGS platforms

Kidder et al. Nature Immunology, 2011



CLIP-Seq libraries and ribosome footprinting:

* Crosslinked, immunoprecipitated RNA
* RNA-> cDNA ->sequence
* Uses:

— Mapping RNA/protein interactions ~
— Find miRNA regulated transcripts + CLIP-Seq

— Mapping translation rates — _

— Annotate ORFs — Ribosomal profiling




Analysis of counting data requires 3 broad tasks

* Read mapping (alignment): Placing short reads in the
genome

* Reconstruction: Finding the regions that originated the reads
* Quantification:
* Assigning scores to regions

* Finding regions that are differentially represented
between two or more samples.



Once sequenced the problem becomes computational

sequencer Sequenced
cells reads
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read
coverage
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genome




Analysis of counting data requires 3 broad tasks

* Read mapping (alignment): Placing short reads in the
genome

* Reconstruction: Finding the regions that originated the reads
* Quantification:
* Assigning scores to regions

* Finding regions that are differentially represented
between two or more samples.



Spaced seeds

Reference genome
(> 3 gigabases)
Chr1 e
Chr2 s

Short read

ACGT@:TAAT

Chr3 m==
Chr4
Extract seeds
Position N
Position 2
CTGC CGTA AACT AATG
Position 1 \/
ACTG CCGT AAAC TAAT ACTC CCGT ACTC TAAT
ACTG wewsx AAAC wwnw _ l 1 l
wanen COGT w»wwe TAAT SIX seed | 2 I
ACTG w#eas  wanse TAAT pail’s pel’ (—| 3 I
=22 x2xs AAAC TAAT [ I'ead/ | 4 I
ACTG CCGT ##xs s#ax fragment L5 |
*xxx CCGT AAAC »xxx | 6 I

ilndex seed pairs

Seed index
(tens of gigabytes)

ACTG ###s AAAC #wew

Look up each pair
of seeds in index

. Hits identify positions
H in genome where
O spaced seed pair
L .
s is found
xxxx CCGT #»xxx TAAT t:—J
ACTG #axs xxxx TAAT Confirm hits
«axs CCGT AAAC =ass by checking

“exxx” poSIitions

N
T Report alignment to user

Trapnell, Salzberg, Nature Biotechnology 2009



Spaced seed alignment — Hashing the genome
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Spaced seed alignment — Mapping reads

G:
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2 missmatches 5 missmatches

Report position O

But, how confidence are we in the placement?
q,s = —10log,, P(read is wrongly mapped)



Mapping quality

What does  ¢,,; = —10log,, P(read is wrongly mapped) mean?

Lets compute the probability the read originated at genome position i

q. accg atag accg aatg

q,: 30 40 25 30 30 20 10 20 40 30 20 30 40 40 30 25

q.[k]=-10log,, P(sequencing error at base k), the PHRED score. Equivalently:

. s [k]
P(sequencing error at base k) = 10~ 10

So the probability that a read originates from a given genome position i is:

P(q|1G,i) = H P(q,good call) H P(q,bad call) = n P(g,bad call)

J match J missmatch j missmatch

In our example
P(q1G,0) = [(1 ~107)°1 =101 -10")*(1 - 10-2)2] [10-‘10-2] =[0.97]1*[0.001] = 0.001



Mapping quality

What we want to estimateis  g,,; = —10log,, P(read is wrongly mapped)

That is, the posterior probability, the probability that the region starting at i was
sequenced given that we observed the read g:

Pl G,)HP(IG) _ P(q|G,)P(IlG)
P(q1G) 2P<q |G, j)

P(ilG,qg)=

Fortunately, there are efficient ways to approximate this probability (see
Li, H genome Research 2008, for example)

qys = —10log, (1 - P(i1G,q))



Considerations

* Trade-off between sensitivity, speed and memory

— Smaller seeds allow for greater mismatches at the
cost of more tries

— Smaller seeds result in a smaller tables (table size
is at most 4%), larger seeds increase speed (less
tries, but more seeds)



a Spaced seeds b Burrows-Wheeler
Reference genome Short read Reference genome  Short read
(> 3 gigabases) (> 3 gigabases)
Chr e ACTCCCGTACTCTAAT Chr s ACTCCCGTACTCTAAT
Chr2 e Chr2 e
Chr3 m== Chr3 m==
Chr4 Chr4
Concatenate into
Extract seeds single string
I
(- N J
Position N
o.s.mo Burrows-Wheeler
Position 2 transform and indexing
CTGC CGTA AACT AATG
- Bowtie index 3
(1]
Position 1 Y (~2 gigabytes) - Y
ACTG CCGT AAAC TAAT ACTC CCGT ACTC TAAT N ACTCCCGTACTCTAAT
ACTG wewx AAAC wwnw — l 1 l H T
wsaw CCGT seae TAAT Six seed L2] Look up AT
ACTG ##as sese TAAT pairsper —— 3 | ‘suffixes’ n AAT
*xxx  #2xx AAAC TAAT [ read/ | 4 I Of read
ACTG CCGT #xxx  saxn fragment | 5 I
*xxx CCGT AAAC »xxx | 6 I .
ACTCCCGTACTCTAAT
Index seed pairs Hits identify
positions in

Seed index

genome where

(tens of gigabytes)

ACTG ###s AAAC #wew

*xxx COGT »xxx TAATt:
ACTG #»xxx  »xxx TAAT
*xxx CCGT AAAC »wxn

—

Look up each pair read is found

of seeds in index

Hits identify positions
in genome where
spaced seed pair

is found

Confirm hits
by checking
“exxx” poSIitions

—————————— s O
T Report alignment to user €«

Convert each

hit back to

genome location
E——

Trapnell, Salzberg, Nature Biotechnology 2009



Considerations

* BWT-based algorithms rely on perfect matches for speed

* When dealing with mismatches, algorithms “backtrack” when
the alignment extension fails.

