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Overview of the session 

•  Explaining diversity: Transcriptional regulation 
–  A short story from our recent work 

•  Dive into RNA-Seq 
–  The different BLA-Seq libraries. A common theme 
–  Read mapping (alignment): Placing short reads in the genome 
–  Reconstruction: Finding the regions that originated the reads 
–  Quantification:  

•  Assigning scores to regions 
•  Finding regions that are differentially represented between two or 

more samples. 
•  How much depth? 

•  RNA-Seq Vignette: non-coding RNA evolution 



Why do organisms look the way that they do?	
  



However,	
  all	
  this	
  diversity	
  arises	
  from	
  the	
  same	
  genome	
  sequence!	
  
Proteins	
  are	
  very	
  conserved	
  across	
  vertebrates,	
  what	
  is	
  the	
  driving	
  force	
  of	
  variability?	
  

Why do different cell types do what they do! 



Sequence-based strategy: Comparative genomics 

Technique:	
  Iden-fy	
  regions	
  undergoing	
  selec-on	
  

Under	
  
Selec-on	
  

Neutral	
  

ω	
  

Implementa>on:	
  Siphy	
  (hBp://www.broadins>tute.org/genome_bio/siphy/)	
  



Comparative genomics genome annotation 

•  ~7% under selection. 4.5% can be 
pinpointed at 5% FDR 

•  Thousands of conserved binding 
sites 

•  Hundreds of RNA structures 

•  Narrows associated SNPs 
candidates 

states (1.5–2-fold), together covering 7.1% of the unexplained elements
at 2.1-fold enrichment. In the nine cell types, enriched promoter,
enhancer and insulator states cover 36% of unexplained elements at
,1.75-fold enrichment, with locations active in multiple cell types
showing even stronger enrichment (Supplementary Fig. 20).
Overall, chromatin states indicate possible functions (at 1.74-fold

enrichment) for 37.5% (N5 987,985) of unexplained conserved ele-
ments (27% of all conserved elements), suggesting meaningful asso-
ciation for at least 16% of unexplained constrained bases. Although
current experiments only provide nucleosome-scale (,200-bp) reso-
lution, we expect higher-resolution experimental assays that more
precisely pinpoint regulatory regions to show further increases in
enrichment. The increased overlap observed with additional cell types
suggests that new cell types will help elucidate additional elements. Of
course, further experimental tests will be required to validate the
predicted functional roles.

Accounting for constrained elements
Overall,,30% of constrained elements overlap were associated with
protein-coding transcripts, ,27% overlap specific enriched
chromatin states, ,1.5% novel RNA structures, and,3% conserved
regulatory motif instances (Supplementary Text 13, 14). Together,
,60% of constrained elements overlap one of these features, with
enrichments ranging from 1.75-fold for chromatin states (compared
to unannotated regions) up to 17-fold for protein-coding exons (com-
pared to the whole genome).

Implications for interpreting disease-associated variants
In the non-protein-coding genome, SNPs associated with human
diseases in genome-wide association studies are 1.37-fold enriched
for constrained regions, relative to HapMap SNPs (Supplementary
Text 15 and Supplementary Table 8). This is notable because only a
small proportion of the associated SNPs are likely to be causative,
whereas the rest are merely in linkage disequilibrium with causative
variants.
Accordingly, constrained elements should be valuable in focusing

the search for causative variants among multiple variants in linkage
disequilibrium. For example, in an intergenic region betweenHOXB1
and HOXB2 associated with tooth development phenotypes43, the
reported SNP (rs6504340) is not conserved, but a linked SNP
(rs8073963) sits in a constrained element 7.1 kb away. Moreover,
rs8073963 disrupts a deeply conserved FOXO2 motif instance within
a predicted enhancer (Fig. 4), making it a candidate mutation for

further follow-up. Similar examples of candidate causal variants are
found for diverse phenotypes such as height or multiple sclerosis, and
similar analyses could be applied to case–control resequencing data.

Evolution of constrained elements
We next sought to identify signatures of positive selection that may
accompany functional adaptations of different species to diverse
environments and new ecosystems.

Codon-specific selection
We used the ratio dN/dS of non-synonymous to synonymous codon
substitutions as evidence of positive selection (.1) or negative selec-
tion (,1). Although dN/dS is typically calculated for whole genes, the
additional mammals sequenced enabled analysis at the codon level:
simulations predicted a 250-fold gain in sensitivity compared to
HMRD, identifying 53% of positive sites at 5% FDR (Supplemen-
tary Text 16).
Applying this test to 6.05 million codons in 12,871 gene trees, we

found evidence of strong purifying selection (dN/dS, 0.5) for 84.2%
of codons and positive selection (dN/dS. 1.5) for 2.4% of codons
(with 94.1% of sites,1 and 5.9%.1; Supplementary Table 9). At 5%
FDR, we found 15,383 positively selected sites in 4,431 proteins. The
genes fall into three classes based on the distribution of selective
constraint: 84.8% of genes show uniformly high purifying selection,
8.9% show distributed positive selection across their length and 6.3%
show localized positive selection concentrated in small clusters
(Fig. 3b and Supplementary Fig. 21, Supplementary Tables 10 and 11).
Genes with distributed positive selection were enriched in such

functional categories as immune response (PBonf, 10216) and taste
perception (PBonf, 10210), which are known to evolve rapidly, but
also in some unexpected functions such as meiotic chromosome
segregation (PBonf, 10223) and DNA-dependent regulation of tran-
scription (PBonf, 10219; Supplementary Table 12). Localized positive
selectionwas enriched in core biochemical processes, includingmicro-
tubule-based movement (PBonf, 10210), DNA topological change
(PBonf, 1024) and telomere maintenance (PBonf, 73 1023), sug-
gesting adaptation at important functional sites.
Focusing on 451 unique Pfam protein-domain annotations, we

found abundant purifying selection, with 225 domains showing puri-
fying selection for .75% of their sites, and 447 domains showing
negative selection for .50% of their sites (Supplementary Table 13).
Domains with substantial fractions of positively selected sites include
CRAL/TRIO involved in retinal binding (2.6%), proteinase-inhibitor-
cystatin involved in bone remodelling (2.2%) and the secretion-related
EMP24/GOLD/P24 family (1.6%).

Exaptation of mobile elements
Mobile elements provide an elegant mechanism for distributing a
common sequence across the genome, which can then be retained
in locations where it confers advantageous regulatory functions to the
host—a process termed exaptation. Our data revealed .280,000
mobile element exaptations common to mammalian genomes cover-
ing,7Mb (Supplementary Text 17), a considerable expansion from
the ,10,000 previously recognized cases44. Of the ,1.1 million con-
strained elements that arose during the 90 million years between the
divergence frommarsupials and the eutherian radiation, we can trace
.19% to mobile element exaptations. Often only a small fraction
(median,11%) of each mobile element is constrained, in some cases
matching known regulatory motifs. Recent exaptations are generally
found near ancestral regulatory elements, except in gene deserts,
which are abundant in ancestral elements but show few recent exap-
tations (P, 102300, Supplementary Fig. 22).

Accelerated evolution in the primate lineage
Lineage-specific rapid evolution in ancestrally constrained elements
previously revealed human positive selection associated with brain
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Figure 4 | Using constraint to identify candidate mutations. Conservation
can help us resolve amid multiple SNPs the ones that disrupt conserved
functional elements and are likely to have regulatory roles. In this example, a
SNP (rs6504340) associated with tooth development is strongly linked to a
conserved intergenic SNP, rs8073963, 7.1 kb away, which disrupts a deeply
conserved Forkhead-family motif in a strong enhancer. Although the SNPs
shown here stem from GWAS on HapMap data, the same principle should be
applicable to associated variants detected by resequencing the region of interest.
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Supplementary,Figure,S17,2,Example,of,a,constrained,element,with,a,region,of,CTCF,binding,
between,BCL3,and,CBLC,in,the,human,genome."SiPhy"rate"indicates"the"level"of"constraint"in"
overlapping"128mers."A"close8up"of"the"constrained"element"shows"overlap"with"a"predicted"CTCF"
site."
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In some cases resolution is astonishing 



However, most binding is not conserved 

Five-Vertebrate ChIP-seq Reveals
the Evolutionary Dynamics of
Transcription Factor Binding
Dominic Schmidt,1,2* Michael D. Wilson,1,2* Benoit Ballester,3* Petra C. Schwalie,3
Gordon D. Brown,1 Aileen Marshall,1,4 Claudia Kutter,1 Stephen Watt,1 Celia P. Martinez-Jimenez,5
Sarah Mackay,6 Iannis Talianidis,5 Paul Flicek,3,7† Duncan T. Odom1,2†

Transcription factors (TFs) direct gene expression by binding to DNA regulatory regions. To explore
the evolution of gene regulation, we used chromatin immunoprecipitation with high-throughput
sequencing (ChIP-seq) to determine experimentally the genome-wide occupancy of two TFs,
CCAAT/enhancer-binding protein alpha and hepatocyte nuclear factor 4 alpha, in the livers of five
vertebrates. Although each TF displays highly conserved DNA binding preferences, most binding
is species-specific, and aligned binding events present in all five species are rare. Regions
near genes with expression levels that are dependent on a TF are often bound by the TF in multiple
species yet show no enhanced DNA sequence constraint. Binding divergence between species can be
largely explained by sequence changes to the bound motifs. Among the binding events lost in one
lineage, only half are recovered by another binding event within 10 kilobases. Our results reveal large
interspecies differences in transcriptional regulation and provide insight into regulatory evolution.

The relationship between genetic sequence
and transcriptional regulation is central to
understanding species-specific biology, dis-

ease, and evolution (1). Identifying the divergence
and conservation among functional regulatory ele-

ments is an important goal of comparative genomic
research, and this is often done via DNA sequence
comparisons using distant (2) and closely related
species (3). Although both approaches have suc-
cessfully identified conserved regulatory regions,
the majority of transcription factor (TF) binding
events can change rapidly between closely related
species, making them difficult to detect using DNA
sequence alone (4–7). For instance, the experimen-
tally determined binding events for homologous
TFs found in mouse and human livers are unlikely
to align with each other (7), despite conservation of
their functional targets (8) and global liver tran-
scription (9). The evolution of mammalian tran-
scriptional regulation remains largely unexplored
beyond limited mouse-human comparisons.

We therefore identified the genome-wide bind-
ing of two TFs: (i) CCAAT/enhancer-binding
protein alpha (CEBPA) in the livers of species

representing five vertebrate orders: human (pri-
mate), mouse (rodent), dog (carnivora), short-
tailed opossum (didelphimorphia), and chicken
(galliformes); and (ii) hepatocyte nuclear factor
4 alpha (HNF4A) in livers from humans, mice,
and dogs. Chromatin immunoprecipitation ex-
periments were combined with high-throughput
sequencing (ChIP-seq) using healthy, nutritionally
unstressed adult livers from the heterogametic sex
as a functionally and transcriptionally conserved
homologous tissue type (Fig. 1 and fig. S1) (8, 10).

CEBPA and HNF4A were selected as repre-
sentative TFs within the liver-specific regulatory
network, because both are conserved and con-
stitutively expressed with well-characterized tar-
get genes (10, 11). In addition, they represent
distinct TF classes, and the DNA binding domains
of each factor’s orthologs are nearly identical
among the study species (fig. S2).

The genomic TF occupancy data were repro-
ducible between different individuals of the same
species (fig. S3) and were validated by using alter-
native antibodies (fig. S4).Using amouse carrying a
human chromosome, we confirmed that genetic se-
quence, and not diet, lifestyle, or environment, is the
primary determinant of liver-specific TF binding
(fig. S5) (12). Given the greater evolutionary distance
to opossum and chicken, contributions from non-
genetic sources could be higher in those vertebrates.

We identified TF-bound regions using a dy-
namic programming algorithm, and our results
were robust to different peak-calling thresholds
(figs. S6 to S8) (13). To detect TF binding events
shared among any combination of the five verte-
brates, we used the Ensembl 12-way multispecies
alignment (14), which incorporates approximately
half of each species’ genome into global alignments.
Our findings did not substantially change with an
alternate methodology that used pairwise align-
ments in a separate algorithm (figs. S6 to S8) (13).

Each TF bound between 16,000 and 30,000 lo-
cations in eachmammalian genome;CEBPAbound
approximatelyhalf this number in the smaller chicken

1Cancer Research UK, Cambridge Research Institute, Li Ka Shing
Centre, Robinson Way, Cambridge CB2 0RE, UK. 2University
of Cambridge, Department of Oncology, Hutchison/Medical
Research Council Research Centre, Hills Road, Cambridge
CB2 0XZ, UK. 3European Bioinformatics Institute (EMBL-EBI),
Wellcome Trust Genome Campus, Hinxton, Cambridge CB10
1SD, UK. 4Cambridge Hepatobiliary Service, Addenbrooke's
Hospital, Hills Road, Cambridge CB2 2QQ, UK. 5Biomedical
Sciences Research Center Alexander Fleming, 16672 Vari,
Greece. 6Integrative and Systems Biology, Faculty of Biomed-
ical and Life Sciences, University of Glasgow, G128QQ, UK.
7Wellcome Trust Sanger Institute, Wellcome Trust Genome
Campus, Hinxton, Cambridge CB10 1SA, UK.

*These authors contributed equally to this work.
†To whom correspondence should be addressed. E-mail:
flicek@ebi.ac.uk (P.F.); duncan.odom@cancer.org.uk (D.T.O.)

Fig. 1. CEBPA binding in vivo in livers
isolated from five vertebrate species
cross-mapped to the human PCK1 gene
locus. A rare ultraconserved binding
event is shown surrounded by species-
specific and partially shared binding
events. On the left is the evolutionary
tree of the five study species (Hsap,
Homo sapiens; Mmus, Mus musculus;
Cfam, Canus familiaris; Mdom, Mono-
delphis domesticus; Ggal, Gallus gallus),
with their approximate evolutionary dis-
tance in millions of years ago (MYA). The
bottom track shows evolutionary conser-
vation measured across 44 vertebrate
species, and darker shading represents
slower evolution.

21 MAY 2010 VOL 328 SCIENCE www.sciencemag.org1036

REPORTS

 o
n

 O
c
to

b
e

r 
1

, 
2

0
1

1
w

w
w

.s
c
ie

n
c
e

m
a

g
.o

rg
D

o
w

n
lo

a
d

e
d

 f
ro

m
 

Transcriptional regulation may be a key driver of diversity and  
definitively of cell type diversity  

genome (Fig. 2 and figs. S6, S7, and S9). For both
factors, less than a quarter of bound regions were
within 3 kb of known transcription start sites (TSSs).
Between 30 and 50% of the binding sites of the two
TFs overlapped in the genome (table S1). These
overlapping sites did not exhibit substantially dif-
ferent characteristics in the conservation of under-
lying genetic sequence than the sites of CEBPA and
HNF4A did when considered individually.

For these two liver-specific TFs, binding events
appear to be shared 10 to 22% of the time between
mammals from any two of the three placental

lineages we profiled, separated by approximate-
ly 80 million years of evolution (figs. S6 and S7).
This result reveals a rapid rate of evolution in
transcriptional regulation among closely related
vertebrates. Nevertheless, the number of CEBPA
and HNF4A TF binding events shared between
any two of our five study species is far greater
than could have occurred by chance (fig. S10).

We used the genome-wide binding of CEBPA
in opossum to test the hypothesis that regulatory
regions have diverged substantially between eu-
therian and metatherian mammals (15). Opossum

indeed showed dramatic changes in TF bind-
ing, and only between 6 and 8% of the genomic
regions that are occupied by CEBPA in opos-
sum liver align with CEBPA binding events also
found in mouse, dog, and/or human livers. This
divergence was even greater in chickens, which
shared only 2% of CEBPA binding with humans,
demonstrating extensive and continuous rewir-
ing of gene regulation during vertebrate evolu-
tion that corresponds to evolutionary distance.

Ultraconserved noncoding regions are re-
vealed by comparative genomic sequencing (16).

Fig. 2. Conservation and di-
vergence of TF binding. For
(A) CEBPA and (B) HNF4A,
the pairwise distribution and
numbers of binding events
are shown as a pie chart dis-
tributed into the following
segments: intergenic (red),
intronic (yellow), exonic (blue),
and promoter (TSS T3 kb)
(green) regions. The left-most
column contains the distribu-
tions of the bulk genomes.
The right-most pie chart rep-
resents all binding events in
each species, with the total
number of alignable peaks
above the total peaks (in
parentheses). (C and D) Mul-
tispecies CEBPA and HNF4A
binding event analysis, where
black circles indicate bind-
ing in a given species. For in-
stance, there are 764 regions
bound by CEBPA only in dog
and human (see also figs. S6,
S7, and S17 and tables S2
and S6). (E) The DNA sequence
constraint beneath binding
events was measured by aver-
age GERP (20) scores for peaks
found: in all five species (5-
way), among all the placen-
tal mammals (3-way), bound
in any two species (shared),
within 10 kb of the TSS of
functional targets (function-
al), and all peaks.
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Enhancers poorly conserved, cell type specific   

Chromatin stretch enhancer states drive cell-specific
gene regulation and harbor human disease
risk variants
Stephen C. J. Parkera,1, Michael L. Stitzela,1, D. Leland Taylora, Jose Miguel Orozcoa, Michael R. Erdosa,
Jennifer A. Akiyamab, Kelly Lammerts van Buerenc, Peter S. Chinesa, Narisu Narisua, NISC Comparative Sequencing
Programa, Brian L. Blackc, Axel Viselb,d, Len A. Pennacchiob,d, and Francis S. Collinsa,2

aNational Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892; bGenomics Division, Lawrence Berkeley National Laboratory,
Berkeley, CA 94720; cCardiovascular Research Institute, University of California, San Francisco, CA 95158; and dDepartment of Energy Joint Genome Institute,
Walnut Creek, CA 94598

Contributed by Francis S. Collins, September 16, 2013 (sent for review August 2, 2013)

Chromatin-based functional genomic analyses and genomewide
association studies (GWASs) together implicate enhancers as critical
elements influencing gene expression and risk for common diseases.
Here, we performed systematic chromatin and transcriptome pro-
filing in human pancreatic islets. Integrated analysis of islet data
with those from nine cell types identified specific and signifi-
cant enrichment of type 2 diabetes and related quantitative
trait GWAS variants in islet enhancers. Our integrated chromatin
maps reveal that most enhancers are short (median = 0.8 kb). Each
cell type also contains a substantial number of more extended (≥3
kb) enhancers. Interestingly, these stretch enhancers are often
tissue-specific and overlap locus control regions, suggesting that
they are important chromatin regulatory beacons. Indeed, we
show that (i ) tissue specificity of enhancers and nearby gene
expression increase with enhancer length; (ii ) neighborhoods
containing stretch enhancers are enriched for important cell
type–specific genes; and (iii) GWAS variants associated with traits
relevant to a particular cell type are more enriched in stretch en-
hancers compared with short enhancers. Reporter constructs contain-
ing stretch enhancer sequences exhibited tissue-specific activity in
cell culture experiments and in transgenic mice. These results suggest
that stretch enhancers are critical chromatin elements for coordinating
cell type–specific regulatory programs and that sequence variation in
stretch enhancers affects risk of major common human diseases.

