

Ecological & evolutionary genomic analyses using RAD-seq

2015 Workshop on Genomics **Český Krumlov**

Bill Cresko Institute of Ecology and Evolution Department of Biology University of Oregon

RAD-seq for evolutionary genomic analyses

Evolutionary genomcis of stickleback fish

RAD-seq experimental and statistical considerations

Genomically enabling pipefish

Stacks software pipeline (this afternoon & evening)

Why do species look the way that they do?

Why do organisms vary?

How is cellular functional diversity created?

How is cellular functional diversity created?

The *.omics toolkit is revolutionizing our understanding of all of these biological questions

(1998)

(2000)

(2002)

(2006)

(2002)

(2007)

(2006)

Comparative Genomics

Vertebrate **zygotes** or embryos

28 day human

19h zebrafish

Vertebrate **zygotes** or embryos

Dr. Catchen in his 'following Phish Phase'

28 day human

19h zebrafish

Functional Genomics

Population Genomics

Modified from Gilbert 1998

Time

How do organisms adapt to novel environments?

from Grant and Grant. 2007. How and why species multiply: The radiation of Darwin's finches. Princeton University Press

How do organisms adapt to novel environments?

How is genetic diversity partitioned across individuals, populations and species? What genomic regions are important for adaptation to novel environments? How does genome architecture influence rapid evolution? Where does the basis for evolutionary novelties reside in genomes?

from Grant and Grant. 2007. How and why species multiply: The radiation of Darwin's finches. Princeton University Press

Four fundamental processes in evolution

Origin of genetic variation; mutation migration

Sorting of variation; genetic drift natural selection

Genetic drift is a null model

Simultaneous genotyping of neutral and adaptive loci

Genome-wide background provides more precise estimates: •Demographic processes (e.g. *N*_e) •Phylogeography

Outliers from background indicate:

- •Selective sweeps
- Local adaptation

Namroud et al (2008) Mol Ecol 17:3599

position along genome

How do we 'genomically enable' research studies of non-model organisms?

- I. Genetic Markers & Genetic Maps
- 2. Physical Maps (genomes)
- 3. Transcriptomes
- 4. Gene Expression Analyses
- 5. Epigenetic analyses

In the field and in the lab until a few years ago....

Shouldn't we just sequence everything?

(*note* - the answer to this question may be 'yes' soon, and if so I will stop at this slide. But until then....)

Why not sequence the entire genome??

- Still prohibitively expensive for many studies
 - Human height GWAS; over 15,000 individuals assayed
 - Identified many new regions contributing to the variation
 - Still only identified a fraction of the heritability
- For many studies a full sequence isn't necessary
 - genomes of many organisms are organized in linkage blocks
 - well spaced markers will provide the necessary coverage
- Genetic maps are very useful in genomic studies
 - a high density genetic map can facilitate genome assembly
 - genomes may be segregating a lot of structural variation

Alternative approach -Reduced representation NGS for genotyping

- Focus sequencing on homologous regions across the genome
- Simultaneous identification and typing of single nucleotide polymorphisms (SNPs)
- The cost will be a fraction of the cost of resequencing the genome
 - i.e. 1% genome coverage will be less than 1% the cost
 - often coverage is more even than whole genome sequencing
- Thousands of genomes to be assayed in just a few weeks
- WHY NOT complete genomic sequence is often useful
 - when linkage disequilibrium blocks (LD) are very short
 - Inferring patterns of LD may be easiest with full sequences

Different flavors of Reduced Representation Library (RRL) Sequencing for genotyping

- Common acronyms
 - RRL Reduced Representation Library
 - GBS Genotyping By Sequencing
 - CRoPS Complexity Reduction of Polymorphic Sequences
 - RAD Restriction site Associated DNA
- All rely on restriction enzyme digestion
- RRL, CRoPS, and GBS use one or two restriction enzymes only
- RAD-seq uses a shearing step to more efficiently capture all restriction sites
- Incorporation of barcodes on adaptors for multiplexing
- Aligned against a reference genome or assembled de novo
- Statistical issues
 - new level of sampling variation (sequencing in addition to biological)
 - sequencing error and problems for aligning or clustering

What is RAD-seq? (Restriction-site Associated DNA)