* Backtracking is expensive

* As read length increases novel algorithms are required



RNA-Seq Read mapping

molecule 1 molecule 2

Genome

RNA (1000 b) e

Genome
(100000 bp)



Short read mapping software for ChlP-Seq
Seed-extend BWT

Short indels Use base qual Use Base qual

Maq No YES BWA YES
RMAP Yes YES Bowtie NO
SeqMap Yes NO Stampy” YES
SHRIMP Yes NO Bowtie2® (NO)

*Stampy is a hybrid approach which first uses BWA to map reads then uses seed-extend only to
reads not mapped by BWA
*‘Bowtie2 breaks reads into smaller pieces and maps these “seeds” using a BWT genome.



Seed-extend spliced alignment (e.g. GSNAP)

Exon2 | RNA




Exon-first spliced alignment ( TopHat)

EXOn-first approach
Exon2 | RNA




Short read mapping software for RNA-Seq

Seed-extend Exon-first

Short indels Use base qual Use base qual

GSNAP Yes ? STAR NO
QPALMA Yes NO TopHat NO
BLAT Yes NO

Exon-first alignments will map contiguous first at the expense of spliced hits



Integrative
Genomics
Viewer

IGV: Integrative Genomics Viewer

A desktop application
for the visualization and interactive exploration

of genomic data

Microarrays
Epigenomics - =

NGS alignments == o
Comparative genomics

E<BROAD

INSTITUTE



Visualizing read alignments with IGV — RNASeq

| H H— ] 4+—H H b
? ] H— ] 4+—H H b

dcr b e b e N I l.
I—H } | [ W HH—H+H H NN 1110 O ——H H H I f — H 1 11T LLL AT TS
I— | } il I HH—H+H H || } H i } H i i
— {f H +— . | } H i } H } 11l
l = = } I II -- Ll Ll 1l 1 L1 [ ] "}
it 1 H H-— I

i e —

—H—t - Hi | H—4 : || — i

i— I . I Hi i : : | i

i I . H H— : Hin i
I T

W . i | | —H i
. !_! " || - I Ll 1l | l [

I

I

i

| —H
| ainLiamal
| —Hill | | o | : ]
| | | iR | H— I
| | | H———— H—Hi ]

|

[ | H ! H—t 1

. IlH i I I H Il I I I 1]
It | II'H i I I H I I I I
Il —H—H [1H I I H—! I I H |
I——Hmin | F——A—+H—HIl H | il I H—— I mmy I H \
I—t I Hi I I H—— I i 1 I
I—H A+ | B T el I H——— 0 H i \
I—Hui A Hi B0 I I H—1 I H 1 1l
I—H | i—-+iH HH I T TR H— H—— | |11 i ll
—H H H iI——l Wi A H— i —H H !

N

Strand specific library! Gap between reads spanning exons



Visualizing read alignments with IGV — zooming out
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Mapping longer reads

MiSeq “Bench” sequencer
~15 Million 2x250 base reads.
Ideal for deep annotation of Targeted RNA

Large number of expected mismatches
Given sequencing errors (>1.5%) + SNPs
expect many reads with >4 missmatches

>

Short (76b) reads

Long (250b) reads

Longer, reads mapping cannot be done with standard BWT based aligners



How do “short” read alighers responded to read increase?

* Break reads into seeds (e.g. 1 6nt every |0nt)
* Use BWT or HashTable to find candidate positions
* Prioritize candidates

* Extend top candidates using classical alignment
techniques.

Aligner Technique

TopHat2 (Bowtie2) BWT
GSNAP Hash Table
STAR Suffix (similar to BWT)




Analysis of counting data requires 3 broad tasks

* Read mapping (alignment): Placing short reads in the
genome

* Reconstruction: Finding the regions that originated the reads

* Quantification:
* Assigning scores to regions

* Finding regions that are differentially represented
between two or more samples.



What does significance means!?

RNA-Seq: The gene is expressed

ChlP-Seq: Factor binds the region
CLIP-Seq: Protein binds RNA region

* Ribosomal footprinting:

— Transcript is translated

— Ribosomes stalling at region



How do we find peaks?

RNA

K4dme1

K4dme3 .

Polll
Cebpb
Stat1
Stat2

H3K4me3 | Short modification

HakebIoe Long modification
RNA-Seq

| 1 “_ Discontinuous data
F——4——

Scripture is a method to solve this general question



Our approach

||I | 5 Permutation
— — Poisson
g a=0.05

Density
0.15

0.10

0.05

0.00

0 5 10 15 20 25 30
I I | Counts

We have an efficient way to compute read count p-values ...