High-throughput sequencing has been coupled to ChIP (ChIP-
seq) and mRNA samples (RNA-seq) to survey the genome-

wide chromatin and transcription profiles in different cell types.
Regulatory elements such as promoters, enhancers, insulators,
transcribed, and repressed regions are marked by distinct pat-
terns of histone modifications (1), including histone H3 lysine
27 acetylation (H3K27ac), H3K27 trimethylation (H3K27me3),
H3K36me3, H3K4 monomethylation (H3K4me1), H3K4me3,
and the CCCTC-binding factor (CTCF). Systematic chromatin
state identification has recently emerged as a powerful technique
to interpret and compare regulatory landscapes within and bet-
ween cell types (2–7). Such methods use an unsupervised approach
to identify recurrent combinations of histone modifications across
the genome, thereby producing a map of representative chromatin
states that are likely to be biologically relevant.

Results
Systematic Chromatin and Transcriptome Profiling in Human Islets.
To correlate chromatin features with the location of type 2 di-
abetes (T2D) genetic risk variants and with gene expression, we
conducted high-throughput sequencing coupled to ChIP (ChIP-
seq) and mRNA samples (RNA-seq) in human pancreatic islets,
a cell type relevant to diabetes and to quantitative trait analysis of
glucose and insulin levels (8). Using the ChromHMM algorithm
(2), we uniformly integrated our islet ChIP-seq reads plus ad-
ditional islet data sets (9) with those from nine Encyclopedia of

DNA Elements (ENCODE) cell types to generate consistent
chromatin state assignments across all 10 cell types. We an-
chored these assignments based on overlap with previously
published chromatin states (2) in the nine ENCODE cell types
to produce a consistent annotation of promoter, enhancer, in-
sulator, transcribed, and repressed chromatin states (SI Appen-
dix, Fig. S1). In parallel, we integrated our human islet RNA-seq
data with ENCODE RNA-seq data, resulting in a unified set of
chromatin state and mRNA maps for islets and the nine EN-
CODE cell types (Fig. 1A). After subsampling to normalize the
amount of ChIP-seq reads, the fraction of the genome covered
by select chromatin states remained relatively constant across
any given cell type (Fig. 1B, Upper). However, we observed that
additional read depth identified additional signal-enriched en-
hancer regions (SI Appendix, Fig. S2), a finding consistent with
other studies (10, 11). Thus, in subsequent analyses, we used
chromatin states identified using all reads (Fig. 1B, Lower) and
note that the trends reported herein are consistently observed
even when normalized read chromatin states are used. As shown
in Fig. 1A, our integrative approach identified both common (e.g.,

Significance

Using high-throughput experiments, we determined the func-
tional epigenomic landscape in pancreatic islet cells. Compu-
tational integration of these data along with similar data from
the ENCODE project revealed the presence of large gene con-
trol elements across diverse cell types that we refer to as
“stretch enhancers.” Stretch enhancers are cell type specific and
are associated with increased expression of genes involved in
cell-specific processes. We find that genetic variations associ-
ated with common disease are highly enriched in stretch
enhancers; notably, stretch enhancers specific to pancreatic
islets harbor variants linked to type 2 diabetes and related
traits. We propose that stretch enhancers form as pluripotent
cells differentiate into committed lineages, to program impor-
tant cell-specific gene expression.

Author contributions: S.C.J.P., M.L.S., J.M.O., M.R.E., J.A.A., A.V., L.A.P., and F.S.C. de-
signed research; S.C.J.P., M.L.S., D.L.T., J.M.O., M.R.E., J.A.A., K.L.v.B., P.S.C., N.N., N.C.S.P.,
B.L.B., A.V., L.A.P., and F.S.C. performed research; S.C.J.P., M.L.S., K.L.v.B., and F.S.C.
analyzed data; and S.C.J.P. and M.L.S. wrote the paper.

The authors declare no conflict of interest.

A complete list of the NISC Comparative Sequencing Program can be found in the
Supporting Information.

Freely available online through the PNAS open access option.

Data deposition: The sequence reported in this paper has been deposited in the Gene
Expression Omnibus (GEO) database (accession no. GSE51312).
1S.C.J.P. and M.L.S. contributed equally to this work.
2To whom correspondence should be addressed. E-mail: collinsf@od.nih.gov.
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Histone modifications at human enhancers reflect
global cell-type-specific gene expression
Nathaniel D. Heintzman1,2*, Gary C. Hon1,3*, R. David Hawkins1*, Pouya Kheradpour5, Alexander Stark5,6,
Lindsey F. Harp1, Zhen Ye1, Leonard K. Lee1, Rhona K. Stuart1, Christina W. Ching1, Keith A. Ching1,
Jessica E. Antosiewicz-Bourget7, Hui Liu8, Xinmin Zhang8, Roland D. Green8, Victor V. Lobanenkov9, Ron Stewart7,
James A. Thomson7,10, Gregory E. Crawford11, Manolis Kellis5,6 & Bing Ren1,4

The human body is composed of diverse cell types with distinct
functions. Although it is known that lineage specification depends
on cell-specific gene expression, which in turn is driven by pro-
moters, enhancers, insulators and other cis-regulatory DNA
sequences for each gene1–3, the relative roles of these regulatory
elements in this process are not clear. We have previously
developed a chromatin-immunoprecipitation-based microarray
method (ChIP-chip) to locate promoters, enhancers and insula-
tors in the human genome4–6. Here we use the same approach to
identify these elements in multiple cell types and investigate their
roles in cell-type-specific gene expression. We observed that the
chromatin state at promoters and CTCF-binding at insulators is
largely invariant across diverse cell types. In contrast, enhancers
are marked with highly cell-type-specific histone modification
patterns, strongly correlate to cell-type-specific gene expression
programs on a global scale, and are functionally active in a cell-
type-specific manner. Our results define over 55,000 potential
transcriptional enhancers in the human genome, significantly
expanding the current catalogue of human enhancers and high-
lighting the role of these elements in cell-type-specific gene
expression.

We performed ChIP-chip analysis as described previously5 to deter-
mine binding of CTCF (insulator-binding protein) and the coactiva-
tor p300 (also known as EP300), and patterns of histone modifications
in five human cell lines: cervical carcinoma HeLa, immortalized lym-
phoblast GM06690 (GM), leukaemia K562, embryonic stem cells (ES)
and BMP4-induced ES cells (dES). We first investigated 1% of the
human genome selected by the ENCODE consortium7, using DNA
microarrays consisting of 385,000 50-base oligonucleotides that tile
30-million base pairs (bp) at 36 bp resolution. We examined mono-
and tri-methylation of histone H3 lysine 4 (H3K4me1, H3K4me3)
and acetylation of histone H3 lysine 27 (H3K27ac) at well-annotated
promoters, reasoning that the state of these histone modifications
would vary in a cell-type-specific manner. To our surprise, the chro-
matin signatures at promoters are remarkably similar across all cell
types (Fig. 1a). Quantitative comparison of ChIP-chip enrichment
(see Supplementary Information) revealed highly correlated histone
modification patterns at promoters across all cell types, with an
average Pearson correlation coefficient of 0.71 (Supplementary
Fig. 1a). This observation also holds for the larger set of Gencode
promoters (Supplementary Fig. 2).

Next, we identified putative insulators in the ENCODE regions for
these cell types based on CTCF binding, because mammalian insula-
tors are generally understood to require CTCF to block promoter2
enhancer interactions3. We observed nearly identical CTCF occu-
pancy (Supplementary Table 1 and Supplementary Fig. 1e) and highly
correlated CTCF enrichment patterns across all five cell types
(Supplementary Fig. 1b), providing experimental support for the
mostly cell-type-invariant function of CTCF as suggested by DNase
hypersensitivity mapping results8.

We then investigated transcriptional enhancers in the ENCODE
regions, performing ChIP-chip in HeLa, K562 and GM cells to locate
binding sites for the transcriptional coactivator protein p300
(Supplementary Tables 224) because p300 is known to localize at
enhancers9. We observed highly cell-type-specific histone modifica-
tion patterns at distal p300-binding sites (Supplementary Fig. 1f), in
marked contrast to the similarities in histone modifications across
cell types at promoters. We then used our chromatin-signature-
based prediction method5 to identify additional enhancers in the
ENCODE regions in these cell types (Fig. 1b and Supplementary
Tables 529). In addition to the characteristic H3K4me1 enrichment,
predicted enhancers are frequently marked by acetylation of H3K27,
DNaseI hypersensitivity and/or binding of transcription factors and
coactivators, and many contain evolutionarily conserved sequences
(Supplementary Figs 3 and 4; see Supplementary Information).
Unlike promoters and insulators, but similar to p300-binding sites,
the histone modification patterns at predicted enhancers are largely
cell-type-specific (Fig. 1b and Supplementary Fig. 1d), in agreement
with observations that H3K4me1 is distributed in a cell-type-specific
manner10.

These results indicate that enhancers are the most variable class of
transcriptional regulatory element between cell types and are probably
of primary importance in driving cell-type-specific patterns of gene
expression. Knowledge of enhancers is therefore critical for under-
standing the mechanisms that control cell-type-specific gene expres-
sion, yet our incomplete knowledge of enhancers in the human genome
has confined previous studies of gene regulatory networks mainly to
promoters. To identify enhancers on a genome-wide scale and facilitate
global analysis of gene regulatory mechanisms, we performed ChIP-
chip throughout the entire human genome as described6, mapping
enrichment patterns of H3K4me1 and H3K4me3 in HeLa cells.
Using previously described chromatin signatures for enhancers5, we

1Ludwig Institute for Cancer Research, 2Biomedical Sciences Graduate Program, 3Bioinformatics Program, and 4Department of Cellular and Molecular Medicine, UCSD School of
Medicine, 9500 Gilman Drive, La Jolla, California 92093-0653, USA. 5MIT Computer Science and Artificial Intelligence Laboratory, 32 Vassar Street, Cambridge, Massachusetts
02139, USA. 6Broad Institute of MIT and Harvard, 7 Cambridge Center, Cambridge, Massachusetts 02142, USA. 7Morgridge Institute for Research, Madison, Wisconsin 53707-7365,
USA. 8Roche NimbleGen, Inc., 500 South Rosa Road, Madison, Wisconsin 53719, USA. 9National Institutes of Allergy and Infectious Disease, 5640 Fishers Lane, Rockville, Maryland
20852, USA. 10University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin 53706, USA. 11Institute for Genome Sciences and Policy, and Department of
Pediatrics, Duke University, 101 Science Drive, Durham, North Carolina 27708, USA.
*These authors contributed equally to this work.
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Enhancer	
  elements	
  are	
  poorly	
  conserved,	
  are	
  cell	
  type	
  specific,	
  How	
  do	
  we	
  find	
  them?	
  



Transcription factor regulation 

see:	
  
hCps://www.youtube.com/watch?v=MkUgkDLp2iE	
  



DNA is not naked 



Nucleosomes interact with nuclear factors through tails 

Nucleosome	
  tails	
  

146	
  bp	
  

Wikipedia	
  



Cell identity is determined by its epigenetic state 

Catherine	
  Dulac,	
  Nature	
  2010	
  



Ac-ve	
  promoter	
  

Ac-ve	
  transcrip-on	
  

Repressive	
  marks	
  

Ac-ve	
  enhancer	
  

Zhou,	
  Goren	
  Berenstein,	
  Nature	
  Rev.	
  Gene-cs	
  2011	
  

Which controls the genome functional elements 



ChIP 

RNA 

RNA-Protein  
interactions 

Estimate the “functional genome” by 
finding what is under selection 

•  Develop informatics 
tools for new methods 

•  Develop models of 
transcriptional regulation 

•  Develop models of 
epigenetic interactions 

•  Evolution of large non-
coding RNAs 

We	
  want	
  to	
  ul>mately	
  understand	
  the	
  cell	
  circuits	
  of	
  the	
  cell	
  

We seek to map and functionally characterize elements 



For example: wiring of innate immune cells 

An>-­‐bacterial	
  
program	
  

(inflamma-on)	
  

An>-­‐viral	
  
program	
  

(interferon)	
  

Bacteria	
   Viruses	
  

Output	
  

Input	
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  g
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tlr7	
  tlr4	
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tlr9	
  

An>-­‐
bacterial	
  
cluster	
  

An>-­‐viral	
  
cluster	
  

Amit,	
  Garber	
  et	
  al,	
  Science	
  2010	
  How is this response controlled? 



Chip-Seq + RNA-Seq to map and relate components 

RNA-Seq 
Expression 

Chromatin: 
Promoters 
Enhancers 

Transcription  
Factors: 
Regulation 

LPS 

Sequencing libraries allow us to map output, state and the circuit of the cell  



Into specific functional sets 

Late	
  inflamma-on	
  

An--­‐viral	
  genes	
  

No	
  enrichment	
  
Early	
  inflamma-on	
  



Sequencing: applications 
Counting applications 
•  Profiling 

–  microRNAs 
–  Immunogenomics 
–  Transcriptomics 

•  Epigenomics 
–  Map histone modifications 
–  Map DNA methylation  
–  3D genome conformation 

•  Nucleic acid Interactions  

Polymorphism/mutation discovery 
–  Bacteria 
–  Genome dynamics 
–  Exon (and other target) sequencing 
–  Disease gene sequencing 

•  Variation and association studies 
•  Genetics and gene discovery 

 
•  Cancer genomics  

–  Map translocations, CNVs, 
structural changes 

–  Profile somatic mutations 
•  Genome assembly 
•  Ancient DNA (Neanderthal) 
•  Pathogen discovery 
•  Metagenomics 



Sequencing libraries to probe the genome  

•  RNA-Seq 
– Transcriptional output 
– Annotation 
– miRNA 
– Ribosomal profiling 

•  ChIP-Seq 
– Nucleosome positioning 
– Open/closed chromatin 
– Transcription factor binding 

•  CLIP-Seq 
–  Protein-RNA interactions 

•  Hi-C 
–  3D genome conformation 



RNA-Seq libraries I: “Standard” full-length 

•  “Source: intact, high qual. RNA (polyA selected or 
ribosomal depleted) 

•  RNA à cDNA à sequence 
•  Uses:  

– Annotation. Requires high depth, paired-end 
sequencing. ~50 mill 

– Gene expression. Requires low depth, single end 
sequence, ~ 5-10 mill  

– Differential Gene expression. Requires ~ 5-10 mill, 
at least 3 replicates, single end 



RNA-Seq libraries II: End-sequence libraries 

•  Target the start or end of transcripts. 
•  Source: End-enriched RNA 

– Fragmented then selected 
– Fragmented then enzymatically purified 

•  Uses: 

– Annotation of transcriptional start sites 
– Annotation of 3’ UTRs 
– Quantification and gene expression  
– Depth required 3-8 mill reads 
– Low quality RNA samples 



RNA-Seq libraries III: Small RNA libraries 

•  Source: size selected RNA 
•  Uses: miRNA, piRNA annotation and 

quantification 

– Short single end 30-50 bp reads 
– Depth: 5-10 mill reads 

Malonne	
  et	
  al.	
  CSHL	
  protocols,	
  2011	
  



When you need both annotation and quantification 

•  Attempt three replicates per condition 
•  Pool libraries to obtain ~15 mill reads per replicate 
•  Sequence using paired ends 
•  Analysis: 

– Merge replicate alignments for annotation 
– Split alignments for differential expression analysis 



RNA-Seq libraries: Summary 

m7G

Zn-based
fragmentation

Poly-A selected RNA

PolyA
selection

Library Construction

m7G (A)n

Full-length
RNA-Seq

(A)n
(A)n

m7G

m7G

P
P

P
P

P

P
P

P

(A)n
(A)n

m7G

m7G

(A)n
(A)n
(A)n

m7G

m7G

Exo-CAGE �·�HQG�6HT



ChIP-Seq libraries: 

•  Crosslinked, immunoprecipitated DNA 
•  DNA à sequence 
•  Uses:  

– Mapping nucleosomes (huge depth required)  
– Mapping histones with specific tails 
– Mapping transcription factor sites 
– Requires ~ 5-10 mill, at least 2-3 replicates, single 

end 



ChIP-Seq protocol  

Pu rify DNA 

End repair and
adapter ligation   

Cluster generation 

Sequencing on NGS platforms 

Histones

Histone tails

Kidder	
  et	
  al.	
  Nature	
  Immunology,	
  2011	
  



CLIP-Seq libraries and ribosome footprinting: 

•  Crosslinked, immunoprecipitated RNA 
•  RNAà cDNA àsequence 
•  Uses:  

– Mapping RNA/protein interactions 
– Find miRNA regulated transcripts 
– Mapping translation rates 
– Annotate ORFs Ribosomal	
  profiling 

CLIP-Seq 



	
  

• 	
  Read	
  mapping	
  (alignment):	
  Placing	
  short	
  reads	
  in	
  the	
  
genome	
  

• 	
  Reconstruc-on:	
  Finding	
  the	
  regions	
  that	
  originated	
  the	
  reads	
  

• 	
  Quan-fica-on:	
  	
  

• 	
  Assigning	
  scores	
  to	
  regions	
  

• 	
  Finding	
  regions	
  that	
  are	
  differen-ally	
  represented	
  
between	
  two	
  or	
  more	
  samples.	
  