Illumina

2007

Rapid and cost-effective polymorphism identification and genotyping using restriction site associated DNA (RAD) markers

Michael R. Miller,¹ Joseph P. Dunham,² Angel Amores,³ William A. Cresko,² and Eric A. Johnson^{1,4}

¹Institute for Molecular Biology, University of Oregon, Eugene, Oregon 97403, USA; ²Center for Ecology & Evolutionary Biology, University of Oregon, Eugene, Oregon 97403, USA; ³Institute of Neuroscience, University of Oregon, Eugene, Oregon 97403, USA

2008

OPEN ACCESS Frank evaluable online

PLOSORE

Rapid SNP Discovery and Genetic Mapping Using Sequenced RAD Markers

Nathan A. Baird¹", Paul D. Etter¹", Tressa S. Atwood², Mark C. Currey³, Anthony L. Shiver¹, Zachary A. Lewis³, Eric U. Selker¹, William A. Cresko³, Eric A. Johnson¹"

Trentises of Neuroday Ecology, Denerous of Degree, Darren Denore, Vennel Sonne (El Neuros, Z'Freingerich, Darren Denore, Derent Sante, of America, 3 The Campoon for Ecology and Ecology and Ecology, Denerous of Tecology, Denore (Sante) of Tecology, Denore

What is RAD-seq?

(Restriction-site Associated DNA)

22,830 *Sbfl* sites in threespine stickleback ~ 45,000 RAD-Tags

> HiSeq2500 Illumina Lane: 160 million reads HiSeq4000 Illumina Lane: 350 million reads

> > TGCAGGTTCTGTTCACTGAAGCAGACGCGCGTGTATGGA

TGCAGG_{TTGTGACTAACAGGCAATAAAGTAGTAAACAAC} TGCAGG_{TTCTGTTCACTGAAGCAGACGCGCGTGTATGGA} Shfl
0.0	1.0	2.0	3.0	4.0	5.0kb	6.0	7.0	8.0	9.0	10.0
-----	-----	-----	-----	-----	-------	-----	-----	-----	-----	------

A = Amplification primerB = Sequencing primerC = Barcode

Shearing and second adaptor ligation

* Important step here*

A = Amplification primerB = Sequencing primerC = Barcode

Shearing and second adaptor ligation

A = Amplification primer

C = Barcode

Shearing and second adaptor ligation

A = Amplification primer

C = Barcode

Shearing makes consistent fragments for sequencing

Single (GBS) or Double Digest RAD (ddRAD)

A = Amplification primerB = Sequencing primerC = Barcode

Size selection is more problematic without shearing

2bRAD - type 2b restriction enzyme

A = Amplification primerB = Sequencing primerC = Barcode

2bRAD - can scale number of markers easily

A = Amplification primerB = Sequencing primerC = Barcode

2bRAD - size selection is difficult

Summary of plusses and minuses of RAD family

	Sheared RAD	Single or ddRAD	2b-RAD
plusses	- Consistent reads - Local assemblies - Identify PCR duplicates	- Fewer steps - Easy marker scaling	- Fewest steps - Easy marker scaling
minuses	- Shearing step - Scaling requires different enzymes	- Multiple enzymes - Poor consistency - PCR duplicates	- Very short reads - PCR duplicates

Additional benefits of random shearing in RAD

Case studies of using RAD for an organism with a reference genome: population genomics of threespine stickleback

Rundle and McKinnon 2002

Rundle and McKinnon 2002

Laboratory mapping of large effect loci

Pelvic structure size and shape *** (*Eda*) Lateral plate number *** (*Pitx1*) Body coloration *** (*KitL*) Opercle bone shape Pelvic spine length Body shape Courtship behavior Gill raker size Dorsal spine length

<u>A trend</u> of large effect loci identified in the laboratory

 Similar genomic regions and sometimes alleles mapped in independent populations

 <u>A problem</u> is that laboratory mapping approaches are underpowered in stickleback

 <u>A question</u> is whether population genomics studies can provide complementary and more complete information.