The genome is large, many things happen by chance

Nominal P-Value

Genome (3 billion bases)

|dentified ‘

Enriched

Expected ~150,000,000 bases

We need to correct for multiple hypothesis testing



Bonferroni correction is way to conservative

FWER-Bonferroni

Genome (3 billion bases)

Correction factor 3,000,000,000

Bonferroni corrects the number of hits but misses many true hits because its too
conservative — How do we get more power?



Controlling FWER

Max Count distribution
a=0.05 a=0.05

Density
0.15 0.20 0.25 0.30
1 1 1 ]

0.10
|

0.05
1

0.00
[l

I T T T T
0 5 10 15 20

Counts

Count distribution (Poisson)

25

30

Given a region of size w and an observed read
count n. What is the probability that one or
more of the 3x10° regions of size w has read
count >= n under the null distribution?

We could go back to our permutations and
compute an FWER: max of the genome-wide
distributions of same sized region)—>

but really really really slow!!!



Scan distribution, an old problem

* Is the observed number of read counts over our region of interest high?
* Given a set of Geiger counts across a region find clusters of high radioactivity
* Are there time intervals where assembly line errors are high?

a=0.05 a=0.05

0.15 0.20 0.25 0.30
I 1 1 1

Density

0.10
1

0.05
1

(

Scan distribution

Thankfully, the Scan Distribution computes a
closed form for this distribution.

ACCOUNTS for dependency of overlapping
windows thus more powerful!

0 5 10 15
Counts

Poisson distribution

30



Scan distribution for a Poisson process

The probability of observing k reads on a window of size w in a genome of size L
given a total of N reads can be approximated by (Alm 1983):

P(k|Aw,N,L) = 1 — F,(k — 1| \w)e” AT —w) Ph—1]w)

where

P(k —1|A\w) is the Poisson probability of observing k — 1 counts given an
expected count of Aw

and

F,(k— 1| \w) is the Poisson probability of observing k — 1 or fewer counts
given an expectation of Aw reads

The scan distribution gives a computationally very efficient way to
estimate the FWER



FWER-Scan Statistics

Genome (3 billion bases)

By utilizing the dependency of overlapping windows we have greater
power, while still controlling the same genome-wide false positive rate.



Segmentation method for contiguous regions

Example : Polll ChIP

Rela

Significant windows using the FWER
corrected p-value

But, which window?



We use multiple windows

* Small windows detect small punctuate regions.

* Longer windows can detect regions of moderate enrichment
over long spans.

* In practice we scan different windows, finding significant ones
in each scan.

* In practice, it helps to use some prior information in picking
the windows although globally it might be ok.



Applying Scripture to a variety of ChIP-Seq data

200, 500 & 1000 bp windows 100 bp windows



Can we identify enriched regions across different libraries!?

H3K4me3 l Short modification ‘/

H3K36me3
Long modification \/

Using chromatin signatures we discovered hundreds of putative genes.
What is their structure?

RNA-Seq

Ijﬂ_

I 54 5 5
I 71 7 7

Discontinuous data: RNA-Seq to find gene
structures for this gene-like regions




Scripture for RNA-Seq:
Extending segmentation to discontiguous regions



Transcript reconstruction problem as a segmentation problem

RNA (1000 b) = — =

AAAAAAA

Genome
(100000 bp)

100s bp  10s kb

Challenges:

Genes exist at many different expression levels, spanning several orders of
magnitude.

Reads originate from both mature mRNA (exons) and immature mRNA
(introns) and it can be problematic to distinguish between them.

Reads are short and genes can have many isoforms making it challenging to
determine which isoform produced each read.



Scripture: Genome-guided transcriptome reconstruction

H3K4me3

H3K36me3

- wm emman otk JA.___.._‘_.‘_;._..J“

Statistical segmentation of chromatin modifications uses continuity of
segments to increase power for interval detection

RNA-Seq

I I | I N Y N U B Y T

If we know the connectivity of fragments, we can increase our power to detect
transcripts



Longer (76) reads increased number of junction reads

RN R R Y T

{4

intron

Exon junction spanning reads provide the connectivity information.



The power of spliced alignments

Protein coding gene with 2 isoforms

Read coverage

Exon-exon junctions

Alternative isoforms

B Aligned read
Gap

S N S S S S S S S

> > > > > > > > >

........................................
........................................
........... | B----------
........... | B----------
........................................
........................................
........... | B----------
........... | B----------
........... | B----------



Statistical reconstruction of the transcriptome

Step 1: Align Reads to the genome allowing gaps flanked by splice sites
genome

Step 2: Build an oriented connectivity graph using every spliced alignment
and orienting edges using the flanking splicing motifs

The “connectivity graph” connects all bases that are directly connected within the
transcriptome



Statistical reconstruction of the transcriptome

Step 3: Identify “segments” across the graph

l\_/" - —

Step 4: Find significant segments

M
" -




Can we identify enriched regions across different data types?

H3K4me3 l Short modification ‘/

H3K36me3
= Long modification ‘/
RNA-Seq

=

T — Discontinuous data ‘/

Are we really sure reconstructions are complete?