Analysis of counting data requires 3 broad tasks 



Sequenced	
  
reads	
  cells	
  

sequencer	
  

cDNA	
  
ChIP	
  

genome	
  

read	
  
coverage	
  

Alignment	
  

Once sequenced the problem becomes computational 



	
  

• 	
  Read	
  mapping	
  (alignment):	
  Placing	
  short	
  reads	
  in	
  the	
  
genome	
  

• 	
  Reconstruc-on:	
  Finding	
  the	
  regions	
  that	
  originated	
  the	
  reads	
  

• 	
  Quan-fica-on:	
  	
  

• 	
  Assigning	
  scores	
  to	
  regions	
  

• 	
  Finding	
  regions	
  that	
  are	
  differen-ally	
  represented	
  
between	
  two	
  or	
  more	
  samples.	
  

Analysis of counting data requires 3 broad tasks 



Trapnell,	
  Salzberg,	
  Nature	
  Biotechnology	
  2009	
  



Spaced seed alignment – Hashing the genome 

G:	
  	
  accgattgactgaatggccttaaggggtcctagttgcgagacacatgctgaccgtgggattgaatg…… 

accg attg **** ****  
accg **** actg **** 
accg **** **** aatg 

**** attg actg **** 
**** attg **** aatg 
**** **** actg aatg 

0	
  
0	
  

0,45	
  
0	
  
0	
  
0	
  

1	
  
1	
  
1	
  
1	
  
1	
  
1	
  

ccga ttga **** ****  
ccga **** ctga **** 
ccga **** **** atgg 

**** ttga ctga **** 
**** ttga **** atgg 
**** **** ctga atgg 

Store	
  spaced	
  seed	
  posi-ons	
  



Spaced seed alignment – Mapping reads 

G:	
  	
  accgattgactgaatggccttaaggggtcctagttgcgagacacatgctgaccgtgggattgaatg…… 

q:	
  	
  accg atag accg aatg accg attg **** ****  
accg **** actg **** 
accg **** **** aatg 

**** attg actg **** 
**** attg **** aatg 
**** **** actg aatg 

0	
  
0	
  

0,45	
  
0	
  
0	
  
0	
  

1	
  
1	
  
1	
  
1	
  
1	
  
1	
  

ccga ttga **** ****  
ccga **** ctga **** 
ccga **** **** atgg 

**** ttga ctga **** 
**** ttga **** atgg 
**** **** ctga atgg 

✕	
  

✓	
  
✕	
  

✕	
  
✕	
  
✕	
  

✕	
  
✕	
  

✕	
  
✕	
  
✕	
  

✕	
  

accgattgactgaatg	
   accgtgggattgaatg	
  

2	
  missmatches	
   5	
  missmatches	
  

Report	
  posi-on	
  0	
  	
  

qMS = −10 log10 P(read is wrongly mapped)
But,	
  how	
  confidence	
  are	
  we	
  in	
  the	
  placement?	
  



Mapping quality 

qMS = −10 log10 P(read is wrongly mapped)What	
  does	
  	
   mean?	
  

Lets	
  compute	
  the	
  probability	
  the	
  read	
  originated	
  at	
  genome	
  posi-on	
  i	
  

q:	
  	
  accg atag accg aatg 

qs	
  :	
  	
  30 40 25 30  30 20 10 20  40 30 20 30  40 40 30 25 

qs[k] = −10 log10 P(sequencing error at base k),	
  the	
  PHRED	
  score.	
  Equivalently:	
  

P(q |G,i) = P(qjgood call) P(qjbad call)
j  missmatch
∏

j  match
∏ ≈ P(qjbad call)

j  missmatch
∏

So	
  the	
  probability	
  that	
  a	
  read	
  originates	
  from	
  a	
  given	
  genome	
  posi-on	
  i	
  is:	
  

In	
  our	
  example	
  
P(q |G,0) = (1−10−3)6 (1−10−4 )4 (1−10−2.5 )2 (1−10−2 )2"# $% 10

−110−2"# $% = [0.97]*[0.001] ≈ 0.001

Finding regions of evolutionary constraint

Manuel Garber

January 12, 2013

> s1 = c(100, 200, 300, 400, 10)
> s2 = c(50, 100, 150, 200, 500)
>norm=sum(s2)/sum(s1)
>plot(s2, s1⇤norm,log=”xy”)

>abline(a = 0, b = 1)

>g = sqrt(s1 ⇤ s2t)
>s1n = s1/median(s1/g); s2n = s2/median(s2/g)
>plot(s2n, s1n,log=”xy”)

>abline(a = 0, b = 1)

P (sequencing error at base k) = 10

� qs[k]
10

1



Mapping quality 

qMS = −10 log10 P(read is wrongly mapped)What	
  we	
  want	
  to	
  es-mate	
  is	
  	
  

That	
  is,	
  the	
  posterior	
  probability,	
  the	
  probability	
  	
  that	
  the	
  region	
  star-ng	
  at	
  i	
  was	
  
sequenced	
  given	
  that	
  we	
  observed	
  the	
  read	
  q:	
  

P(i |G,q) = P(q |G,i)P(i |G)
P(q |G)

=
P(q |G,i)P(i |G)

P(q |G, j)
j
∑

Fortunately,	
  there	
  are	
  efficient	
  ways	
  to	
  approximate	
  this	
  probability	
  (see	
  
Li,	
  H	
  genome	
  Research	
  2008,	
  for	
  example)	
  

qMS = −10 log10 (1− P(i |G,q))



Considerations 

•  Trade-off between sensitivity, speed and memory 

– Smaller seeds allow for greater mismatches at the 
cost of more tries 

– Smaller seeds result in a smaller tables (table size 
is at most 4k), larger seeds increase speed (less 
tries, but more seeds) 



Trapnell,	
  Salzberg,	
  Nature	
  Biotechnology	
  2009	
  



Considerations 

•  BWT-based algorithms rely on perfect matches for speed 

•  When dealing with mismatches, algorithms “backtrack” when 
the alignment extension fails. 

•  Backtracking is expensive 

•  As read length increases novel algorithms are required 



RNA-Seq Read mapping 
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Short	
  indels	
   Use	
  base	
  qual	
  

Maq	
   No	
   YES	
  

RMAP	
   Yes	
   YES	
  

SeqMap	
   Yes	
   NO	
  

SHRiMP	
   Yes	
   NO	
  

Use	
  Base	
  qual	
  

BWA	
   YES	
  

Bow-e	
   NO	
  

Stampy*	
   YES	
  

Bow-e2*	
   (NO)	
  

Seed-­‐extend	
  
	
  

BWT	
  
	
  

*Stampy	
  is	
  a	
  hybrid	
  approach	
  which	
  first	
  uses	
  BWA	
  to	
  map	
  reads	
  then	
  uses	
  seed-­‐extend	
  only	
  to	
  
reads	
  not	
  mapped	
  by	
  BWA	
  
*Bow>e2	
  breaks	
  reads	
  into	
  smaller	
  pieces	
  and	
  maps	
  these	
  “seeds”	
  using	
  a	
  BWT	
  genome.	
  	
  
	
  

Short read mapping software for ChIP-Seq 



Second, unmapped reads are split into shorter segments and aligned 
independently. The genomic regions surrounding the mapped read 
segments are then searched for possible spliced connections. Exon-
first aligners are very efficient when only a small portion of the reads 
require the more computationally intensive second step. Alternatively, 
seed-extend methods8,50,51 such as ‘genomic short-read nucleotide 
alignment program’ (GSNAP)50 and ‘computing accurate spliced 
alignments’ (QPALMA)51 break reads into short seeds, which are 
placed onto the genome to localize the alignment (Fig. 1b). Candidate 
regions are then examined with more sensitive methods, such as the 
Smith-Waterman algorithm51 or iterative extension and merging of 
initial seeds8,50 to determine the exact spliced alignment for the read 
(Fig. 1b). Many of these alignment methods47–51 also support paired-
end read mapping, which increases alignment specificity.

Exon-first approaches are faster and require fewer computational 
resources compared to seed-extend methods. For example, a seed-
extend method (GSNAP) takes ~8  longer (~340 CPU hours) than 
an exon-first method (TopHat) resulting in ~1.5 more spliced 
reads (Supplementary Table 1). However, the biological meaning 
of these additional splice junctions has not been demonstrated.

Exon-first approaches can miss spliced alignments for reads that 
also map to the genome contiguously, as can occur for genes that 
have retrotransposed pseudogenes (Fig. 1c). In contrast, seed-
extend methods evaluate spliced and unspliced alignments in the 
same step, which reduces this bias toward unspliced alignments, 
yielding the best placement of each read. Seed-extend methods per-
form better than exon-first approaches when mapping reads from 
polymorphic species52.

Transcriptome reconstruction
Defining a precise map of all transcripts and isoforms that are 
expressed in a particular sample requires the assembly of these reads 
or read alignments into transcription units. Collectively, we refer to 
this process as transcriptome reconstruction. Transcriptome recon-
struction is a difficult computational task for three main reasons. 

one seed in a read will perfectly match the reference. Each seed is used 
to narrow candidate regions where more sensitive methods (such as 
Smith-Waterman) can be applied to extend seeds to full alignments. 
In contrast, the second approach includes Burrows-Wheeler trans-
form methods39–41 such as Burrows-Wheeler alignment (BWA)40 
and Bowtie39, which compact the genome into a data structure that 
is very efficient when searching for perfect matches42,43. When allow-
ing mismatches, the performance of Burrows-Wheeler transform 
methods decreases exponentially with the number of mismatches as 
they iteratively perform perfect searches39–41.

Unspliced read aligners are ideal for mapping reads against a ref-
erence cDNA databases for quantification purposes5,20,26,44,45. If 
the exact reference transcriptome is available, Burrows-Wheeler 
methods are faster than seed-based methods (in our example, 
~15  faster requiring ~110 central processing unit (CPU) hours) 
and have small differences in alignment specificity (~10% lower) 
Supplementary Table 1). In contrast, when only the reference 
transcriptome of a distant species is available, ‘seed methods’ can 
result in a large increase in sensitivity. For example, using the rat 
transcriptome as a reference for mouse reads resulted in 40% more 
reads aligned at a cost of ~7  more compute time, yielding a compa-
rable alignment success rate as when aligning to the actual reference 
mouse transcriptome (Supplementary Table 1 and Supplementary  
Figs. 1 and 2). Similarly, an increase in sensitivity using seed meth-
ods has been observed when aligning reads to polymorphic regions 
in a species for quantification of allele-specific gene expression46.

Unspliced read aligners are limited to identifying known exons and 
junctions, and do not allow for the identification of splicing events 
involving new exons. Alternatively, reads can be aligned to the entire 
genome, including intron-spanning reads that require large gaps for 
proper placement. Several methods exist, collectively referred to as 
‘spliced aligners’, that fall into two main categories: ‘exon first’ and ‘seed 
and extend’. Exon-first47–49 methods such as MapSplice49, SpliceMap47 
and TopHat48 use a two-step process. First, they map reads con-
tinuously to the genome using the unspliced read aligners (Fig. 1a). 

a b

k

c

Figure 1 | Strategies for gapped alignments of 
RNA-seq reads to the genome. (a,b) An illustration 
of reads obtained from a two-exon transcript; 
black and gray indicate exonic origin of reads. 
Exon-first methods (a) map full, unspliced reads 
(exonic reads), and remaining reads are divided 
into smaller pieces and mapped to the genome. 
An extension process extends mapped pieces to 
find candidate splice sites to support a spliced 
alignment. Seed-and-extend methods (b) store a 
map of all small words (k-mers) of similar size in 
the genome in an efficient lookup data structure; 
each read is divided into k-mers, which are mapped 
to the genome via the lookup structure. Mapped 
k-mers are extended into larger alignments, 
which may include gaps flanked by splice sites. 
(c) A potential disadvantage of exon-first 
approaches illustrated for a gene and its associated 
retrotransposed pseudogene. Mismatches 
compared to the gene sequence are indicated in 
red. Exonic reads will map to both the gene and 
its pseudogene, preferring gene placement owing 
to lack of mutations, but a spliced read could 
be incorrectly assigned to the pseudogene as it 
appears to be exonic, preventing higher-scoring 
spliced alignments from being pursued.
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Seed-extend spliced alignment (e.g. GSNAP) 



Second, unmapped reads are split into shorter segments and aligned 
independently. The genomic regions surrounding the mapped read 
segments are then searched for possible spliced connections. Exon-
first aligners are very efficient when only a small portion of the reads 
require the more computationally intensive second step. Alternatively, 
seed-extend methods8,50,51 such as ‘genomic short-read nucleotide 
alignment program’ (GSNAP)50 and ‘computing accurate spliced 
alignments’ (QPALMA)51 break reads into short seeds, which are 
placed onto the genome to localize the alignment (Fig. 1b). Candidate 
regions are then examined with more sensitive methods, such as the 
Smith-Waterman algorithm51 or iterative extension and merging of 
initial seeds8,50 to determine the exact spliced alignment for the read 
(Fig. 1b). Many of these alignment methods47–51 also support paired-
end read mapping, which increases alignment specificity.

Exon-first approaches are faster and require fewer computational 
resources compared to seed-extend methods. For example, a seed-
extend method (GSNAP) takes ~8  longer (~340 CPU hours) than 
an exon-first method (TopHat) resulting in ~1.5 more spliced 
reads (Supplementary Table 1). However, the biological meaning 
of these additional splice junctions has not been demonstrated.

Exon-first approaches can miss spliced alignments for reads that 
also map to the genome contiguously, as can occur for genes that 
have retrotransposed pseudogenes (Fig. 1c). In contrast, seed-
extend methods evaluate spliced and unspliced alignments in the 
same step, which reduces this bias toward unspliced alignments, 
yielding the best placement of each read. Seed-extend methods per-
form better than exon-first approaches when mapping reads from 
polymorphic species52.

Transcriptome reconstruction
Defining a precise map of all transcripts and isoforms that are 
expressed in a particular sample requires the assembly of these reads 
or read alignments into transcription units. Collectively, we refer to 
this process as transcriptome reconstruction. Transcriptome recon-
struction is a difficult computational task for three main reasons. 

one seed in a read will perfectly match the reference. Each seed is used 
to narrow candidate regions where more sensitive methods (such as 
Smith-Waterman) can be applied to extend seeds to full alignments. 
In contrast, the second approach includes Burrows-Wheeler trans-
form methods39–41 such as Burrows-Wheeler alignment (BWA)40 
and Bowtie39, which compact the genome into a data structure that 
is very efficient when searching for perfect matches42,43. When allow-
ing mismatches, the performance of Burrows-Wheeler transform 
methods decreases exponentially with the number of mismatches as 
they iteratively perform perfect searches39–41.

Unspliced read aligners are ideal for mapping reads against a ref-
erence cDNA databases for quantification purposes5,20,26,44,45. If 
the exact reference transcriptome is available, Burrows-Wheeler 
methods are faster than seed-based methods (in our example, 
~15  faster requiring ~110 central processing unit (CPU) hours) 
and have small differences in alignment specificity (~10% lower) 
Supplementary Table 1). In contrast, when only the reference 
transcriptome of a distant species is available, ‘seed methods’ can 
result in a large increase in sensitivity. For example, using the rat 
transcriptome as a reference for mouse reads resulted in 40% more 
reads aligned at a cost of ~7  more compute time, yielding a compa-
rable alignment success rate as when aligning to the actual reference 
mouse transcriptome (Supplementary Table 1 and Supplementary  
Figs. 1 and 2). Similarly, an increase in sensitivity using seed meth-
ods has been observed when aligning reads to polymorphic regions 
in a species for quantification of allele-specific gene expression46.

Unspliced read aligners are limited to identifying known exons and 
junctions, and do not allow for the identification of splicing events 
involving new exons. Alternatively, reads can be aligned to the entire 
genome, including intron-spanning reads that require large gaps for 
proper placement. Several methods exist, collectively referred to as 
‘spliced aligners’, that fall into two main categories: ‘exon first’ and ‘seed 
and extend’. Exon-first47–49 methods such as MapSplice49, SpliceMap47 
and TopHat48 use a two-step process. First, they map reads con-
tinuously to the genome using the unspliced read aligners (Fig. 1a). 
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Figure 1 | Strategies for gapped alignments of 
RNA-seq reads to the genome. (a,b) An illustration 
of reads obtained from a two-exon transcript; 
black and gray indicate exonic origin of reads. 
Exon-first methods (a) map full, unspliced reads 
(exonic reads), and remaining reads are divided 
into smaller pieces and mapped to the genome. 
An extension process extends mapped pieces to 
find candidate splice sites to support a spliced 
alignment. Seed-and-extend methods (b) store a 
map of all small words (k-mers) of similar size in 
the genome in an efficient lookup data structure; 
each read is divided into k-mers, which are mapped 
to the genome via the lookup structure. Mapped 
k-mers are extended into larger alignments, 
which may include gaps flanked by splice sites. 
(c) A potential disadvantage of exon-first 
approaches illustrated for a gene and its associated 
retrotransposed pseudogene. Mismatches 
compared to the gene sequence are indicated in 
red. Exonic reads will map to both the gene and 
its pseudogene, preferring gene placement owing 
to lack of mutations, but a spliced read could 
be incorrectly assigned to the pseudogene as it 
appears to be exonic, preventing higher-scoring 
spliced alignments from being pursued.
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Exon-first spliced alignment ( TopHat) 



Short read mapping software for RNA-Seq 

Short	
  indels	
   Use	
  base	
  qual	
  

GSNAP	
   Yes	
   ?	
  

QPALMA	
   Yes	
   NO	
  

BLAT	
   Yes	
   NO	
  

Exon-­‐first	
  alignments	
  will	
  map	
  con>guous	
  first	
  	
  at	
  the	
  expense	
  of	
  spliced	
  hits	
  

Use	
  base	
  qual	
  

STAR	
   NO	
  

TopHat	
   NO	
  

Seed-­‐extend	
   Exon-­‐first	
  



The Broad Institute of MIT and Harvard 
The Broad Institute of MIT and Harvard 

The Broad Institute of MIT and Harvard 

A	
  desktop	
  applica-on	
  	
  

	
  for	
  the	
  visualiza-on	
  and	
  interac-ve	
  explora-on	
  

	
   	
  of	
  genomic	
  data	
  

IGV: Integrative Genomics Viewer 

Microarrays	
  
Epigenomics	
  

RNA-­‐Seq	
  
NGS	
  alignments	
  

Compara:ve	
  genomics	
  



Visualizing read alignments with IGV — RNASeq 

Gap	
  between	
  reads	
  spanning	
  exons	
  Strand	
  specific	
  library!	
  