Population genomic structure of Oregon stickleback

Stacks analysis pipeline for RAD-seq

Stacks: Building and Genotyping Loci De Novo From Short-Read Sequences

Julian M. Catchen,* Angel Amores,[†] Paul Hohenlohe,* William Cresko,* and John H. Postlethwait^{†,1} *Center for Ecology and Evolutionary Biology and [†]Institute of Neuroscience, University of Oregon, Eugene, Oregon 97403

Stacks: an analysis tool set for population genomics

JULIAN CATCHEN,* PAUL A. HOHENLOHE,* † SUSAN BASSHAM,* ANGEL AMORES; and WILLIAM A. CRESKO*

*Institute of Ecology and Evolution, University of Oregon, Eugene, OR 97403-5289, USA, †Biological Sciences, University of Idaho, Moscow, ID 83844-3051, USA, ‡Institute of Neuroscience, University of Oregon, Eugene, OR 97403-1254, USA

Population structure using PCA

PC 1 explains 89% of the overall variance

Phylogenetic relationship among populations

Population structure using Bayesian analysis (Structure)

Genome-Wide Association Study (GWAS) using RAD

Genome-Wide Association Study (GWAS) using RAD

CRISPR gene editing in stickleback to test associations

What genomic regions are associated with the different habitats?

How quickly can the allele frequencies change?

Signatures of natural selection in 13,000 years

Hohenlohe, Bassham et al. 2010. PLoS Genetics
Signatures of natural selection in 13,000 years

Genomic location (mBases)

Hohenlohe, Bassham et al. 2010. PLoS Genetics

F_{st}

Numerous novel regions identified

Global analysis of complete sequencing consistent with the Alaskan results

Jones et al. 2012. Nature

Global analysis of complete sequencing consistent with the Alaskan results

F_{ST} 0.5

0.3

-0.1

35000

20900

25000

30000

35000

Jones et al. 2012. Nature

Shake rattle and evolve in 50 years team earthquake

Susan Bassham

Julian Catchen

Emily Lescak

Frank von Hippel

Middleton Island

Photo Credits: BLM, E-Terra

Middleton Island

Photo Credits: BLM, E-Terra

Middleton Island - 50 year old populations

Photo Credits: BLM, E-Terra

The majority of the genetic variation is partitioned between oceanic and freshwater fish

The majority of the genetic variation is partitioned between oceanic and freshwater fish

Extensive phenotypic change occurs even in populations with little overall differentiation

Extensive phenotypic change occurs even in populations with little overall differentiation

Structure analysis shows independent evolution even among populations on a single island

Structure analysis shows independent evolution even among populations on a single island

Structure analysis shows independent evolution even among populations on a single island

At least six independent evolutionary events in freshwater in the last 50 years

How much of the genome is differentiated?

How similar are the genomic patterns of differentiation?

Linkage disequilibrium is extensive between oceanic and freshwater stickleback, but not within

Linkage disequilibrium is extensive between oceanic and freshwater stickleback, but not within

LG 4

LG 7

LG 15

LG 21

Are these genomic blocks habitat specific?

From SNPs to haplotypes

- SNPs can be ordered into haplotypes
- Haplotypes provide deep & shallow evolutionary information
- Phasing genotypes within and among RAD sites
- Genotype imputation for missing SNPs

Coalescent analysis using RAD-seq data

Nature Reviews | Genetics

Noah A. Rosenberg & Magnus Nordborg Nature Reviews Genetics **3**, 380-390 (May 2002)

Coalescent analysis using RAD-seq data

Nature Reviews | Genetics

Neutral coalescent expectations

Natural selection and the coalescent

Nature Reviews | Genetics

RAD-seq coalescent in stickleback

RAD-seq coalescent in stickleback

RAD-seq coalescent in stickleback - UNIFRAC

RAD-seq coalescent in stickleback - UNIFRAC

Many haplotypes are habitat specific

And correspond with signatures of divergent selection

Many haplotypes in regions subject to divergent section are quite old

What can explain such rapid evolution and haplotype structure?

Is the stickleback genome architecture partly responsible?