RNA-Seq data is incomplete for comprehensive annotation

v
v

RNA-Seq ] J_ “
>
-

lincRNA
reconstruction

— — —
N
—— —— ——

v
v hd

N
e

Library construction can help provide more information. More on this later



Applying scripture: Annotating the mouse transcriptome



Reconstructing the mouse transcriptome (45M paired reads)

SCRIPTURE

%

Mouse Cell Sequence Reconstruct
Types

RNA-Seq

Tl li4 wd/m \mn “f

Reconstruction

et ———dt—HH P>
|
Annotation
Ddx25 T \Pus;'“
.t



Sensitivity across expression levels

Full-length Partial
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b |
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- 19 ] o 11+
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Mean coverage

Even at low expression (20t percentile), we have:
average coverage of transcript is ~95% and 60% have full coverage



Novel variation in protein-coding genes

_ ES cells
Novel &’ Start Sites
RNA-Seq
Lo d L Llobbe PILIOL AN
Recons truction
Annotation
r—+—H——4—H—+—HHFH—:H+H4—H-
1,310

588

3 cell types

3,137

2,477

903



Novel variation in protein-coding genes

Novel 5’ Start Sites

RNA-Seq

Reconstruction

H3K4me3
ES

Fore i i e .._.A_..A_‘n...ull“u- ad u 4
lﬁnnotation MEF
p | S |
MLF
e ok 4 R — — —
Novel 3’ End NPC
RNA-Seq “ j u
I 01N 1 11 1 Ll -
Reconstruction #4——H——+ . n : o =S I_ - Seq __l 1 l l IJ_” L ILAA.
3 J T .
Annotation - . Reconstruction
E } t i bbb - -
Annotation
. { r t "
Novel Coding Exons Katnar2 d ' T Pes i

RNA-Seq
|0 I O 0 11 ISR N RO I I Y S A I .

Reconstruction

Annotation

Tte13 o

~85% overlap K4me3



Novel variation in protein-coding genes

Novel 5’ Start Sites

e o (1A AN

Reconstruction

Annotation
Novel 3’ End

RHASeq ~50% contain polyA motif

—e e ] Compared to ~6% for random

Reconstruction ¥F+——H—+—+

Annotation

E
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Novel Coding Exons

RNA-Seq
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Reconstruction

Annotation




Novel variation in protein-coding genes

Novel 5’ Start Sites

RNA-Seq

Reconstruction

MNP 1.0
Annotation
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What about novel genes!?

Class |: Overlapping ncRNA

Gene 2

E Overlapping ncRNA E

Gene 1

Class 2: Large Intergenic ncRNA (lincRNA)

; Gene 2
* lincRNA J
Class 3: Novel protein-coding genes
—— -
Novel

Protein Coding



Class I: Overlapping ncRNA

Overlapping ncRNA

— —== — 494 kb
,7 GPR1 -

Chr1 E Overlapping ncRNA ; ADAM23

104 kb =

S T T

Reconstruction
— } H —- -

Annotation

Gpr1

ES cells

201

3 cell types

446



Overlapping ncRNAs: low evolutionary conservation

Mouse GTTCCAATTTGGCT TG AATTT Mouse ACACATA TGTC AGAAA TCTCA
Rat G T . . G T .
GuineaPi g
Rabbi t A T T A TG TG A G
T cT G TGTCTG A G
T T G TGT GTG A G
T.c T .G .. TG c TG AL .G .
T T .G . TGT - - - - - A . G .
T C T G TGTCTG A cG
G G . G A G .CTGA A G A . A
G - TG TT ATCG
G A .A.GTG
C T C T A L TG CT G TA G .
T G T A G C TG CTG G A cG
G. .G . A AG. TG T TG AL G
C A G TA C TG G G
Cow
Armadillo Armadillo
Elephant Elephant
Tenrec Tenrec
Conserved Neutral
‘o SiPhy — (Garber et al.
Bioinformatics, 2009)
0.8 —
c
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3 — Protein coding
g 06 Int
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Overlapping ncRNAs show little evolutionary conservation



RNA (non-protein coding) Genes

Class |: Overlapping ncRNA

Gene 2

E Overlapping ncRNA E

Gene 1

Class 2: Large Intergenic ncRNA (lincRNA)

; Gene 2
Gene 1 5 lincRNA _!
Class 3: Novel protein-coding genes
— E j

Novel
Protein Coding



Class 2: Intergenic ncRNA (lincRNA)

ES cells
Chr6

,i +— 315k

SKAP2 o ———T T iNcRNA  ~~ _HOXA1
~

—_———— ~
— —— ~
——— ~

78 kb =

RNA'Seq} L1 i ~500
> -
.
L

lincRNA
reconstruction

3 cell types

~1500



lincRNAs: How do we know they are non-coding?

ORF Length CSF (ORF Conservation)

104 === === === = /«—
0.8 .

5 5 incRNA|  Protein

Jg:;' g 06 -

E 2

B S

= = 0.4
0.2
0.0 =t - - - - - -

I T T T T T 1
-6000 —4000 -2000 0 2000 4000 6000
Protein-coding capacity (Longest possible ORF) Protein-coding capacity (CSF score)

>95% do not encode proteins



lincRNAs: under slight constraint
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What about novel coding genes?