Visualizing read alignments with IGV — zooming out 

RNA­Seq

K4me3 ChIP­Seq

PolII ChIPSeq

Cebeb ChIP­Seq

t

t



Mapping longer reads 

MiSeq	
  “Bench”	
  sequencer	
  
	
  ~15	
  Million	
  2x250	
  base	
  reads.	
  
Ideal	
  for	
  deep	
  annota>on	
  of	
  Targeted	
  RNA	
  
	
  
Large	
  number	
  of	
  expected	
  mismatches	
  
Given	
  sequencing	
  errors	
  (>1.5%)	
  +	
  SNPs	
  
expect	
  many	
  reads	
  with	
  >4	
  missmatches	
  	
  	
  
	
  

Short	
  (76b)	
  reads	
  

Long	
  (250b)	
  reads	
  

Longer,	
  reads	
  mapping	
  cannot	
  be	
  done	
  with	
  standard	
  BWT	
  based	
  aligners	
  	
  



How do “short” read aligners responded to read increase? 

•  Break reads into seeds (e.g. 16nt every 10nt) 
•  Use BWT or HashTable to find candidate positions 
•  Prioritize candidates 
•  Extend top candidates using classical alignment 

techniques. 

Aligner	
   Technique	
  

TopHat2	
  (Bow-e2)	
   BWT	
  

GSNAP	
   Hash	
  Table	
  

STAR	
   Suffix	
  (similar	
  to	
  BWT)	
  



	
  

• 	
  Read	
  mapping	
  (alignment):	
  Placing	
  short	
  reads	
  in	
  the	
  
genome	
  

• 	
  Reconstruc-on:	
  Finding	
  the	
  regions	
  that	
  originated	
  the	
  reads	
  

• 	
  Quan-fica-on:	
  	
  

• 	
  Assigning	
  scores	
  to	
  regions	
  

• 	
  Finding	
  regions	
  that	
  are	
  differen-ally	
  represented	
  
between	
  two	
  or	
  more	
  samples.	
  

Analysis of counting data requires 3 broad tasks 



What does significance means? 

•  RNA-Seq: The gene is expressed 
•  ChIP-Seq: Factor binds the region  
•  CLIP-Seq: Protein binds RNA region 
•  Ribosomal footprinting: 

– Transcript is translated 
– Ribosomes stalling at region 



Scripture	
  is	
  a	
  method	
  to	
  solve	
  this	
  general	
  ques>on	
  

Short	
  modifica-on	
  

Long	
  modifica-on	
  

Discon-nuous	
  data	
  

RNA

K4me1

K4me3

PolII

Cebpb

Stat1

Stat2

How do we find peaks? 



We	
  have	
  an	
  efficient	
  way	
  to	
  compute	
  read	
  count	
  p-­‐values	
  …	
  

α=0.05	
  

Permuta-on	
  

Poisson	
  

Our approach 



We need to correct for multiple hypothesis testing 

Expected ~150,000,000 bases 

The genome is large,  many things happen by chance 



Bonferroni	
  corrects	
  the	
  number	
  of	
  hits	
  but	
  misses	
  many	
  true	
  hits	
  because	
  its	
  too	
  
conserva>ve	
  –	
  How	
  do	
  we	
  get	
  more	
  power?	
  

Correction factor 3,000,000,000 

Bonferroni correction is way to conservative 



Given	
  a	
  region	
  of	
  size	
  w	
  and	
  an	
  observed	
  read	
  
count	
  n.	
  What	
  is	
  the	
  probability	
  that	
  one	
  or	
  
more	
  of	
  the	
  3x109	
  regions	
  of	
  size	
  w	
  has	
  read	
  
count	
  >=	
  n	
  under	
  the	
  null	
  distribu-on?	
  
	
  
	
  

Count	
  distribu-on	
  (Poisson)	
  

Max	
  Count	
  distribu-on	
  

α=0.05	
  

We	
  could	
  go	
  back	
  to	
  our	
  permuta-ons	
  and	
  
compute	
  an	
  FWER:	
  max	
  of	
  the	
  genome-­‐wide	
  
distribu>ons	
  of	
  same	
  sized	
  region)à	
  
but	
  really	
  really	
  really	
  slow!!!	
  
	
  

αFWER=0.05	
  

Controlling FWER  



Thankfully,	
  the	
  Scan	
  Distribu:on	
  computes	
  a	
  
closed	
  form	
  for	
  this	
  distribu-on.	
  
	
  
ACCOUNTS	
  for	
  dependency	
  of	
  overlapping	
  
windows	
  thus	
  more	
  powerful!	
  
	
  

α=0.05	
   αFWER=0.05	
  

Poisson	
  distribu-on	
  

Scan	
  distribu-on	
  

• 	
  Is	
  the	
  observed	
  number	
  of	
  read	
  counts	
  over	
  our	
  region	
  of	
  interest	
  high?	
  	
  
• 	
  Given	
  a	
  set	
  of	
  Geiger	
  counts	
  across	
  a	
  region	
  find	
  clusters	
  of	
  high	
  radioac-vity	
  
• 	
  Are	
  there	
  -me	
  intervals	
  where	
  assembly	
  line	
  errors	
  are	
  high?	
  

Scan distribution, an old problem 



RPKM = 109
#reads

length⇥ TotalReads

P (k|�, N, w, L) = 1� Fp(k � 1|�, w)e�
k�w�)

k �(T�w)P (k�1|�w)

P (k� 1|�w) is the Poisson probability of observing k� 1 counts given an
expected count of �w

and
Fp(k�1|�w) is the Poisson probability of observing k�1 or fewer counts

given an expectation of �w reads

1

The	
  probability	
  of	
  observing	
  k	
  reads	
  on	
  a	
  window	
  of	
  size	
  w	
  in	
  a	
  genome	
  	
  of	
  size	
  L	
  
given	
  a	
  total	
  of	
  N	
  reads	
  can	
  be	
  approximated	
  by	
  (Alm	
  1983):	
  

where	
  

The	
  scan	
  distribu>on	
  gives	
  a	
  	
  computa>onally	
  very	
  efficient	
  way	
  to	
  
es>mate	
  the	
  FWER	
  	
  

RPKM = 109
#reads

length⇥ TotalReads

P (k|�w,N,L) ⇤ 1� Fp(k � 1|�w)e�
k�w�

k �(T�w)P (k�1|�w)

P (k� 1|�w) is the Poisson probability of observing k� 1 counts given an
expected count of �w

and
Fp(k�1|�w) is the Poisson probability of observing k�1 or fewer counts

given an expectation of �w reads

1

Scan distribution for a Poisson process 



By utilizing the dependency of overlapping windows we have greater 
power, while still controlling the same genome-wide false positive rate. 



Example	
  :	
  PolII	
  ChIP	
  

Significant	
  windows	
  using	
  the	
  FWER	
  
corrected	
  p-­‐value	
  

Merge	
  

Trim	
  

Segmenta-on	
  method	
  for	
  con-guous	
  regions 

But,	
  which	
  window?	
  



We use multiple windows 

•  Small windows detect small punctuate regions. 
•  Longer windows can detect regions of moderate enrichment 

over long spans. 
•  In practice we scan different windows, finding significant ones 

in each scan. 
•  In practice, it helps to use some prior information in picking 

the windows although globally it might be ok. 
 



Applying	
  Scripture	
  to	
  a	
  variety	
  of	
  ChIP-­‐Seq	
  data 

1Kb1Kb

100	
  bp	
  windows	
  	
  200,	
  500	
  &	
  1000	
  bp	
  windows	
  



Short	
  modifica-on	
  

Long	
  modifica-on	
  

Discon-nuous	
  data:	
  RNA-­‐Seq	
  to	
  find	
  gene	
  
structures	
  for	
  this	
  gene-­‐like	
  regions	
  

P	



P	


Using	
  chroma-n	
  signatures	
  we	
  discovered	
  hundreds	
  of	
  puta-ve	
  genes.	
  	
  
What	
  is	
  their	
  structure?	
  

Can we identify enriched regions across different libraries? 



Scripture	
  for	
  RNA-­‐Seq:	
  	
  
Extending	
  segmenta-on	
  to	
  discon-guous	
  regions	
  



10s	
  kb	
  100s	
  bp	
  

RNA (1000 b)

AAAAAAA

Genome
(100000 bp)

RNA (1000 b)

AAAAAAA

Genome
(100000 bp)

RNA (1000 b)

AAAAAAA

Genome
(100000 bp)

Challenges:	
  
•  Genes	
  exist	
  at	
  many	
  different	
  expression	
  levels,	
  spanning	
  several	
  orders	
  of	
  

magnitude.	
  	
  
•  Reads	
  originate	
  from	
  both	
  mature	
  mRNA	
  (exons)	
  and	
  immature	
  mRNA	
  

(introns)	
  and	
  it	
  can	
  be	
  problema-c	
  to	
  dis-nguish	
  between	
  them.	
  	
  
•  Reads	
  are	
  short	
  and	
  genes	
  can	
  have	
  many	
  isoforms	
  making	
  it	
  challenging	
  to	
  

determine	
  which	
  isoform	
  produced	
  each	
  read.	
  

Transcript reconstruction problem as a segmentation problem 



Sta>s>cal	
  segmenta>on	
  of	
  chroma>n	
  modifica>ons	
  uses	
  con>nuity	
  of	
  
segments	
  to	
  increase	
  power	
  for	
  interval	
  detec>on	
  

If	
  we	
  know	
  the	
  connec>vity	
  of	
  fragments,	
  we	
  can	
  increase	
  our	
  power	
  to	
  detect	
  
transcripts	
  

RNA-Seq 

Scripture:  Genome-guided transcriptome reconstruction 



intron	
  

Exon	
  junc>on	
  spanning	
  reads	
  provide	
  the	
  connec>vity	
  informa>on.	
  

Longer (76) reads increased number of junction reads 



Exon-­‐exon	
  junc-ons	
  

Alterna-ve	
  isoforms	
  

Aligned	
  read	
  
Gap	
  

Protein	
  coding	
  gene	
  with	
  2	
  isoforms	
  

Read	
  coverage	
  

The power of spliced alignments 



Step	
  1:	
  Align	
  Reads	
  to	
  the	
  genome	
  allowing	
  gaps	
  flanked	
  by	
  splice	
  sites	
  

The	
  “connec>vity	
  graph”	
  connects	
  all	
  bases	
  that	
  are	
  directly	
  connected	
  within	
  the	
  
transcriptome	
  

Step	
  2:	
  Build	
  an	
  oriented	
  connec-vity	
  graph	
  using	
  every	
  spliced	
  alignment	
  
and	
  orien-ng	
  edges	
  using	
  the	
  flanking	
  splicing	
  mo-fs	
  

genome	
  

Statistical reconstruction of the transcriptome  



Step	
  3:	
  Iden-fy	
  “segments”	
  across	
  the	
  graph	
  

Step	
  4:	
  Find	
  significant	
  segments	
  

Statistical reconstruction of the transcriptome  



Short	
  modifica-on	
  

Long	
  modifica-on	
  

Discon-nuous	
  data	
  

P	



P	



P	



Are	
  we	
  really	
  sure	
  reconstruc>ons	
  are	
  complete?	
  

Can we identify enriched regions across different data types? 



RNA-Seq data is incomplete for comprehensive annotation 

Library	
  construc>on	
  can	
  help	
  provide	
  more	
  informa>on.	
  More	
  on	
  this	
  later	
  



Applying	
  scripture:	
  Annota-ng	
  the	
  mouse	
  transcriptome	
  



Mouse Cell 
Types 

Sequence Reconstruct 

Reconstructing the mouse transcriptome (45M paired reads) 



Even at low expression (20th percentile), we have: 
average coverage of transcript is ~95% and 60% have full coverage 

20th	
  percen>le	
  

20th	
  percen>le	
  

Sensitivity across expression levels  



1,804 

1,310 

588 

3,137	
  

2,477	
  

903	
  

3	
  cell	
  types	
  ES	
  cells	
  

Novel variation in protein-coding genes 



~85% overlap K4me3 

Novel variation in protein-coding genes 



~50% contain polyA motif 
Compared to ~6% for random 

Novel variation in protein-coding genes 



~80% retain ORF 

Novel variation in protein-coding genes 



Class 2: Large Intergenic ncRNA (lincRNA) 

Class 1: Overlapping ncRNA 

Class 3: Novel protein-coding genes 

What about novel genes? 



201	
   446	
  

3	
  cell	
  types	
  ES	
  cells	
  

Class 1: Overlapping ncRNA 



SiPhy – (Garber et al. 
Bioinformatics,  2009) 

Conserva>on	
  High	
   Low	
  

Overlapping	
  ncRNAs	
  show	
  liBle	
  evolu>onary	
  conserva>on	
  

Overlapping ncRNAs:  low evolutionary conservation 



Class 2: Large Intergenic ncRNA (lincRNA) 

Class 1: Overlapping ncRNA 

Class 3: Novel protein-coding genes 

RNA (non-protein coding) Genes 



~500	
   ~1500	
  

3	
  cell	
  types	
  ES	
  cells	
  

Class 2: Intergenic ncRNA (lincRNA) 



>95% do not encode proteins 

ORF	
  Length	
   CSF	
  (ORF	
  Conserva-on)	
  

lincRNAs: How do we know they are non-coding? 



Conserva>on	
  High	
   Low	
  

lincRNAs:  under slight constraint 



What about novel coding genes? 

Class 2: Large Intergenic ncRNA (lincRNA) 

Class 1: Overlapping ncRNA 

Class 3: Novel protein-coding genes 

~40 novel protein-coding genes 



If there is no reference genome! 
Genome independent methods 



Cufflinks	
  
Sripture	
  

Abyss	
  
Trinity	
  
Velvet	
  

Garber	
  et	
  al,	
  Nature	
  Methods	
  2011	
  

Rayan	
  Chikhi	
  
lecture	
  



Assembly approach 



Assembly approach 

But	
  this	
  challenging	
  already	
  with	
  DNA	
  and	
  RNA	
  has	
  many	
  different	
  challenges	
  



The Trinity approach: Localize 

Decompose	
  all	
  reads	
  into	
  overlapping	
  Kmers	
  (25-­‐mers)	
  

Extend	
  kmer	
  at	
  3’	
  end,	
  guided	
  by	
  coverage.	
  
G	
  

A	
  

T	
  

C	
  

Iden-fy	
  seed	
  kmer	
  as	
  most	
  abundant	
  Kmer,	
  ignoring	
  low-­‐complexity	
  kmers.	
  

GATTACA	
  
9	
  

Briah	
  Haas	
  



GATTACA	
  

G	
  

A	
  

4	
  

9	
  

5	
  

A	
  

T	
  

C	
  

G	
  

T	
  

C	
  

G	
  

A	
  

T	
  C	
  

1	
  

0	
  

4	
   1	
  

1	
  

1	
  
1	
  

1	
  

0	
  

0	
  

The	
  Trinity	
  approach:	
  Localize	
  

Briah	
  Haas	
  



GATTACA	
  

G	
  

A	
  

4	
  

9	
  

5	
  

A	
  
6	
  

A	
  
7	
  

The	
  Trinity	
  approach:	
  Localize	
  

Remove	
  assembled	
  kmers	
  from	
  catalog,	
  then	
  repeat	
  the	
  en-re	
  process.	
  

Report	
  con-g:	
  	
  	
  	
  	
  	
  ….AAGATTACAGA….	
  	
  

Briah	
  Haas	
  



RNA-­‐Seq	
  
reads	
  

Greedy	
  	
  
assembly	
  

Local	
  
de-­‐Bruijn	
  
graphs	
  

Parse	
  and	
  filter	
  
graph	
  into	
  
Transcripts	
  

	
  
	
  

Trinity approach: Assemble 

key:	
  localize	
  the	
  assembly	
  problem	
  

Group	
  similar	
  con-gs	
  



Pros and cons of each approach 

•  Transcript assembly methods are the obvious choice for 
organisms without a reference sequence. 

•  Genome-guided approaches are ideal for annotating high-
quality genomes and expanding the catalog of expressed 
transcripts and comparing transcriptomes of different cell 
types or conditions.  

•  Hybrid approaches for lesser quality or transcriptomes that 
underwent major rearrangements, such as in cancer cell. 

•  More than 1000 fold variability in expression leves makes 
assembly a harder problem for transcriptome assembly 
compared with regular genome assembly. 

•  Genome guided methods are very sensitive to alignment 
artifacts. 



RNA-Seq transcript reconstruction software 

Assembly	
   Genome	
  
Guided	
  

Oasis	
  (velvet)	
   Cufflinks	
  

Trans-­‐ABySS	
   Scripture	
  

Trinity	
  	
  



	
  

• 	
  Read	
  mapping	
  (alignment):	
  Placing	
  short	
  reads	
  in	
  the	
  
genome	
  

• 	
  Reconstruc-on:	
  Finding	
  the	
  regions	
  that	
  originated	
  the	
  reads	
  

• 	
  Quan-fica-on:	
  	
  

• 	
  Assigning	
  scores	
  to	
  regions	
  

• 	
  Finding	
  regions	
  that	
  are	
  differen-ally	
  represented	
  
between	
  two	
  or	
  more	
  samples.	
  

Analysis of counting data requires 3 broad tasks 



RNA-Seq quantification 

•  Is a given gene (or isoform) expressed? 
•  Is expression gene A > gene B? 
•  Is expression of gene A isoform a1 > gene A isoform a2? 
•  Given two samples is expression of gene A in sample 1 > 

gene A in sample 2? 