Class I: Overlapping ncRNA

Gene 2

E Overlapping ncRNA E

Gene 1

Class 2: Large Intergenic ncRNA (lincRNA)

; Gene 2
* lincRNA J
Class 3: Novel protein-coding genes
— "
Novel
Protein Coding

~40 novel protein-coding genes



If there is no reference genome!
Genome independent methods



RNA 1 RNA 2
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Garber et al, Nature Methods 2011



Assembly approach

1) Extract all substring of length k from reads

ACAGC  TCCTG  GTCTC
CACAG TTCCT  GGTCT
CCACA CTTCC TGGTC  TGTTG
CCCAC  GCTTC  CTGGT  TTGTT
GEECA CEGETT GETGG  ETTGT
geecece  GCGCT  TGCTG — TCTTG
CCEcEE RAeEeE  ETGET  ETETT
ACCcGE CAcEc [ccTGcC  TCTCT

ACCGCCCACAGCGCTTCCTGCTGGTCTCTTGTTG

AGCGE ETCTT  GGTCG
CAGEG EETET TGGTCE
TCEAGE TCCTE TTGGT
CTCAG  TTCET  GTTGG
CETCA CETTCC  TGTTG
CCCTC GCTTC  TTGTT  CGTAG
GEEET CEGETT CETTGT  TCGTA
GGCEE GCGET TETTG  GTCGT

k-mers

CGEECTCAGEGETTCETCTTGTTCCTCGTAG - Reads



Assembly approach

3) Collapse graph

But this challenging already with DNA and RNA has many different challenges



The Trinity approach: Localize

Decompose all reads into overlapping Kmers (25-mers)

Identify seed kmer as most abundant Kmer, ignoring low-complexity kmers.

Extend kmer at 3’ end, guided by coverage.

GATTACA
9

Briah Haas



The Trinity approach: Localize

GATTACA
9

Briah Haas



The Trinity approach: Localize

.
.
.
.
::::
¢ et
'

GATTACA /

S
S
S
S
* "
.
. .
.
S
o
S

Report contig: ....AAGATTACAGA....

Remove assembled kmers from catalog, then repeat the entire process.

Briah Haas



Trinity approach: Assemble

Group similar contigs

key: localize the assembly problem



Pros and cons of each approach

* Transcript assembly methods are the obvious choice for
organisms without a reference sequence.

* Genome-guided approaches are ideal for annotating high-
quality genomes and expanding the catalog of expressed
transcripts and comparing transcriptomes of different cell
types or conditions.

* Hybrid approaches for lesser quality or transcriptomes that
underwent major rearrangements, such as in cancer cell.

* More than 1000 fold variability in expression leves makes
assembly a harder problem for transcriptome assembly
compared with regular genome assembly.

* Genome guided methods are very sensitive to alignment
artifacts.



RNA-Seq transcript reconstruction software

Assembly Genome

Guided

Oasis (velvet)  Cufflinks

Trans-ABySS Scripture

Trinity




Analysis of counting data requires 3 broad tasks

* Read mapping (alignment): Placing short reads in the
genome

* Reconstruction: Finding the regions that originated the reads

e Quantification:

* Assigning scores to regions

* Finding regions that are differentially represented
between two or more samples.



RNA-Seq quantification

* Is a given gene (or isoform) expressed!?
* |s expression gene A > gene B?
* Is expression of gene A isoform a, > gene A isoform a,?

* Given two samples is expression of gene A in sample | >
gene A in sample 2!



Quantification: only one isoform

w
D

Short transcript Long transcript

H#reads

PKM = 10°
h 0 length x Total Reads

Reads per kilobase of exonic

sequence per million mapped reads
(Mortazavi et al Nature methods 2008)

*Fragmentation of transcripts results in length bias: longer transcripts have higher
counts

*Different experiments have different yields. Normalization is key for cross lane
comparisons

Complexity increases when multiple isoforms exist



Normalization depends on the application

* To compare within a sequence run (lane), RPKM
accounts for length bias.

* RPKM is not optimal for cross experiment comparisons.

— Different samples may have different
compositions.



Step 2: Different RNA compositions

/// 5\\ /” \\

/ S / S

/ \ / —_ \
/ —_ N — ’
)] —_— - Vo — \
o \ ' \
| |
\ /\/ I \\ /\/

, /l N /I
‘. ’/ \\\\\ 0’
\\N ’// \\s\_fl

Cell type | Cell type Il

Normalizing by total reads does not work well for samples with very
different RNA composition



Step2: More robust normalization

Counts for gene i in experiment j

s j = median

1 m \1/m’
1)
o \

Geometric mean for that gene
over ALL experiments

kij

i runs through all n genes

j through all m samples

k; is the observed counts for gene i in sample j
s;Is the normalization constant

Alders and Huber, 2010



Lets do an experiment (and

do a short R practice)

> s1 = ¢(100, 200, 300, 400, 10)
> s2 = ¢(50, 100, 150, 200, 500)

>norm=sum(s2)/sum(sl)
>plot(s2, slxnorm,log="xy” )
>abline(a = 0,0 = 1)

>g = sqrt(sl * s2t)

~

Similar read number,
one transcript many fold changed

Size normalization results in 2-fold
changes in all transcripts

>sln = s1/median(sl/g); s2n = s2/median(s2/g)

>plot(s2n, s1n,Jog="xy”)
>abline(a = 0,b = 1)
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But, how to compute counts for complex gene structures!?

Condition 2 . T T e T e el g g
N 1soform 1
Isoform 2
Exon intersection method Transcript expression method

Three popular options:
Exon intersection model: Score constituent exons
Exon union model: Score the the “merged” transcript

Transcript expression model: Assign reads uniquely to
different isoforms. Not a trivial problem!



Quantification: read assignment method

---——— - - - - |soform 1

- — : - Isoform 2

Transcript expression method

25% (-~ -~~~ 7"

Likelihood of isoform 2

0% 259% 100% Isoform 1 Isoform 2



Quantification with multiple isoforms

h _ I
I—1I—
_ _

How do we define the gene expression?
How do we compute the expression of each isoform?



Computing gene expression

Ideal: RPKM of the
constitutive reads
(Neuma, Alexa-Seq,
Scripture)




Computing gene expression — isoform deconvolution




Computing gene expression — isoform deconvolution

e ———— -
T -
T e — T
L] B B m—mm———m e A -
e T T B N .
L] - N

If we knew the origin of the reads we could compute each isoform’s expression.
The gene’s expression would be the sum of the expression of all its isoforms.

E = RPKM, + RPKM, + RPKM,



Paired-end reads are easier to associate to isoforms

Isoform 1

Isoform 2

Isoform 3
Paired ends increase isoform deconvolution confidence

* P, originates from isoform 1 or 2 but not 3.
* P, and P, originate from isoform 1

Do paired-end reads also help identifying reads originating in isoform 3?



We can estimate the insert size distribution

Splice and compute insert

distance
Estimate insert size ’

empirical distribution

0.001 0.002 0.003 0.004

0.000

T T T T T T
100 200 300 400 500 600

T
700




. and use it for probabilistic read assignment

ul
Isoform 1 I

Isoform 2 I

Isoform 3 I

0 100 200 300 400 500 600 700

For methods such as MISO, Cufflinks and RSEM, it is critical to have paired-end data



RNA-Seq quantification summary

* Counts must be estimated from ambiguous read/
transcript assignment.

— Using simplified gene models (intersection)
— Probabilistic read assignment
* Counts must be normalized
— RPKM is sufficient for intra-library comparisons

— More sophisticated normalizations to account for
differences in library composition for inter-library
comparisons.



Programs to measure transcript expression

Implemented method

Alexa-seq

Gene expression using intersection model

ERANGE

Gene expression using union model

Scripture

Gene expression using intersection model

Cufflinks

Transcript deconvolution by solving the
maximum likelihood problem

MISO

Transcript deconvolution by solving the
maximum likelihood problem

RSEM

Transcript deconvolution by solving the
maximum likelihood problem




NN

15

Infection +24h

Infection +8h
Trout

Infected fish cells

Infection +24h

Infection +8h
Brian Haas, Rays Jiang, Carsten Russ Saprolegnia



Analysis of counting data requires 3 broad tasks

* Read mapping (alignment): Placing short reads in the
genome

* Reconstruction: Finding the regions that originated the reads
* Quantification:

* Assigning scores to regions

* Finding regions that are differentially represented
between two or more samples.




Differential Gene Expression Questions

* Finding genes that have different expression between two or more
conditions.

* Find gene with isoforms expressed at different levels between two
or more conditions.

* Find differentially used slicing events
* Find alternatively used transcription start sites

* Find alternatively used 3’ UTRs



Differential gene expression using RNA-Seq

I
Condition ]| — — — — — — — — Ll
- Condition 2
Condition 1 Condition 2
@ Condition 1 mEmm Condition 1
5 —= Condition 2 > —= Condition 2
2 g
< o
n a
Expression estimate Expression estimator value

*(Normalized) read counts €< —> Hybridization intensity



Differential analysis strategies

e Use read counts

— Standard Fisher exact test

Condition A Condition B

Gene A reads n n,

d

Rest of reads N N,

a

— Model read counts (Poisson, negative binomial)
and test whether models are distinct

— Use empirical approaches that do not rely on
parametric assumptions (more on this later)



Poisson model does not work

variance

| | | | | |
16> 4o ° 40 fo* q0°

mean
Adapted from Anders, 2010

Biological variance does not follow a Poisson model



Using a parametric model (DESeq, Cufflinks)

Because of overdisperssion DESeq and Cufflinks uses a Negative binomial
to model read counts

Ky s~ JV(A’Q,M Uy,-%)§ Ogs = Kg s+ Vg

Given observed counts for two samples in replicates

k K k k

g,51 *° _q,.s_'-,,:, gty - - g.lm

DESeq tests the null hypothesis that all counts are sampled from the same
distribution

P (Z Kg.si + 2 Kyl s = )
; j



Cufflinks differential isoform usage

Let a gene G have n isoforms and let p,, ..., p, the estimated fraction of expression of
each isoform.

Call this a the isoform expression distribution P for G

Given two samples the differential isoform usage amounts to determine whether
H,: P, =P,or H,: P, |=P,are true.

To compare distributions Cufflinks utilizes an information content based metric of how
different two distributions are called the Jensen-Shannon divergence:

p1+-.-+pm) X HG)

m m

JS(pl,...,pm):H<

H(p) == pilogp;.
1=1

The square root of the JS distributes normal.