Quantification: only one isoform   

• Fragmenta-on	
  of	
  transcripts	
  results	
  in	
  length	
  bias:	
  longer	
  transcripts	
  have	
  higher	
  
counts	
  
• Different	
  experiments	
  have	
  different	
  yields.	
  Normaliza-on	
  is	
  key	
  for	
  cross	
  lane	
  
comparisons	
  

RPKM = 109
#reads

length� TotalReads

1

Reads	
  per	
  kilobase	
  of	
  exonic	
  
sequence	
  per	
  million	
  mapped	
  reads	
  
(Mortazavi	
  et	
  al	
  Nature	
  methods	
  2008)	
  

Complexity	
  increases	
  when	
  mul>ple	
  isoforms	
  exist	
  c

b
Isoform 1

Isoform 2

Isoform 1 Isoform 2
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Normalization depends on the application 

•  To compare within a sequence run (lane), RPKM 
accounts for length bias.  

•  RPKM is not optimal for cross experiment comparisons. 

– Different samples may have different 
compositions. 



Step 2: Different RNA compositions 

Cell	
  type	
  I	
   Cell	
  type	
  II	
  

Normalizing	
  by	
  total	
  reads	
  does	
  not	
  work	
  well	
  for	
  samples	
  with	
  very	
  
different	
  RNA	
  composi>on	
  



Step2: More robust normalization 

i	
  runs	
  through	
  all	
  n	
  genes	
  	
  
j	
  through	
  all	
  m	
  samples	
  
kij	
  is	
  the	
  observed	
  counts	
  for	
  gene	
  i	
  in	
  sample	
  j	
  
sj	
  Is	
  the	
  normaliza-on	
  constant	
  	
  

Alders	
  and	
  Huber,	
  2010	
  

Counts	
  for	
  gene	
  i	
  in	
  experiment	
  j 

Geometric	
  mean	
  for	
  that	
  gene	
  
	
  over	
  ALL	
  experiments 



Lets do an experiment (and do a short R practice) 

Finding regions of evolutionary constraint

Manuel Garber

January 11, 2013

> s1 = c(100, 200, 300, 400, 10)

> s2 = c(50, 100, 150, 200, 500)

>norm=sum(s2)/sum(s1)

>plot(s2, s1,log=”xy”,xlim=c(10, 600),ylim=c(10, 600)); abline(a = 0, b = 1)

>g = sqrt(s1 ⇤ s2t)
>s1n = s1/median(s1/g); s2n = s2/median(s2/g)

>plot(s2n, s1n,log=”xy”, xlim =c(1, 1000),ylim=c(1, 1000)); abline(a = 0, b = 1)

1

Similar	
  read	
  number,	
  	
  
one	
  transcript	
  many	
  fold	
  changed	
  

Finding regions of evolutionary constraint

Manuel Garber

January 11, 2013

> s1 = c(100, 200, 300, 400, 10)
> s2 = c(50, 100, 150, 200, 500)
>norm=sum(s2)/sum(s1)
>plot(s2, s1⇤norm,log=”xy”)

>abline(a = 0, b = 1)

>g = sqrt(s1 ⇤ s2t)
>s1n = s1/median(s1/g); s2n = s2/median(s2/g)
>plot(s2n, s1n,log=”xy”)

>abline(a = 0, b = 1)

1

Size	
  normaliza-on	
  results	
  in	
  2-­‐fold	
  
changes	
  in	
  all	
  transcripts	
  

1 2 5 10 20 50 200 500
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Finding regions of evolutionary constraint

Manuel Garber

January 11, 2013

> s1 = c(100, 200, 300, 400, 10)
> s2 = c(50, 100, 150, 200, 500)
>norm=sum(s2)/sum(s1)
>plot(s2, s1⇤norm,log=”xy”)

>abline(a = 0, b = 1)

>g = sqrt(s1 ⇤ s2t)
>s1n = s1/median(s1/g); s2n = s2/median(s2/g)
>plot(s2n, s1n,log=”xy”)

>abline(a = 0, b = 1)

1
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50
50
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n



But, how to compute counts for complex gene structures? 
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Three	
  popular	
  op>ons:	
  

Exon	
  intersec:on	
  model:	
  Score	
  cons-tuent	
  exons	
  

Exon	
  union	
  model:	
  Score	
  the	
  the	
  “merged”	
  transcript	
  

Transcript	
  expression	
  model:	
  Assign	
  reads	
  uniquely	
  to	
  
different	
  isoforms.	
  Not	
  a	
  trivial	
  problem!	
  



Quantification: read assignment method   
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Quantification with multiple isoforms 

How	
  do	
  we	
  define	
  the	
  gene	
  expression?	
  	
  
How	
  do	
  we	
  compute	
  the	
  expression	
  of	
  each	
  isoform?	
  



Computing gene expression 

Idea1:	
  RPKM	
  of	
  the	
  
cons-tu-ve	
  reads	
  
(Neuma,	
  Alexa-­‐Seq,	
  
Scripture)	
  



Computing gene expression — isoform deconvolution 



Computing gene expression — isoform deconvolution 

If	
  we	
  knew	
  the	
  origin	
  of	
  the	
  reads	
  we	
  could	
  compute	
  each	
  isoform’s	
  expression.	
  
The	
  gene’s	
  expression	
  would	
  be	
  the	
  sum	
  of	
  the	
  expression	
  of	
  all	
  its	
  isoforms.	
  

E	
  =	
  RPKM1	
  +	
  RPKM2	
  +	
  RPKM3	
  



Paired-end reads are easier to associate to isoforms 

P1	
  

P2	
   P3	
  

Isoform	
  1	
  

Isoform	
  2	
  

Isoform	
  3	
  

Paired	
  ends	
  increase	
  isoform	
  deconvolu-on	
  confidence	
  
•  P1	
  originates	
  from	
  isoform	
  1	
  or	
  2	
  but	
  not	
  3.	
  
•  P2	
  and	
  P3	
  originate	
  from	
  isoform	
  1	
  

Do	
  paired-­‐end	
  reads	
  also	
  help	
  iden>fying	
  reads	
  origina>ng	
  in	
  isoform	
  3?	
  



We can estimate the insert size distribution 
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Get	
  all	
  single	
  isoform	
  reconstruc-ons	
  



… and use it for probabilistic read assignment 

Isoform	
  1	
  

Isoform	
  2	
  

Isoform	
  3	
  

d1	
   d2	
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For	
  methods	
  such	
  as	
  MISO,	
  Cufflinks	
  and	
  RSEM,	
  it	
  is	
  cri>cal	
  to	
  have	
  paired-­‐end	
  data	
  



RNA-Seq quantification summary 

•  Counts must be estimated from ambiguous read/
transcript assignment. 

– Using simplified gene models (intersection) 
– Probabilistic read assignment 

•  Counts must be normalized 

– RPKM is sufficient for intra-library comparisons 
– More sophisticated normalizations to account for 

differences in library composition for inter-library 
comparisons. 



Programs to measure transcript expression 

Implemented	
  method	
  

Alexa-­‐seq	
   Gene	
  expression	
  using	
  intersec-on	
  model	
  

ERANGE	
   Gene	
  expression	
  using	
  union	
  model	
  

Scripture	
   Gene	
  expression	
  using	
  intersec-on	
  model	
  

Cufflinks	
   Transcript	
  deconvolu>on	
  by	
  solving	
  the	
  
maximum	
  likelihood	
  problem	
  

MISO	
   Transcript	
  deconvolu>on	
  by	
  solving	
  the	
  
maximum	
  likelihood	
  problem	
  

RSEM	
   Transcript	
  deconvolu>on	
  by	
  solving	
  the	
  
maximum	
  likelihood	
  problem	
  



Brian Haas, Rays Jiang, Carsten Russ 
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• 	
  Read	
  mapping	
  (alignment):	
  Placing	
  short	
  reads	
  in	
  the	
  
genome	
  

• 	
  Reconstruc-on:	
  Finding	
  the	
  regions	
  that	
  originated	
  the	
  reads	
  

• 	
  Quan-fica-on:	
  	
  

• 	
  Assigning	
  scores	
  to	
  regions	
  

• 	
  Finding	
  regions	
  that	
  are	
  differen-ally	
  represented	
  
between	
  two	
  or	
  more	
  samples.	
  

Analysis of counting data requires 3 broad tasks 



Differential Gene Expression Questions 

•  Finding	
  genes	
  that	
  have	
  different	
  expression	
  between	
  two	
  or	
  more	
  
condi-ons.	
  

•  Find	
  gene	
  with	
  isoforms	
  expressed	
  at	
  different	
  levels	
  between	
  two	
  
or	
  more	
  condi-ons.	
  

•  Find	
  differen-ally	
  used	
  slicing	
  events	
  

•  Find	
  alterna-vely	
  used	
  transcrip-on	
  start	
  sites	
  

•  Find	
  alterna-vely	
  used	
  3’	
  UTRs	
  



Differential gene expression using RNA-Seq 

• (Normalized)	
  read	
  counts	
  ßà	
  Hybridiza-on	
  intensity	
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Differential analysis strategies 
•  Use read counts 

– Standard Fisher exact test     

Condi>on	
  A	
   Condi>on	
  B	
  

Gene	
  A	
  reads	
   na	
   nb	
  
Rest	
  of	
  reads	
   Na	
   Nb	
  

– Model	
  read	
  counts	
  (Poisson,	
  nega-ve	
  binomial)	
  
and	
  test	
  whether	
  models	
  are	
  dis-nct	
  

– Use	
  empirical	
  approaches	
  that	
  do	
  not	
  rely	
  on	
  
parametric	
  assump-ons	
  (more	
  on	
  this	
  later)	
  



Poisson model does not work   

Biological	
  variance	
  does	
  not	
  follow	
  a	
  Poisson	
  model	
  

Adapted	
  from	
  Anders,	
  2010	
  



Because	
  of	
  overdisperssion	
  DESeq	
  and	
  Cufflinks	
  uses	
  a	
  Nega-ve	
  binomial	
  	
  
to	
  model	
  read	
  counts	
  	
  

Given	
  observed	
  counts	
  for	
  two	
  samples	
  in	
  replicates	
  

DESeq	
  tests	
  the	
  null	
  hypothesis	
  that	
  all	
  counts	
  are	
  sampled	
  from	
  the	
  same	
  
distribu-on	
  

Using a parametric model (DESeq, Cufflinks) 



Cufflinks differential isoform usage  

Let	
  a	
  gene	
  G	
  have	
  n	
  isoforms	
  and	
  let	
  p1,	
  …	
  ,	
  pn	
  the	
  es-mated	
  frac-on	
  of	
  expression	
  of	
  
each	
  isoform.	
  
	
  
Call	
  this	
  a	
  the	
  isoform	
  expression	
  distribu-on	
  P	
  for	
  G	
  
	
  
Given	
  two	
  samples	
  the	
  differen-al	
  isoform	
  usage	
  amounts	
  to	
  determine	
  whether	
  	
  
H0:	
  P1	
  =	
  P2	
  or	
  H1:	
  P1	
  !=	
  P2	
  are	
  true.	
  
	
  
To	
  compare	
  distribu-ons	
  Cufflinks	
  u-lizes	
  an	
  informa-on	
  content	
  based	
  metric	
  of	
  how	
  
different	
  two	
  distribu-ons	
  are	
  called	
  the	
  Jensen-­‐Shannon	
  divergence:	
  

26 C Trapnell et al.

It is has been noted that the power of di�erential expression tests in RNA-Seq depend
on the length of the transcripts being tested, because longer transcripts accumulate more
reads [18]. This means that the results we report are biased towards discovering longer
di�erentially expressed transcripts and genes.

5.3. Quantifying transcriptional and post-transcriptional overloading. In order
to infer the extent of di�erential promoter usage, we decided to measure changes in
relative abundances of primary transcripts of single genes. Similarly, we investigated
changes in relative abundances of transcripts grouped by TSS in order to infer di�erential
splicing. These inferences required two ingredients:

(1) A metric on probability distributions (derived from relative abundances).
(2) A test statistic for assessing significant changes in di�erential promoter usage

and splicing as measured using the metric referred to above.

In order to address the first requirement, namely a metric on probability distributions,
we turned to an entropy-based metric. This was motivated by the methods in [21] where
tests for di�erences in relative isoform abundances were performed to distinguish cancer
cells from normal cells. We extend this approach to be able to test for relative isoform
abundance changes among multiple experiments in RNA-Seq.

Definition 6 (Entropy). The entropy of a discrete probability distribution p = (p1, . . . , pn)
(0 ⇥ pi ⇥ 1 and

⇤n
i=1 pi = 1) is

(46) H(p) = �
n⌅

i=1

pilogpi.

If pi = 0 for some i the value of pilogpi is taken to be 0.

Definition 7 (The Jensen-Shannon divergence). The Jensen-Shannon divergence of m
discrete probability distributions p1, . . . , pm is defined to be:

(47) JS(p1, . . . , pm) = H

�
p1 + · · · + pm

m

⇥
�

⇤m
j=1 H(pj)

m
.

In other words, the Jensen-Shannon divergence of a set of probability distributions is
the entropy of their average minus the average of their entropies.

In the case where m = 2, we remark that the Jensen-Shannon divergence can also
be described in terms of the Kullback-Leibler divergence of two discrete probability
distributions. If we denote Kullback-Leibler divergence by

(48) D(p1⇤p2) =
⌅

i

p1
i log

p1
i

p2
i

,

then

(49) JS(p1, p2) =
1

2
D(p1⇤m) +

1

2
D(p2⇤m)

Nature Biotechnology: doi:10.1038/nbt.1621
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The	
  square	
  root	
  of	
  the	
  JS	
  distributes	
  normal.	
  



RNA-Seq differential expression software 

Underlying	
  model	
   Notes	
  

DegSeq	
   Normal.	
  Mean	
  and	
  variance	
  
es-mated	
  from	
  replicates	
  

Works	
  directly	
  from	
  
reference	
  transcriptome	
  
and	
  read	
  alignment	
  

EdgeR	
   Nega-ve	
  Bionomial	
   Gene	
  read	
  counts	
  table	
  

DESeq	
   Nega-ve	
  Bionomial	
   Gene	
  read	
  counts	
  table	
  

Cufflinks	
   Poisson	
  Nega-ve	
  Bionomial	
   Works	
  directly	
  from	
  the	
  
alignments	
  

Myrna	
   Empirical	
   Sequence	
  reads	
  and	
  
reference	
  transcriptome	
  



•  Goal: Routinely profile hundreds of samples 
•  Why? 

– Human variability in health and disease 
–  Perturbation studies  
– Clinical applications of expression profiling 

•  Current costs 
– Afffy ~$300-$400/sample 
–  Illumina bead arrays $150/sample 
– RNA-Seq (20 mill reads) ~$400-$500/sample ($350 in 

sequencing) 
•  RNA-Seq disadvantages 

– Complex analysis 
–  Length bias 

The quest for inexpensive expression assays 



Our typical pipeline (e.g. RNA-Seq) 

Upload	
  your	
  	
  
sequence	
  data	
  (fastq)	
   Make	
  report	
  of	
  quality	
  metrics	
  

Align	
  to	
  the	
  ribosome	
  (Bow-e)	
   Output	
  ribosomal	
  contamina-on	
  
metrics	
  report	
  

Align	
  remaining	
  reads	
  to	
  
genome	
  (TopHat)	
  

Produce	
  RNA-­‐Seq	
  report	
  
%	
  aligned,	
  %	
  intergenic,	
  %	
  exonic,	
  
%	
  UTR	
  

Produce	
  IGV/UCSC	
  friendly	
  files	
  

Quan-fy	
  transcriptome	
   Produce	
  a	
  table	
  with	
  normalized	
  
expression	
  values	
  

Call	
  differen-ally	
  expressed	
  
genes	
  	
  

(if	
  mul-ple	
  samples)	
  

Report	
  pairwise	
  significant	
  genes	
  
that	
  are	
  differen-ally	
  expressed	
  



Final considerations on quantification 

•  Using different libraries: 

– Targeting the 3’ end  
– Targeting 5’ end 

•  What depth do we really need? 

Alper	
  Kucukural	
  
Sabah	
  Kadri	
  
Maxim	
  Artyomov	
  



RNA-Seq libraries: Summary 

m7G

Zn-based
fragmentation

Poly-A selected RNA

PolyA
selection

Library Construction
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Robustness to low depth: Transcripts detected 
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RSEM/DESeq: 15 mill reads in worm  
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RSEM/DESeq: 10 mill reads in worm  
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RSEM/DESeq: 7.5 mill reads in worm  



RSEM/DESeq: 5 mill reads in worm  
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RSEM/DESeq: 2.5 mill reads in worm  
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RSEM/DESeq: 1 mill reads in worm  
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Robustness of DGE to low depth 
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Final considerations: The steps of Sequencing analysis 

•  Filter reads (fastq file) by removing adapter, splitting barcodes.  
–  Evaluate overall quality, look for drop in quality at 

ends. Trim reads if ends are of low quality  
•  Alignment to the genome 

– Use transcriptome if available 
–  Filter out likely PCR duplicates (reads that align to the 

same place in the genome 
–  Evaluate ribosomal contamination 
– What percent of reads aligned 

•  Reconstruct(?) 
•  Quantify  

– Normalize according to application 



A	
  VigneCe:	
  Large	
  non-­‐coding	
  RNA,	
  	
  
are	
  they	
  an	
  evolu-onary	
  playground?	
  

Stefan	
  Washietl	
  
Manolis	
  Kellis	
  
hCp://genome.cshlp.org/content/early/2014/01/15/gr.165035.113?top=1	
  



What do we know about lncRNA function?  

•  How to deal with XY vs XX? •  How to keep telomeres? 

•  Dosage compensation is regulated 
by XIST (Ballabio et al, 1987)  

•  XIST scaffolds large protein 
complexes 

•  XIST is a 17 Kb non-coding RNA 

•  Telomerase (Greider & Blackburn 
1985)  

•  Telomerase is a Ribonucleoprotein 
(Greider & Blackburn 1989) 

•  TERC is 550 bases 



RNA-DNA RNA-Protein RNA-RNA 

Example:  Telomerase RNA 

Not all sequences are functionally equivalent 

How to think about lincRNAs as functional units? 



RNA as a flexible malleable molecule 

Less flexibility 

More flexibility 



TERC has clear conserved patterns 

TERC ACTRT3 MYNN

siphy rate (10 mer)

TERC

siphy rate (10 mer)

siphy rate (10 mer)

siphy pi

TERC
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The Noncoding RNA Taurine Upregulated Gene 1
Is Required for Differentiation
of the Murine Retina

T.L. Young, T. Matsuda, and C.L. Cepko* cells that transduce visual information from light into a
synaptic signal. Multiple proteins specific to the photo-Howard Hughes Medical Institute
transduction cascade are localized to a membranousDepartment of Genetics
structure, the outer segment, where light is absorbedHarvard Medical School
and much of the phototransduction cascade takes77 Avenue Louis Pasteur
place. Transcription factors such as cone-rod homeo-Boston, MA 02115
box (Crx) and neural retina leucine zipper (Nrl) have
been found to be essential for the proper development
of photoreceptors [7, 8]. Targeted deletion of Crx leadsSummary
to a failure to form outer segments [7, 9]. As with Crx
mutant animals, targeted deletion of Nrl leads to a lossBackground: With the advent of genome-wide analy-
of rod differentiation. However, in contrast to Crx nullses, it is becoming evident that a large number of non-
animals, there is an increase in the number of cone-likecoding RNAs (ncRNAs) are expressed in vertebrates.
cells in the Nrl mutant [8]. In addition to TUG1, Nrl wasHowever, of the thousands of ncRNAs identified, the
one of the top genes that we identified in a microarrayfunctions of relatively few have been established.
analysis as being upregulated by taurine (T.L.Y. et al.,Results: In a screen for genes upregulated by taurine
unpublished data). The current understanding of thesein developing retinal cells, we identified a gene that ap-
gene regulatory networks is incomplete, and much re-pears to be a ncRNA. Taurine Upregulated Gene 1
mains to be learned about the generation and mainte-(TUG1) is a spliced, polyadenylated RNA that does not
nance of these complex sensory cells.encode any open reading frame greater than 82 amino

TUG1 does not appear to have significant homologyacids in its full-length, 6.7 kilobase (kb) RNA sequence.
to other genes in the mouse genome. However, a singleAnalyses of Northern blots and in situ hybridization re-
highly conserved homolog of TUG1 is present in hu-vealed that TUG1 is expressed in the developing retina
man, rat, cow, and dog genomes. An interesting featureand brain, as well as in adult tissues. In the newborn
of TUG1 RNA is that it does not have any open readingretina, knockdown of TUG1 with RNA interference (RNAi)
frames (ORFs) larger than 82 amino acids in any of theresulted in malformed or nonexistent outer segments of
six reading frames of its full length, 6.7 kb of sequence.transfected photoreceptors. Immunofluorescent staining
Therefore, TUG1 either is a noncoding RNA (ncRNA) orand microarray analyses suggested that this loss of
encodes a very short peptide. Small peptides exist inproper photoreceptor differentiation is a result of the
vertebrates and are involved in a number of signalingdisregulation of photoreceptor gene expression.
processes. However, the majority of known small pep-Conclusions: A function for a newly identified ncRNA,
tides, such as neuropeptides and peptide hormones,TUG1, has been established. TUG1 is necessary for the
are processed from larger proteins (reviewed in [10]).proper formation of photoreceptors in the developing

NcRNAs are emerging as a rapidly growing categoryrodent retina.
of molecules involved in a number of regulatory pro-
cesses. Traditionally, ncRNAs were thought to be lim-Introduction
ited to RNAs involved in the splicing and translation of
messenger RNA (mRNA) into proteins. These includedTaurine is a cysteine derivative that has been shown to small RNA-polymerase-III-derived transcripts such as

be necessary for proper neural development (reviewed transfer RNAs (tRNAs), ribosomal RNAs (rRNAs), and
in [1]). In addition, taurine deficiency in cats, rodents, U6 small nuclear RNAs (snRNA). Additionally, RNA
and primates has been linked to both a failure of photo- polymerase II transcribes other small regulatory RNAs,
receptors to mature correctly and to photoreceptor de- including small nucleolar RNAs (snoRNAs) and four of
generation in the adult retina [2–4]. In the rodent retina, the snRNAs. These classes of RNAs function in pre-
taurine is present at high levels during development, RNA splicing, assembly of ribosomes, and RNA folding
and the addition of exogenous taurine to developing and cleavage. Micro RNAs (miRNAs), another class of
retinal cells promotes rod photoreceptor production [5]. ncRNAs, are 22 base pairs (bp) in length and are pro-
The rod induction is due to signals mediated by the cessed from larger RNA transcripts. MiRNAs have been
binding of taurine to glycine-receptor α2 and GABA(A) shown to play roles in the regulation of cellular pro-
receptors [6]. We performed a screen to identify the cesses by specifically targeting certain mRNA species
genes that are regulated after signaling through these for degradation or translational repression.
receptors (T.L.Y. et al., unpublished data). One of the A number of other RNA-polymerase-II transcripts
most consistently and significantly upregulated genes have been identified that do not contain an ORF encod-
is a novel gene, Taurine Upregulated Gene 1 (TUG1). ing greater than 100 amino acids and do not fit into one

Because taurine induces rod production during de- of the above categories. On the basis of analyses of
velopment, the genes that are upregulated by taurine coding-DNA (cDNA) libraries, it has been estimated that
are candidates for factors involved in photoreceptor one-third to one-half of all transcripts in higher verte-
development. Photoreceptors are highly specialized brates do not contain a substantial ORF [11, 12]. In

spite of this seeming abundance, only a small number
of “large” RNA-polymerase-II ncRNAs have been char-*Correspondence: cepko@genetics.med.harvard.edu

lincRNAs play key roles in biological processes 
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Long Noncoding RNA as
Modular Scaffold of Histone
Modification Complexes
Miao-Chih Tsai,1 Ohad Manor,2 Yue Wan,1 Nima Mosammaparast,3 Jordon K. Wang,1
Fei Lan,3,4 Yang Shi,3 Eran Segal,2 Howard Y. Chang1*

Long intergenic noncoding RNAs (lincRNAs) regulate chromatin states and epigenetic inheritance.
Here, we show that the lincRNA HOTAIR serves as a scaffold for at least two distinct histone
modification complexes. A 5′ domain of HOTAIR binds polycomb repressive complex 2 (PRC2),
whereas a 3′ domain of HOTAIR binds the LSD1/CoREST/REST complex. The ability to tether two
distinct complexes enables RNA-mediated assembly of PRC2 and LSD1 and coordinates targeting of
PRC2 and LSD1 to chromatin for coupled histone H3 lysine 27 methylation and lysine 4
demethylation. Our results suggest that lincRNAs may serve as scaffolds by providing binding
surfaces to assemble select histone modification enzymes, thereby specifying the pattern of histone
modifications on target genes.

Longintergenic noncodingRNAs (lincRNAs)
regulate dosage compensation, imprinting,
and developmental gene expression by es-

tablishing chromatin domains in an allele- and
cell-type specific manner (1, 2). LincRNAs are
intimately associated with chromatin-remodeling
complexes (3–7), but molecular mechanisms of
their functions are still lacking. Posttranslational
modifications of histones recruit DNA-binding
proteins and chromatin-remodeling machinery
and are often coupled for combinatorial control

(8). For instance, in embryonic stem cells many
genes, such as the HOX, that encode develop-
mental regulators are transcriptionally silent but
possess bivalent histone H3 lysine 4 (H3K4) and
lysine 27 (H3K27)methylation, which are resolved
into univalent H3K4 or H3K27 methylation do-
mains upon differentiation (9, 10). Here, we show
that a lincRNA can coordinate histone modifica-
tions by binding to multiple histone modification
enzymes.

The lincRNA HOTAIR is transcribed from
the HOXC locus and targets polycomb repres-
sive complex 2 (PRC2, which comprises H3K27
methylase EZH2, SUZ12, and EED) to silence
HOXD and select genes on other chromosomes
(7, 11). The genomic regions flanking HOXD are
also bound by CoREST/REST repressor complexes
(12), which contain LSD1 (KDM1/BHC110), a
demethylase that mediates enzymatic demeth-
ylation of H3K4me2 (13) and that is required
for proper repression of Hox genes in Drosophila
(14). We therefore hypothesized that HOTAIR

may coordinately interact with both PRC2 and
LSD1. Immunoprecipitation (IP) of either en-
dogenous LSD1 or FLAG-tagged LSD1 from
primary foreskin fibroblasts or HeLa cells spe-
cifically retrieved endogenous HOTAIR RNA
with enrichment comparable with that of EZH2
IP, the positive control (Fig. 1A and fig. S1A)
(15). IP of three other chromatin proteins did
not retrieve HOTAIR (fig. S1A), and neither
LSD1, EZH2, nor FLAG-LSD1 IP retrieved U1
RNA, a nuclear ncRNA that served as a nega-
tive control. Purified biotinylated HOTAIR
RNA, but not green fluorescent protein (GFP)
RNA or an antisense HOTAIR fragment, spe-
cifically retrieved EZH2, SUZ12, and LSD1
from HeLa cell nuclear extract (Fig. 1B and fig.
S1B). LSD1 forms a complex with CoREST
(16), which can bridge LSD1 to the neuronal
gene silencer REST (17). REST is believed to
mediate silencing through two distinct effector
arms: one via LSD1-CoREST, and separately
via the adaptor protein CDYL and the H3K9
KMT G9a (18). HOTAIR specifically bound
to CoREST and REST but not CDYL or G9a,
nor to the putative PRC1 subunit YY1 (Fig. 1B).
Further, biotinylated HOTAIR bound to pu-
rified PRC2 and LSD1 complexes in vitro (Fig.
1C and fig. S1C). These results suggest that
HOTAIR directly interacts with PRC2 and LSD1
complexes.

Using a series of HOTAIR deletion mutants,
the PRC2-binding activity mapped to nucleo-
tides 1 to 300 of HOTAIR, whereas the LSD1
complex–binding activity mapped to nucleo-
tides 1500 to 2146 (Fig. 1D). Deletion mutants
that retained nucleotides 1 to 300 bound EZH2
or SUZ12 with equal efficiency as full-length
HOTAIR, and deletion mutants that retained nu-
cleotides 1500 to 2146 retained LSD1-binding
activity. Thus, HOTAIR is a modular bifunc-
tional RNA that has distinct binding domains
for PRC2 and LSD1 complexes. Computation-
al analysis and RNA footprinting showed that
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lincRNAs act in the circuitry controlling
pluripotency and differentiation
Mitchell Guttman1,2, Julie Donaghey1, Bryce W. Carey2,3, Manuel Garber1, Jennifer K. Grenier1, Glen Munson1, Geneva Young1,
Anne Bergstrom Lucas4, Robert Ach4, Laurakay Bruhn4, Xiaoping Yang1, Ido Amit1, Alexander Meissner1,5*, Aviv Regev1,2*,
John L. Rinn1,5*, David E. Root1* & Eric S. Lander1,2,6

Although thousands of large intergenic non-coding RNAs (lincRNAs) have been identified in mammals, few have been
functionally characterized, leading to debate about their biological role. To address this, we performed loss-of-function
studies on most lincRNAs expressed in mouse embryonic stem (ES) cells and characterized the effects on gene
expression. Here we show that knockdown of lincRNAs has major consequences on gene expression patterns,
comparable to knockdown of well-known ES cell regulators. Notably, lincRNAs primarily affect gene expression in
trans. Knockdown of dozens of lincRNAs causes either exit from the pluripotent state or upregulation of lineage
commitment programs. We integrate lincRNAs into the molecular circuitry of ES cells and show that lincRNA genes
are regulated by key transcription factors and that lincRNA transcripts bind to multiple chromatin regulatory proteins to
affect shared gene expression programs. Together, the results demonstrate that lincRNAs have key roles in the circuitry
controlling ES cell state.

The mammalian genome encodes many thousands of large non-
coding transcripts1 including a class of ,3,500 lincRNAs identified
using a chromatin signature of actively transcribed genes2–4. These
lincRNA genes have been shown to have interesting properties,
including clear evolutionary conservation2–5, expression patterns cor-
related with various cellular processes2,6 and binding of key transcrip-
tion factors to their promoters2,6, and the lincRNAs themselves
physically associate with chromatin regulatory proteins4,7. Yet, it
remains unclear whether the RNA transcripts themselves have bio-
logical functions8–10. Few have been demonstrated to have phenotypic
consequences by loss-of-function experiments6. As a result, the func-
tional role of lincRNA genes has been widely debated. Various pro-
posals include that lincRNA genes act as enhancer regions, with the
RNA transcript simply being an incidental by-product8,9, that
lincRNA transcripts act in cis to activate transcription11, and that
lincRNA transcripts can act in trans to repress transcription12,13.

We therefore sought to undertake systematic loss-of-function
experiments on all lincRNAs known to be expressed in mouse embry-
onic stem (ES) cells2,3. ES cells are pluripotent cells that can self-renew
in culture and can give rise to cells of any of the three primary germ
layers including the germ line14. The signalling14, transcriptional15–17

and chromatin15,18–21 regulatory networks controlling pluripotency
have been well characterized, providing an ideal system to determine
how lincRNAs may integrate into these processes.

Here we show that knockdown of the vast majority of ES-cell-
expressed lincRNAs has a strong effect on gene expression patterns
in ES cells, of comparable magnitude to that seen for the well-known
ES cell regulatory proteins. We identify dozens of lincRNAs that upon
loss-of-function cause an exit from the pluripotent state and dozens of
additional lincRNAs that, although not essential for the maintenance
of pluripotency, act to repress lineage-specific gene expression pro-
grams in ES cells. We integrate the lincRNAs into the molecular
circuitry of ES cells by demonstrating that most lincRNAs are directly

regulated by critical pluripotency-associated transcription factors and
,30% of lincRNAs physically interact with specific chromatin regu-
latory proteins to affect gene expression. Together, these results
demonstrate a regulatory network in ES cells whereby transcription
factors directly regulate the expression of lincRNA genes, many of
which can physically interact with chromatin proteins, affect gene
expression programs and maintain the ES cell state.

lincRNAs affect global gene expression
To perform loss-of-function experiments, we generated five lentiviral-
based short hairpin RNAs (shRNAs)22 targeting each of the 226
lincRNAs previously identified in ES cells2,3 (see Methods and Sup-
plementary Table 1). These shRNAs successfully targeted 147 lincRNAs
and reduced their expression by an average of ,75% compared to
endogenous levels in ES cells (see Methods, Fig. 1a, Supplementary
Fig. 1 and Supplementary Table 2). As positive controls, we generated
shRNAs targeting ,50 genes encoding regulatory proteins, including
both transcription and chromatin factors that have been shown to play
critical roles in ES cell regulation17,20,23; validated hairpins were
obtained against 40 of these genes (Supplementary Table 2). As nega-
tive controls, we performed independent infections with lentiviruses
containing 27 different shRNAs with no known cellular target RNA.

We infected each shRNA into ES cells, isolated RNA after 4 days,
and profiled their effects on global transcription by hybridization to
genome-wide microarrays (Fig. 1a, see Methods). We used a stringent
procedure to control for nonspecific effects due to viral infection,
generic RNA interference (RNAi) responses, or ‘off-target’ effects.
Expression changes were deemed significant only if they exceeded
the maximum levels observed in any of the negative controls, showed
a twofold change in expression compared to the negative controls, and
had a low false discovery rate (FDR) assessed across all genes based on
permutation tests (Fig. 1b, see Methods). This approach controls for
the overall rate of nonspecific effects by estimating the number and

*These authors contributed equally to this work.
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Rsx is a metatherian RNA with Xist-like properties in
X-chromosome inactivation
Jennifer Grant1, Shantha K. Mahadevaiah1, Pavel Khil2, Mahesh N. Sangrithi1, Hélène Royo1, Janine Duckworth3,
John R. McCarrey4, John L. VandeBerg5, Marilyn B. Renfree6, Willie Taylor1, Greg Elgar1, R. Daniel Camerini-Otero2,
Mike J. Gilchrist1 & James M. A. Turner1

In female (XX) mammals, one of the two X chromosomes is
inactivated to ensure an equal dose of X-linked genes with males
(XY)1. X-chromosome inactivation in eutherian mammals is
mediated by the non-coding RNA Xist2. Xist is not found in
metatherians3 (marsupials), and how X-chromosome inactivation
is initiated in these mammals has been the subject of speculation
for decades4. Using the marsupial Monodelphis domestica, here we
identify Rsx (RNA-on-the-silent X), an RNA that has properties
consistent with a role in X-chromosome inactivation. Rsx is a large,
repeat-rich RNA that is expressed only in females and is tran-
scribed from, and coats, the inactive X chromosome. In female
germ cells, in which both X chromosomes are active, Rsx is
silenced, linking Rsx expression to X-chromosome inactivation
and reactivation. Integration of an Rsx transgene on an autosome
in mouse embryonic stem cells leads to gene silencing in cis. Our
findings permit comparative studies of X-chromosome inactiva-
tion in mammals and pose questions about the mechanisms by
which X-chromosome inactivation is achieved in eutherians.

X-chromosome dosage-compensation mechanisms vary between
metazoans5. In metatherians, X-chromosome inactivation (XCI) is
imprinted, affecting the paternal X chromosome6, but the factors that
drive XCI in these mammals are unknown4. The metatherian and
eutherian female inactive X chromosomes share common epigenetic
features7–9, suggesting that XCI in these mammals proceeds by a similar
mechanism. Notably, the metatherian inactive X chromosome is
enriched for histone H3 Lys 27 trimethylation (H3K27me3)7–10. In
eutherians, this H3K27me3 enrichment is Xist-dependent11,. We
therefore proposed that an unidentified X-linked RNA initiates XCI
in metatherians7. Xist RNA is expressed in female but not male somatic
tissues, coats the inactive X chromosome, and is expressed from the
inactive X chromosome12–15. We posited that a regulator of XCI in
metatherians would also exhibit these unusual properties.