RNA-Seq differential expression software

Underlying model Notes

DegSeq Normal. Mean and variance Works directly from
estimated from replicates reference transcriptome
and read alignment

EdgeR Negative Bionomial Gene read counts table

DESeq Negative Bionomial Gene read counts table

Cufflinks Poissen Negative Bionomial Works directly from the
alignments

Myrna Empirical Sequence reads and

reference transcriptome



The quest for inexpensive expression assays

* Goal: Routinely profile hundreds of samples

* Why!
— Human variability in health and disease
— Perturbation studies

— Clinical applications of expression profiling
* Current costs

— Afffy ~$300-$400/sample
— Illumina bead arrays $150/sample

— RNA-Seq (20 mill reads) ~$400-$500/sample ($350 in
sequencing)

* RNA-Seq disadvantages
— Complex analysis
— Length bias



Our typical pipeline (e.g. RNA-Seq)

Upload your
sequence data (fastq)

Make report of quality metrics

!

Align to the ribosome (Bowtie)

Output ribosomal contamination
metrics report

Align remaining reads to
genome (TopHat)

——
————
——

Produce RNA-Seq report
% aligned, % intergenic, % exonic,
% UTR

Produce IGV/UCSC friendly files

Quantify transcriptome

!

Produce a table with normalized
expression values

Call differentially expressed
genes
(if multiple samples)

Report pairwise significant genes
that are differentially expressed




Final considerations on quantification

* Using different libraries:
— Targeting the 3’ end
— Targeting 5" end
* What depth do we really need?

Alper Kucukural
Sabah Kadri

Maxim Artyomov



RNA-Seq libraries: Summary

Poly-A selected RNA

m7G (A)n
m7G (A)n
Zn-based
fragmentation
P
m’G \/\_{\_P//—}/_\ (A)n
P
P i P\_/_'m”\
~——" m7G-—\_/
/ \
Exo-CAGE 3’-end-Seq sP‘e)IIZé\tion
. ¢ Full-length \
me=x__~ RNA-Seq =~ (A),
m’G—~
m’G—a —~ =),
T~—}—}"" /-}\(A)n
Sabah Kadri \ \4 /

Maxim Artyomov

_ Library Construction
Sebastian Kadener



Robustness to low depth: Transcripts detected
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Alper Kucukural



RSEM/DESeq: |5 mill reads in worm

1000 -

baseMeanB

]
10 1000
baseMeanA



RSEM/DESeq: |0 mill reads in worm

1000 -

baseMeanB

]
10 1000
baseMeanA



RSEM/DESeq: 7.5 mill reads in worm

1000 -

baseMeanB

]
10 1000
baseMeanA



RSEM/DESeq: 5 mill reads in worm

1000 -

baseMeanB

]
10 1000
baseMeanA

Alper Kucukural



RSEM/DESeq: 2.5 mill reads in worm

1000 -

baseMeanB
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10 1000
baseMeanA



RSEM/DESeq: | mill reads in worm

1000 -

baseMeanB
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10 1000
baseMeanA
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Final considerations: The steps of Sequencing analysis

* Filter reads (fastq file) by removing adapter, splitting barcodes.

— Evaluate overall quality, look for drop in quality at
ends. Trim reads if ends are of low quality

* Alignment to the genome
— Use transcriptome if available

— Filter out likely PCR duplicates (reads that align to the
same place in the genome

— Evaluate ribosomal contamination

— What percent of reads aligned
* Reconstruct(?)
* Quantify
— Normalize according to application



A Vignette: Large non-coding RNA,
are they an evolutionary playground?

Stefan Washietl
Manolis Kellis

http://genome.cshlp.org/content/early/2014/01/15/gr.165035.113?top=1



What do we know about IncRNA function?

* How to deal with XY vs XX? * How to keep telomeres?

: "
Dosage Compensation C= %

L
Male Female Sﬁgﬁg‘g\\
C—
Y Leading
X X X strand
5

Lagging e —
Y chromosome lost Silence most of the genes strand e e e c"

most of the ancestral genes on one X chromosome

* Dosage compensation is regulated ¢ Telomerase (Greider & Blackburn

by XIST (Ballabio et al, 1987) 1985)
) zﬂ?n-r IS::ZZOHS large protein . Telomerase is a Ribonucleoprotein
P (Greider & Blackburn 1989)

e XIST isa I7 Kb non-coding RNA
« TERCis 550 bases



How to think about lincRNAs as functional units?

RNA-Protein RNA-DNA RNA-RNA

D

Example: Telomerase RNA

Not all sequences are functionally equivalent



RNA as a flexible malleable molecule

Less flexibility

More flexibility



TERC has clear conserved patterns
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lincRNAs play key roles in biological processes

The Noncoding RNA Taurine Upregulated Gene 1
Is Required for Differentiation

of the Murine Retina

Long Noncoding RNA as

Modular Scaffold of Histone

Modification Complexes

Play important roles in a variety of
biological process

] . o . « Development
lincRNAs act in the circuitry controlling

pluripotency and differentiation - Cancer

Rsx is a metatherian RNA with Xist-like properties in * Immunity
X-chromosome inactivation . Differentiation
IncRNA-dependent mechanisms of androgen-  Circadian Cyde

receptor-regulated gene activation programs

Circadian changes in long noncoding RNAs in the
pineal gland

A Long Noncoding RNA Mediates Both maewe seauendng
Activation and Repression of Immune
Response Genes