We analysed XCI in the female brain of the short-tailed opossum
M. domestica. Using RNA fluorescence in situ hybridization (FISH),
we studied the expression of the X-linked gene Hprt1 with a bacterial
artificial chromosome (BAC), VM18-839J22, containing Hprt1 plus
49 kilobases (kb) of upstream and 82 kb of downstream sequence, and
in which no other known genes mapped (Fig. 1a). RNA FISH signals
usually appear as pinpoint dots. However, the RNA signal detected
resembled a cloud (Fig. 1a and Supplementary Fig. 1) that was remin-
iscent of the Xist RNA cloud seen in female mouse (Fig. 1a) and human
cells15. We observed the same RNA cloud using a modified form of the
BAC carrying an Hprt1 deletion (Fig. 1a). The RNA therefore origi-
nated from another, uncharacterized gene located within the genomic
region defined by VM18-839J22. RNA FISH using other BACs
narrowed down this region to 82 kb downstream of Hprt1 (Fig. 1a).
We identified the RNA using reverse transcription PCR (RT–PCR) on
female brain complementary DNA with primers located along this

critical region (Fig. 1b and Supplementary Table 1), revealing a tran-
scription unit spanning 47 kb (Fig. 1b).

We then investigated whether the RNA exhibited other Xist-like
features. First, we looked for evidence of sexually dimorphic expression.
No RNA clouds were detected in male opossum brain by VM18-839J22
RNA FISH (Fig. 1b), demonstrating that in this tissue expression of the
RNA was female-specific. Consistent with this, RT–PCR on male brain
cDNA revealed no expression of the 47-kb transcript previously iden-
tified in females (Fig. 1b). RT–PCR on a broad array of tissues, repre-
senting derivatives of endoderm, mesoderm and ectoderm, from both
males and females revealed expression of the RNA in all female but no
male tissues examined (Fig. 1b).

Next, we established whether the RNA coats the inactive X chro-
mosome. We combined VM18-839J22 RNA FISH on female brain cells
withimmunostainingfortheinactiveXchromosomemarkerH3K27me3.
We observed colocalization of RNA clouds and H3K27me3 signals
(Fig. 1c), demonstrating inactive X chromosome coating.

To determine whether the RNA was expressed from the inactive X
chromosome, we performed dual RNA–DNA FISH using the VM18-
839J22 BAC. No RNA signal was seen colocalizing with the DNA
signal on the active X chromosome (Fig. 1d). By contrast, an RNA
signal was observed colocalizing with the DNA signal on the inactive X
chromosome (Fig. 1d). This RNA signal was brighter than others in the
surrounding cloud, a feature characteristic of a site of nascent RNA
synthesis. Thus, the RNA is expressed only from the inactive X chro-
mosome. This must be the paternal X chromosome, as this is always
chosen for inactivation6. In summary, like Xist, the RNA that we
identified is female-specific, coats the inactive X and is transcribed
only from the inactive X chromosome. We call the RNA Rsx (RNA-
on-the-silent X).

To characterize Rsx further, we performed RNA-sequencing (RNA-
seq) on female opossum brain (Fig. 2a). This confirmed that the Rsx
gene generates a precursor RNA of 47 kb (University of California
Santa Cruz (UCSC) monDom5 coordinates: chrX 35,605,415–
35,651,609) transcribed antisense relative to Hprt1. Split RNA reads
indicated that Rsx encodes a spliced RNA consisting of four exons: this
was confirmed by RT–PCR (Fig. 2a and Supplementary Table 1). The
RNA-seq data predicted that the mature Rsx RNA is large, approx-
imating 27 kb, with 25 kb of sequence deriving from a single exon.
Northern blots confirmed that Rsx RNA was large, exceeding the
17 kb mouse Xist RNA in size, and validated the strandedness,
female-specificity and broadness of Rsx expression (Fig. 2b). The level
of Rsx expression varied between female tissues, an observation also
noted for Xist (Supplementary Fig. 2). 39 rapid amplification of com-
plementary DNA ends (RACE) demonstrated that Rsx transcripts are
polyadenylated.

Sequence comparisons showed that Rsx and Xist are not homolog-
ous. Nevertheless, Rsx exhibited features reminiscent of Xist. Notably,

1MRC National Institute for Medical Research, The Ridgeway, Mill Hill, London NW7 1AA, UK. 2National Institute of Diabetes, Digestive and Kidney Diseases, NIH, Bethesda, Maryland 20892, USA. 3Landcare
Research - Manaaki Whenua, Pest Control Technology Group, Lincoln 7640, New Zealand. 4University of Texas at San Antonio, San Antonio, Texas 78249, USA. 5Texas Biomedical Research Institute, San
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lncRNA-dependent mechanisms of androgen-
receptor-regulated gene activation programs
Liuqing Yang1,2*, Chunru Lin1,2*, Chunyu Jin1, Joy C. Yang3, Bogdan Tanasa1,4, Wenbo Li1, Daria Merkurjev1,5, Kenneth A. Ohgi1,
Da Meng6, Jie Zhang1, Christopher P. Evans3 & Michael G. Rosenfeld1

Although recent studies have indicated roles of long non-coding
RNAs (lncRNAs) in physiological aspects of cell-type determination
and tissue homeostasis1, their potential involvement in regulated
gene transcription programs remains rather poorly understood. The
androgen receptor regulates a large repertoire of genes central to the
identity and behaviour of prostate cancer cells2, and functions in a
ligand-independent fashion in many prostate cancers when they
become hormone refractory after initial androgen deprivation therapy3.
Here we report that two lncRNAs highly overexpressed in aggressive
prostate cancer, PRNCR1 (also known as PCAT8) and PCGEM1,
bind successively to the androgen receptor and strongly enhance
both ligand-dependent and ligand-independent androgen-receptor-
mediated gene activation programs and proliferation in prostate
cancer cells. Binding of PRNCR1 to the carboxy-terminally acetylated
androgen receptor on enhancers and its association with DOT1L appear
to be required for recruitment of the second lncRNA, PCGEM1, to the
androgen receptor amino terminus that is methylated by DOT1L.
Unexpectedly, recognition of specific protein marks by PCGEM1-
recruited pygopus 2 PHD domain enhances selective looping of
androgen-receptor-bound enhancers to target gene promoters in
these cells. In ‘resistant’ prostate cancer cells, these overexpressed
lncRNAs can interact with, and are required for, the robust activa-
tion of both truncated and full-length androgen receptor, causing
ligand-independent activation of the androgen receptor transcrip-
tional program and cell proliferation. Conditionally expressed short
hairpin RNA targeting these lncRNAs in castration-resistant pro-
state cancer cell lines strongly suppressed tumour xenograft growth
in vivo. Together, these results indicate that these overexpressed
lncRNAs can potentially serve as a required component of castration-
resistance in prostatic tumours.

One of the overexpressed lncRNAs in prostate cancer, PCGEM1, is
tissue-specific and correlated with high-risk prostate cancer patients,
including African-American men4, whereas a second highly expressed
lncRNA, PRNCR1 (PCAT8), is pervasively transcribed from the 8q24
‘gene desert’ region in strong association with susceptibility of prostate
cancer5. Paired benign prostatic hyperplasia and aggressive tumour
specimens (Gleason scores 3 1 3) derived from three individual pro-
state cancer patients exhibited .100-fold upregulation of PRNCR1 and
PCGEM1 expression (Supplementary Fig. 1a, b). Native RNA immuno-
precipitation (RIP) experiments in paired prostate tumour and benign
prostatic hyperplasia tissues (Gleason scores 2 1 3 to 4 1 3), revealed a
specific association of full-length androgen receptor (AR) with both
PRNCR1 and PCGEM1 in prostate tumour tissues (Fig. 1a, b; Sup-
plementary Fig. 1a, c) compared to minimal interactions with gluco-
corticoid receptor (Supplementary Fig. 1c and data not shown). In
prostate cancer LNCaP cells, dihydrotestosterone (DHT) treatment
induced association of AR with both PRNCR1 and PCGEM1 (Fig. 1c),
but not with NEAT2 (also known as MALAT1) (Fig. 1c). Antisense

oligonucleotide (ASO)-based knockdown of PRNCR1 abolished both
AR–PRNCR1 and AR–PCGEM1 interactions, whereas knockdown of
PCGEM1 did not affect the AR–PRNCR1 interaction (Fig. 1d; Sup-
plementary Fig. 2a), indicating the PRNCR1-dependent recruitment of
PCGEM1.

Knockdown of either PRNCR1 or PCGEM1 resulted in a significant
decrease in DHT-induced activation of canonical AR target genes while
not affecting AR levels (Supplementary Fig. 2a–c). Global run-on sequen-
cing (GRO-Seq) confirmed that knockdown of either PRNCR1 or
PCGEM1 significantly decreased the induction of 617 DHT-upregulated
genes (n 5 617, edgeR false discovery rate (FDR) , 0.01, and read
density (RD) . 2) with AR-bound enhancers within 200 kilobases
(kb) (Fig. 1e), but had no effect on DHT-unresponsive genes located
.200 kb away from AR-bound enhancers (Supplementary Fig. 2d),
verified by randomly extracting sets of 1,000 genes (data not shown).

Using chromatin isolation by RNA purification (ChIRP)6 with bio-
tin-labelled DNA probes (40–60 nucleotides) tiling PRNCR1 and
PCGEM1 RNAs (Supplementary Fig. 3a–c), we identified 2,142 high-
confidence PCGEM1 occupancy sites genome-wide (Supplementary
Fig. 3d, e) and motif analysis uncovered a very significantly enriched
AR response element (ARE) DNA motif (Supplementary Fig. 3f), revea-
ling that ,82% of PCGEM1 co-localized with AR-bound sites (6 3 kb
relative to the centre of PCGEM1 peak), of which ,70% corresponded
to AR bound, H3K4me1-marked enhancers (Fig. 1f, g and Supplemen-
tary Fig. 3g), independently confirmed by quantitative (qPCR) ana-
lyses (Supplementary Fig. 3h, i) and ChIRP-Seq using even-numbered
and odd-numbered probe sets (Supplementary Fig. 3j and data not
shown). These data indicate a stoichiometry of PCGEM1 sufficient
to account for the recruitment to AR DNA regulatory binding sites
on enhancers. Levels of PRNCR1 in LNCaP cells are estimated as
,400–600 copies per cell (data not shown). The ability of these lncRNAs
to read enhancer-associated histone marks might account for their pre-
ferential presence at AR-bound enhancers (see below).

By imposing a high stringency wash condition, we identified that
DOT1L, CARM1, GADD45a and AR specifically associated with in vitro
transcribed biotinylated PRNCR1 by mass spectrometry analysis,
whereas AR, b-catenin and pygopus 2 (PYGO2) preferentially associ-
ated with in vitro transcribed biotinylated PCGEM1 (Supplementary
Fig. 4a–c; Supplementary Tables 1–3).b-catenin, CARM1 and GADD45a
have been suggested to have important roles in AR signalling7. Knock-
down of AR, DOT1L, CTNNB1 and PYGO2 by specific siRNAs impaired
DHT-induced activation of AR target genes, TMPRSS2, PSA (also
known as KLK3) and FKBP5 (Supplementary Fig. 4d). Mass spectro-
metry analysis revealed that the lncRNA-bound AR contains several
post-translational modifications, including K631/634 acetylation and
K349 methylation (Supplementary Fig. 4e; Supplementary Tables 1–3).
Consistent with the proposed importance of acetylation of AR in activa-
tion of an AR target gene8, a K631/634R mutation on AR inhibited its

*These authors contributed equally to this work.
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Long noncoding RNAs (lncRNAs) play a broad range of biological
roles, including regulation of expression of genes and chromo-
somes. Here, we present evidence that lncRNAs are involved in
vertebrate circadian biology. Differential night/day expression of
112 lncRNAs (0.3 to >50 kb) occurs in the rat pineal gland, which is
the source of melatonin, the hormone of the night. Approximately
one-half of these changes reflect nocturnal increases. Studies of
eight lncRNAs with 2- to >100-fold daily rhythms indicate that, in
most cases, the change results from neural stimulation from the
central circadian oscillator in the suprachiasmatic nucleus (dou-
bling time = 0.5–1.3 h). Light exposure at night rapidly reverses
(halving time = 9–32 min) levels of some of these lncRNAs. Organ
culture studies indicate that expression of these lncRNAs is regu-
lated by norepinephrine acting through cAMP. These findings
point to a dynamic role of lncRNAs in the circadian system.

RNA sequencing | neuroendocrine regulation | differential expression |
chronobiology

Long noncoding RNAs (lncRNAs; >200 bp), including long
intergenic noncoding RNAs, are of special interest because of

their large and growing numbers and the possibility that they may
represent a substantially underrepresented, functionally critical
component of the genome (1–3). Current research points to
a role in cellular regulation through interaction with proteins and
DNA (4–6). The abundance of many lncRNAs changes gradually
during development, and many are involved in epigenetic pro-
cesses impacting gene expression (7–12) [e.g., chromosome in-
activation by XIST (13), imprinting by Kcnq1ot1 (14), devel-
opment and cancer by HOTAIR (15, 16), cancer by PCA3 (17),
and disease by PISTR1 (18)]. From this information, it is gen-
erally thought that lncRNAs control long-term processes; how-
ever, it is also clear that they may play roles in more dynamic
processes, including signaling (19–23).
Here, we addressed the broad issue of whether lncRNAs may

play a role in vertebrate circadian systems, which seems to be the
case in plants (24). We searched for lncRNAs that exhibit daily
changes in abundance in the rat pineal gland. The pineal gland is
responsible for the daily rhythm in circulating melatonin, the
hormone of the night. In this tissue, daily changes in the abun-
dance of protein-coding transcripts (25) are controlled by
a neural pathway linking the master mammalian circadian os-
cillator, the suprachiasmatic nucleus (SCN), to the pineal gland;
SCN stimulation of this pathway causes release of norepineph-
rine (NE) from sympathetic nerve processes. NE acts through an
adrenergic receptor/cAMP mechanism to broadly control gene
expression. These changes seem to establish optimal conditions
for the precise daily rhythm in melatonin production (25).
Results presented here provide an indication that lncRNAs play
a role in the vertebrate circadian system.

Results
Daily Changes in lncRNA Abundance in the Pineal Gland. lncRNAs
were sought in RNA sequencing (RNA-Seq) results from anal-
ysis of rat pineal glands and other tissues. A computer-based
search algorithm was used to find lncRNAs with either daily
changes in abundance in the rat pineal gland or high relative
expression (rEx) compared with a pool of RNA from 15 other
tissues (SI Appendix, Table S1, Experiment 1). Each candidate
was further evaluated individually by three investigators through
analysis of coverage plots.
The coding potential of the lncRNA candidates was evaluated

using several criteria. First, transcripts were considered to be
lncRNA candidates if a BLASTX search failed to identify
an ORF similar to a known protein-coding transcript. Second,
coding potential was determined by the Coding Potential Cal-
culator software (26) (http://cpc.cbi.pku.edu.cn/). In addition,
other criteria were used (SI Appendix).
This process revealed that the location of the lncRNAs rela-

tive to protein-coding genes ranged considerably. Some could be
classified as long intergenic noncoding RNAs and were from 10
to >200 kb away; others were located closer. Some were located
on the opposite strand from protein-coding genes and either
overlapped or encompassed the gene; in some cases, they were
included within the gene boundaries (Dataset S1).
This effort identified 112 lncRNAs, given the common identi-

fier lncSN (long noncoding RNA, Section on Neuroendocrinol-
ogy), with a more than twofold night [Zeitgeber time (ZT) 17]/day
(ZT7) differential expression (59% increased at night, and 87%
had rEx values > 4) (Dataset S1); 97 of 122 (80%) lncRNAs with
rEx > 4 exhibited night/day differential expression, reflecting
a high association between differential night/day and pineal-
selective expression. These changes were confirmed in subsequent
experiments (SI Appendix, Table S1, Experiments 2–4).
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The innate immune system coordinates host defenses through germline-
encoded pattern recognition receptors (PRR) (e.g., Toll-like receptors), 
which recognize microbial products and induce expression of hundreds 
of proteins involved in antimicrobial defense and adaptive immunity (1–
3). Recent studies have identified thousands of long non-coding RNAs 
(lncRNAs) in mammalian genomes (4–9) which regulate gene expres-
sion in different biological processes [reviewed in (5)]. lncRNAs are 
differentially regulated in virus-infected cells (10) and in dendritic cells 
following lipopolysaccharide (LPS) stimulation (4). Recently, lncRNA 
NeST was shown to control susceptibility to Theiler's virus and Salmo-
nella infection in mice through epigenetic regulation of the interferon-Ȗ�
locus (11, 12). Although lncRNAs can be induced in innate immune 
cells (4, 10), whether lncRNAs act as regulators of gene expression in 
innate immunity is unknown. 

To identify lncRNAs transcribed during the innate immune response, 
we conducted whole-transcriptome analysis (RNA-seq) (6) of mouse 
bone marrow-derived macrophages (BMDMs) stimulated with the syn-
thetic bacterial lipopeptide Pam3CSK4, a Tlr2 ligand (Fig. 1A). 
Pam3CSK4 induced the transcription of numerous protein-coding genes 
involved in the immune response (Fig. 1A, inner track) as well as 62 
lncRNAs (Fig. 1A, outer track, and table S1). The most significantly 
induced lncRNAs tended to occur in chromosomal regions where there 
was also increased expression of immune genes, suggesting these genes 
were co-regulated. lincRNA-Cox2 was amongst the most highly induced 
lncRNAs and is proximal to the prostaglandin-endoperoxide synthase 2 
(Ptgs2/Cox2) gene (Fig. 1A). Besides lincRNA-Cox2, lncRNA-Ehd1 
and lncRNA-Lyn were also induced following Tlr2 and Tlr4 stimulation 
(fig. S1, A and B). 

A previous study demonstrated that 
lincRNA-Cox2 was induced in dendrit-
ic cells following stimulation with lipo-
polysaccharide (LPS) (4). However, 
whether lincRNA-Cox2 regulates the 
inflammatory response that is associat-
ed with TLR signaling is unknown. We 
identified three splice variants of lin-
cRNA-Cox2 (Fig. 1B, accession num-
bers JX682706, JX682707, JX682708). 
Variant 1 was the most abundant tran-
script containing exons 1 and 4, com-
mon to all splice variants. 
Consequently, we designed primers for 
quantitative PCR (qPCR) and shRNA 
that targeted these regions. Using 
qPCR, we confirmed that LPS induced 
similar temporal patterns of expression 
of both lincRNA-Cox2 and its neigh-
boring Ptgs2 (Cox2) gene in bone mar-
row-derived dendritic cells (BMDCs, 
Fig. 1, C and D). R848 (which activates 
Tlr7/8) but not Poly I:C, a synthetic 
double stranded RNA that activates 
Tlr3, induced lincRNA-Cox2 and Ptgs2 
(Cox2) in BMDCs (fig. S2, A to D). 
Both Listeria monocytogenes-infected 
BMDMs and splenocytes from Listeria-
infected mice also had elevated levels 
of lincRNA-Cox2 (fig. S3, A and B). 
Induction of lincRNA-Cox2 and its 
neighboring gene Ptgs2 (Cox2) was 
dependent on MyD88 (Fig. 1, E and F) 
DQG�1)ț%�VLJQDOLQJ��Fig. 1, G and H). 

We next examined the protein-
coding capacity of lincRNA-Cox2 by assessing its association with poly-
somes within cells. BMDMs were treated with cycloheximide to trap 
ribosomes on RNA molecules and either left untreated or pretreated with 
EDTA (disrupting all RNA-protein interactions) or with harringtonine 
(specifically disrupting translation). Cell lysates were fractionated and 
RNA analyzed by qPCR (13–15). We compared Gapdh mRNA with 
lincRNA-Cox2 and another lincRNA, lncRNA-Eps, which had previous-
ly been shown to be non-coding (16). As expected Gapdh RNA sedi-
mented with a high velocity through the sucrose gradient because it was 
associated with polysomes. In contrast, lincRNA-Cox2 and lncRNA-Eps 
remained in lighter fractions (fig. S4). Treatment with EDTA or harring-
tonine resulted in a shift of Gapdh but not lincRNA-Cox2 or lncRNA-
Eps from the higher velocity to the lower velocity fractions. Further-
more, most of the open reading frames identified in lincRNA-Cox2 were 
found to have poor Kozak strength (fig. S5). Collectively, these studies 
indicate that lincRNA-Cox2 is unlikely to encode a protein product. 

We next generated BMDM cell lines in which lincRNA-Cox2 ex-
pression was silenced by shRNA (Fig. 2A). Silencing of lincRNA-Cox2 
did not alter expression of Ptgs2 (Cox2) (fig. S6). To identify potential 
targets of lincRNA-Cox2, we conducted RNA-seq in both control and 
lincRNA-Cox2 silenced cells before and after stimulation with 
Pam3CSK4. Silencing of lincRNA-Cox2 increased the expression of 787 
genes by 3-fold or greater in unstimulated cells (table S2). A GO en-
richment analysis indicated that genes related to the immune response 
were significantly overrepresented in these up-regulated genes (Fig. 2B 
and table S3). This gene set included chemokines (Ccl5, Cx3cl1), chem-
okine receptors (Ccrl) and interferon-stimulated genes (ISGs) (Irf7, 
Oas1a, Oas1l, Oas2, Ifi204 and Isg15) (Fig. 2B). In the same cells stim-

A Long Noncoding RNA Mediates Both 
Activation and Repression of Immune 
Response Genes 
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An inducible program of inflammatory gene expression is central to anti-microbial 
defenses. Signal-dependent activation of transcription factors, transcriptional co-
regulators and chromatin modifying factors collaborate to control this response. 
Here we identify a long noncoding RNA that acts as a key regulator of this 
inflammatory response. Pattern recognition receptors such as the Toll-like 
receptors induce the expression of numerous lncRNAs. One of these, lincRNA-Cox2 
mediates both the activation and repression of distinct classes of immune genes. 
Transcriptional repression of target genes is dependent on interactions of lincRNA-
Cox2 with heterogeneous nuclear ribonucleoprotein A/B and A2/B1. Collectively, 
these studies unveil a central role of lincRNA-Cox2 as a broad acting regulatory 
component of the circuit that controls the inflammatory response. 
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Play important roles in a variety of  
biological process 
•  Development 
•  Cancer 
•  Immunity 
•  Differentiation 
•  Circadian cycle 
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lincRNA are an evolutionary puzzle 
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–  Hypothesis 1: lincRNAs are under “patchy” constraint or a rapidly 
evolving (Xist?) 

•  Sequence conservation would be underestimating lincRNA conservation 
•  Evidence of syntenic conserved expression  

–  Hypothesis 2: lincRNAs are young and many are transcriptional noise 
•  Expression is species specific 
•  Sequence conservation not informative 

–  Hypothesis 3: lincRNAs are easily replaceable by functional orthologs 
(linc-cox2?) 

•  Sequence conservation not informative 
•  Syntenic conserved expression not informative 

Using expression to assess conservation 



Evolutionary profiling RNA-Seq dataset 

3 Individuals per species 
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The evolution of gene expression levels in
mammalian organs
David Brawand1,2*, Magali Soumillon1,2*, Anamaria Necsulea1,2*, Philippe Julien1,2, Gábor Csárdi2,3, Patrick Harrigan4,
Manuela Weier1, Angélica Liechti1, Ayinuer Aximu-Petri5, Martin Kircher5, Frank W. Albert5{, Ulrich Zeller6, Philipp Khaitovich7,
Frank Grützner8, Sven Bergmann2,3, Rasmus Nielsen4,9, Svante Pääbo5 & Henrik Kaessmann1,2

Changes in gene expression are thought to underlie many of the phenotypic differences between species. However,
large-scale analyses of gene expression evolution were until recently prevented by technological limitations. Here we
report the sequencing of polyadenylated RNA from six organs across ten species that represent all major mammalian
lineages (placentals, marsupials and monotremes) and birds (the evolutionary outgroup), with the goal of understanding
the dynamics of mammalian transcriptome evolution. We show that the rate of gene expression evolution varies among
organs, lineages and chromosomes, owing to differences in selective pressures: transcriptome change was slow in
nervous tissues and rapid in testes, slower in rodents than in apes and monotremes, and rapid for the X chromosome
right after its formation. Although gene expression evolution in mammals was strongly shaped by purifying selection, we
identify numerous potentially selectively driven expression switches, which occurred at different rates across lineages
and tissues and which probably contributed to the specific organ biology of various mammals.

Shared mammalian traits include lactation, hair and relatively large
brains with unique structures1. In addition to these traits, individual
lineages have evolved distinct anatomical, physiological and beha-
vioural characteristics relating to differences in reproduction, life span,
cognitive abilities and disease susceptibility. The molecular changes
underlying these phenotypic shifts and the associated selective pres-
sures have begun to be investigated using available mammalian
genomes2, the number of which is rapidly increasing. However,
although genome analyses may uncover protein-coding changes that
potentially underlie phenotypic alterations, regulatory mutations
affecting gene expression probably explain many or even most pheno-
typic differences between species3.

Until recently, comparisons of mammalian transcriptomes were
essentially restricted to closely related primates4–8 or mice5, although
human–mouse comparisons using microarrays were also attempted9.
Nevertheless, microarrays require hybridization to species-specific
probes, making between-species comparisons of transcript abund-
ance difficult6. The development of RNA sequencing (RNA-seq) pro-
tocols now allows for accurate and sensitive assessments of expression
levels10. The power of RNA-seq for transcriptome assessment was
recently demonstrated for human individuals11,12 and closely related
primates13,14.

RNA-seq and genome reannotation
To study mammalian transcriptome evolution at high resolution, we
generated RNA-seq data (,3.2 billion Illumina Genome Analyser IIx
reads of 76 base pairs) for the polyadenylated RNA fraction of brain
(cerebral cortex or whole brain without cerebellum), cerebellum,
heart, kidney, liver and testis (usually from one male and one female
per somatic tissue, and two males for testis) from nine mammalian
species (Supplementary Tables 1 and 2, Methods and Supplementary

Note): placental mammals (great apes, including humans; rhesus
macaque; and mouse), marsupials (grey short-tailed opossum) and
monotremes (platypus). Corresponding data (,0.3 billion reads)
were generated for a bird (red jungle fowl, a non-domesticated
chicken) and used as an evolutionary outgroup.

We refined existing Ensembl15 genome annotations by performing
an initial read mapping to detect transcribed regions and splice junc-
tions (Methods and Supplementary Note), which resulted in modified
boundaries for ,31,000–44,500 exons and the addition of 20,000–
34,500 new exons and 66,000–125,000 new splice junctions to known
protein-coding genes (Supplementary Note Tables 4 and 5). We also
searched de novo for multi-exonic transcribed loci; our results vali-
dated most Ensembl-annotated protein-coding genes, pseudogenes
and long non-coding RNA genes (Supplementary Note Table 11),
but we also detected thousands of multi-exonic transcribed loci
(possibly representing protein-coding or non-coding RNA genes) in
previously unannotated regions (Supplementary Note Table 10).

Newly detected exons are transcribed at lower levels and are signifi-
cantly less conserved, at the sequence level, than Ensembl-annotated
exons (two-tailed P , 1028, Mann–Whitney U-test; Supplementary
Fig. 1). However, the sequence conservation level is higher for new
exons than for flanking introns, with visible peaks around splice sites,
indicating that many of these exon sequences are preserved by puri-
fying selection16.

Depending on the species, 11–30% of the total genomic length is
covered by unambiguously mapped RNA-seq reads (Table 1). Much
of the covered length is explained by retained introns, but substantial
coverage is also found outside annotated regions (Table 1). Our data
suggest that large proportions (.34–61%) of amniote (that is,
mammal and bird) genomes are transcribed, consistent with previous
work17.

*These authors contributed equally to this work.
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Orothologous lincRNAs preserve their tissue specificity 
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Orthologous lincRNAs preserve their tissue specificity 

Conserved lincRNAs have conserved regulation 

R
h
e
s
u
s

C
o
w

R
a
t

M
o
u
s
e

R
h
e
s
u
s

C
o
w

R
a
t

M
o
u
s
e

R
h
e
s
u
s

C
o
w

R
a
t

M
o
u
s
e

R
h
e
s
u
s

C
o
w

R
a
t

M
o
u
s
e

R
h
e
s
u
s

C
o
w

R
a
t

M
o
u
s
e

R
h
e
s
u
s

C
o
w

R
a
t

M
o
u
s
e

R
h
e
s
u
s

C
o
w

R
a
t

M
o
u
s
e

R
h
e
s
u
s

C
o
w

R
a
t

M
o
u
s
e

R
h
e
s
u
s

C
o
w

R
a
t

M
o
u
s
e

B
ra

in

S
k
.m

.

H
e
a
rt

L
iv

e
r

L
u
n
g

T
e
s
te

s

Normalized expression

S
p
le

e
n

C
o
lo

n

K
id

n
e
y

1.00 0.53 0.53 0.54

1.00 0.54 0.54

1.00 0.72

1.00

1.00 0.53 0.50 0.45

1.00 0.52 0.46

1.00 0.66

1.00

Rh
es
us

Co
w

Ra
t

M
ou
se

Rhesus

Cow

Mouse

Rat

Rh
es
us

Co
w

Ra
t

M
ou
se

Rhesus

Cow

Mouse

Rat

mRNAs

lncRNAs



Young vs conserved lincRNAs 
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How are lincRNAs created? 
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XIST like counterpart 
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Rsx is a metatherian RNA with Xist-like properties in
X-chromosome inactivation
Jennifer Grant1, Shantha K. Mahadevaiah1, Pavel Khil2, Mahesh N. Sangrithi1, Hélène Royo1, Janine Duckworth3,
John R. McCarrey4, John L. VandeBerg5, Marilyn B. Renfree6, Willie Taylor1, Greg Elgar1, R. Daniel Camerini-Otero2,
Mike J. Gilchrist1 & James M. A. Turner1

In female (XX) mammals, one of the two X chromosomes is
inactivated to ensure an equal dose of X-linked genes with males
(XY)1. X-chromosome inactivation in eutherian mammals is
mediated by the non-coding RNA Xist2. Xist is not found in
metatherians3 (marsupials), and how X-chromosome inactivation
is initiated in these mammals has been the subject of speculation
for decades4. Using the marsupial Monodelphis domestica, here we
identify Rsx (RNA-on-the-silent X), an RNA that has properties
consistent with a role in X-chromosome inactivation. Rsx is a large,
repeat-rich RNA that is expressed only in females and is tran-
scribed from, and coats, the inactive X chromosome. In female
germ cells, in which both X chromosomes are active, Rsx is
silenced, linking Rsx expression to X-chromosome inactivation
and reactivation. Integration of an Rsx transgene on an autosome
in mouse embryonic stem cells leads to gene silencing in cis. Our
findings permit comparative studies of X-chromosome inactiva-
tion in mammals and pose questions about the mechanisms by
which X-chromosome inactivation is achieved in eutherians.

X-chromosome dosage-compensation mechanisms vary between
metazoans5. In metatherians, X-chromosome inactivation (XCI) is
imprinted, affecting the paternal X chromosome6, but the factors that
drive XCI in these mammals are unknown4. The metatherian and
eutherian female inactive X chromosomes share common epigenetic
features7–9, suggesting that XCI in these mammals proceeds by a similar
mechanism. Notably, the metatherian inactive X chromosome is
enriched for histone H3 Lys 27 trimethylation (H3K27me3)7–10. In
eutherians, this H3K27me3 enrichment is Xist-dependent11,. We
therefore proposed that an unidentified X-linked RNA initiates XCI
in metatherians7. Xist RNA is expressed in female but not male somatic
tissues, coats the inactive X chromosome, and is expressed from the
inactive X chromosome12–15. We posited that a regulator of XCI in
metatherians would also exhibit these unusual properties.

We analysed XCI in the female brain of the short-tailed opossum
M. domestica. Using RNA fluorescence in situ hybridization (FISH),
we studied the expression of the X-linked gene Hprt1 with a bacterial
artificial chromosome (BAC), VM18-839J22, containing Hprt1 plus
49 kilobases (kb) of upstream and 82 kb of downstream sequence, and
in which no other known genes mapped (Fig. 1a). RNA FISH signals
usually appear as pinpoint dots. However, the RNA signal detected
resembled a cloud (Fig. 1a and Supplementary Fig. 1) that was remin-
iscent of the Xist RNA cloud seen in female mouse (Fig. 1a) and human
cells15. We observed the same RNA cloud using a modified form of the
BAC carrying an Hprt1 deletion (Fig. 1a). The RNA therefore origi-
nated from another, uncharacterized gene located within the genomic
region defined by VM18-839J22. RNA FISH using other BACs
narrowed down this region to 82 kb downstream of Hprt1 (Fig. 1a).
We identified the RNA using reverse transcription PCR (RT–PCR) on
female brain complementary DNA with primers located along this

critical region (Fig. 1b and Supplementary Table 1), revealing a tran-
scription unit spanning 47 kb (Fig. 1b).

We then investigated whether the RNA exhibited other Xist-like
features. First, we looked for evidence of sexually dimorphic expression.
No RNA clouds were detected in male opossum brain by VM18-839J22
RNA FISH (Fig. 1b), demonstrating that in this tissue expression of the
RNA was female-specific. Consistent with this, RT–PCR on male brain
cDNA revealed no expression of the 47-kb transcript previously iden-
tified in females (Fig. 1b). RT–PCR on a broad array of tissues, repre-
senting derivatives of endoderm, mesoderm and ectoderm, from both
males and females revealed expression of the RNA in all female but no
male tissues examined (Fig. 1b).

Next, we established whether the RNA coats the inactive X chro-
mosome. We combined VM18-839J22 RNA FISH on female brain cells
withimmunostainingfortheinactiveXchromosomemarkerH3K27me3.
We observed colocalization of RNA clouds and H3K27me3 signals
(Fig. 1c), demonstrating inactive X chromosome coating.

To determine whether the RNA was expressed from the inactive X
chromosome, we performed dual RNA–DNA FISH using the VM18-
839J22 BAC. No RNA signal was seen colocalizing with the DNA
signal on the active X chromosome (Fig. 1d). By contrast, an RNA
signal was observed colocalizing with the DNA signal on the inactive X
chromosome (Fig. 1d). This RNA signal was brighter than others in the
surrounding cloud, a feature characteristic of a site of nascent RNA
synthesis. Thus, the RNA is expressed only from the inactive X chro-
mosome. This must be the paternal X chromosome, as this is always
chosen for inactivation6. In summary, like Xist, the RNA that we
identified is female-specific, coats the inactive X and is transcribed
only from the inactive X chromosome. We call the RNA Rsx (RNA-
on-the-silent X).

To characterize Rsx further, we performed RNA-sequencing (RNA-
seq) on female opossum brain (Fig. 2a). This confirmed that the Rsx
gene generates a precursor RNA of 47 kb (University of California
Santa Cruz (UCSC) monDom5 coordinates: chrX 35,605,415–
35,651,609) transcribed antisense relative to Hprt1. Split RNA reads
indicated that Rsx encodes a spliced RNA consisting of four exons: this
was confirmed by RT–PCR (Fig. 2a and Supplementary Table 1). The
RNA-seq data predicted that the mature Rsx RNA is large, approx-
imating 27 kb, with 25 kb of sequence deriving from a single exon.
Northern blots confirmed that Rsx RNA was large, exceeding the
17 kb mouse Xist RNA in size, and validated the strandedness,
female-specificity and broadness of Rsx expression (Fig. 2b). The level
of Rsx expression varied between female tissues, an observation also
noted for Xist (Supplementary Fig. 2). 39 rapid amplification of com-
plementary DNA ends (RACE) demonstrated that Rsx transcripts are
polyadenylated.

Sequence comparisons showed that Rsx and Xist are not homolog-
ous. Nevertheless, Rsx exhibited features reminiscent of Xist. Notably,
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•  Female Specific 
•  Large non-coding (> 20Kb)  
•  Coats the Xi 
•  Inactive in Germline cells 
•  Contains tandem repeats 
•  Capable of inactivating autosomes 

Is Rsx a functional ortholog of XIST 



•  lincRNAs have a very rapid rate of gain and loss 
•  Rapid gain/loss makes the XIST/RSX model were lincRNAs may be 

easily replaced appealing until … proven wrong or a more reasonable 
model arises 

•  Repetitive sequence could be a driving force in the genesis of 
lincRNAs 

•  Gene structure seems to be preserved only when junctions may play 
a functional role and turnover very rapidly when they not. 

•  Evolutionary signatures can distinguish lncRNA categories 

Key observations 
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