Susan Carpenter,'? Maninjay Atianand,’ Daniel Aiello,' Emiliano P. Ricci,®
Pallavi Gandhi,' Lisa L. Hall,* Meg Byron,* Brian Monks,” Meabh Henry-Bezy,'
Jeanne B. Lawrence,* Luke A. J. O’Neill,? Melissa J. Moore,® Daniel R.
Caffrey,'*t Katherine A. Fitzgerald't



lincRNA are an evolutionary puzzle

HHH—HH —
Cox2
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Using expression to assess conservation

— Hypothesis |:lincRNAs are under “patchy” constraint or a rapidly
evolving (Xist?)
* Sequence conservation would be underestimating lincRNA conservation
* Evidence of syntenic conserved expression

— Hypothesis 2: lincRNAs are young and many are transcriptional noise
 Expression is species specific
* Sequence conservation not informative

— Hypothesis 3:lincRNAs are easily replaceable by functional orthologs
(linc-cox2?)
* Sequence conservation not informative
* Syntenic conserved expression not informative



Evolutionary profiling RNA-Seq dataset

Al

RTIC.

~90mya
~80mya

~15mya

Emrhesus Emouse Hrat [lcow

3 Individuals per species

L1

doi:10.1038/nature10532

The evolution of gene expression levels in
mammalian organs

David Brawand!?*, Magali Soumillon>?*, Anamaria Necsulea**, Philippe Julien"?, Gabor Csardi*?, Patrick Harrigan®,
Manuela Weier', Angélica Liechti', Ayinuer Aximu-Petri®, Martin Kircher”, Frank W. Albert>t, Ulrich Zeller®, Philipp Khaitovich’,
Frank Griitzner®, Sven Bergmann2’3, Rasmus Nielsen*?, Svante P#ibo® & Henrik Kaessmann®?

Merkin el al. Science 2012

Human
+

Chimp



A human centric approach

All GENCODE long noncoding transcripts
11790

No overlap with annotated coding genes

or pseudogenes
5603



A human centric approach

All GENCODE long noncoding transcripts = —— mRNA
9 — lincRNA
11790 8 Q ] Random
S o
(on
g v
“— o
()]
l 2 <
2 S
No overlap with annotated coding genes r—é o
or pseudogenes S °
5603 21 . [ .
0 5 10 15
l RNAcode p—value (-log10)

No detectable coding potential

5206

Stefan Washietl



A human centric approach

All GENCODE long noncoding transcripts =8 —— mRNA
9 —— lincRNA
11790 S ® 7 Random
| ::
No overlap with annotated coding genes r—é o
or pseudogenes S °
5603 2 -

- T T
0 5 10 15
l RNAcode p—value (-log10)

No detectable coding potential o = |

5206 S5 ©
T o

= o

l .
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E (=}
Significantly expressed in human in § S -

tissues used in this study Vo 0000

1898 PR 2 4 6

Normalized read count (log10)

Stefan Washietl



Assessing orthologous expression

RNA-Seq

Human

Rat

RNA-Seq ‘ -

RNA-Seq

Human

Rat
RNA-Seq

RNA-Seq
Human

Rat

-

N

-

N L

-

—

—

Can find orthologous loci with
significant expression

Can find orthologous loci but
without significant expression

Cannot find orthologous loci



How many are lost or gained!?
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Conservation of Expression decays rapidly

Kouanbauiy
aAle|InWINg

I I
0% 100%

Fraction of nucleotides mapped

Detection threshold \

1) Max

Normalized read count

— MRNASs
—  |[iINCRNAS

Random

- mRNAs
(low expression)

lincRNAs are lost much faster than predicted by their sequence conservation



Rapid gain and loss of lincRNAs
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Orothologous lincRNAs preserve their tissue specificity
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Orthologous lincRNAs preserve the
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Young vs conserved lincRNAs
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Similarly expressed yet more tissue specific

Expression level
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How are lincRNAs created?
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How are lincRNAs created?
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XIST like counterpart

LETTER

Rsx is ametatherian RNA with Xist-like properties in
X-chromosome inactivation
Jennifer Grant!, Shantha K. Mahadevaiah', Pavel Khil’>, Mahesh N. Sangrithil, Héléne Royol, Janine Duckworth?,

John R. McCarrey*, John L. VandeBerg®, Marilyn B. Renfree®, Willie Taylor', Greg Elgar', R. Daniel Camerini-Otero?,
Mike J. Gilchrist' & James M. A. Turner'

doi:10.1038/nature: 11171

« Female Specific

« Large non-coding (> 20Kb)

« Coats the Xi

« Inactive in Germline cells

« Contains tandem repeats

« Capable of inactivating autosomes

Grant al. Nature 2012
Is Rsx a functional ortholog of XIST



Key observations

* lincRNAs have a very rapid rate of gain and loss

* Rapid gain/loss makes the XIST/RSX model were lincRNAs may be
easily replaced appealing until ... proven wrong or a more reasonable
model arises

* Repetitive sequence could be a driving force in the genesis of
lincRNAs

* Gene structure seems to be preserved only when junctions may play
a functional role and turnover very rapidly when they not.

* Evolutionary signatures can distinguish IncRNA categories
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