Julian Catchen, Susie Bassham and Thom Nelson

Genetic Map Construction

PCR Screening of Breakpoints

N50	17,417 bp	18,982 bp	15,555 bp	15,534 bp
Max	199,905 bp	192,283 bp	238,768 bp	254,734 bp
Total	488.8 Mb	472.5 Mb	456.4 Mb	473.4 Mb
Median Coverage	24.6x	26.5x	24.1x	25.8x

161,305,595 pairs	144,396,898 pairs	131,471,548 pairs	150,786,462 pairs

FI Pseudo-testcross using RAD-seq

Linkage Group XXI

RS (Marine) Boot (Freshwater)

Genome Arrangement

Inverted

- I. Previous work has shown that the freshwater genomes evolve in 13,000 years.
- 2. These new Middleton Island data shows that the phenotype can appear in as little as 50 years.
- 3. Much of the divergence involves soft sweeps.
- 4. This could represent thousands of haplotypes reassembling, but the genome appears *chunkier*.
- 5. Many haplotypes are habitat specific and are quite ancient.
- 6. Haplotypes often coincide with structural variation across the stickleback genome

<u>Hypothesis</u>: Old genomic architecture variation is a product of the metapopulation structure of stickleback, and this architecture strongly influences subsequent rapid evolution.

Considerations for RAD-seq studies

Tradeoffs:

Number of sites versus **Depth** of sequencing per site versus **Number of samples**

Tradeoffs: Number of sites versus **Depth** of sequencing per site versus **Number of samples**

raw reads / samples / sites = coverage at each RAD locus

1,000,000 / 100 / 1,000 = 10x coverage

25 to 50x average coverage per RAD locus is a good goal

Tradeoffs: **Number** of sites versus **Depth** of sequencing per site versus **Number of samples**

How many tags do I need?

Things to consider

Choice of enzyme and genome size $(0.25)^n \times \text{genome size} = \text{expected } \# \text{ sites}$

Genomes are biased:

expect 112,300 six-cutter sites in stickleback (460 Mb)	actual EcoRI sites = 90,000
expect 7000 eight-cutter sites in stickleback	actual Sbf1 sites = 22, 800
expect 32,900 six-cutter sites in <i>C. remanei</i> (135 Mb)	actual EcoRI sites = 73,200

Tradeoffs: Number of sites versus **Depth** of sequencing per site versus **Number of samples**

How many tags do I need?

Things to consider

Choice of enzyme and genome size Polymorphism and read length

Nucleotide polymorphism rate = 0.01 to 0.001 for most vertebrates

Stickleback populations: 0.01 to 0.02. At least 1 SNP every 100 bp, on average

Tradeoffs:

Number of sites versus **Depth** of sequencing per site versus **Number of samples**

How many samples should be multiplexed?

Things to consider

Barcoded adapters

5 to 8nt barcodes Variable length barcodes Combinatorial barcodes (PE)

Barcode distance - two mismatches

How many samples should be multiplexed?

Things to consider

DNA Quality

Multiplex only like samples to help equalize representation of poor quality samples

How many samples should be multiplexed?

Things to consider

DNA Quality Diversify barcodes

Illumina cluster calling is confused by repetition in first 4 bases - can offset barcodes

CGATA GTACA TAGCC ACTGC

How can I get the best depth of coverage?

Things to consider

Fragment size Smaller/tighter is better

How can I get the best depth of coverage?

Things to consider

Fragment size Library quality qPCR qPCR control should be similar to measured sample:

How can I get the best depth of coverage?

Things to consider

Statistical considerations in RAD-seq

G

G

G

G

GT heterozygote? GG homozygote with error? AA homozygote with lots of error? Needed a rigorous method to call genotypes

Making statistics continuous across the genome

Kernel-smoothing average of summary statistics along genome

Bootstrap re-sampling to estimate significance of moving average

Overall pipeline

'Bias' in RAD-sequencing

 $\pi = 3.1415....$

'Bias' in RAD-sequencing

Bias in RAD-sequencing

MOLECULAR ECOLOGY

Molecular Ecology (2013) 22, 3179-3190

doi: 10.1111/mec.12

RADseq underestimates diversity and introduces genealogical biases due to nonrandom haplotype sampling

B. ARNOLD,¹ R. B. CORBETT-DETIG,¹ D. HARTL and K. BOMBLIES Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA

Bias in RAD-sequencing; genetic diversity

Bias in RAD-sequencing; genetic diversity

Bias in RAD-sequencing summary

		Mean Recombination	
Protocol	θ per bp	θ_{we}/θ_{wa}	π_{e}/π_{a}
Standard	0.0001	0.994	0.995
	0.001	0.987	0.982
	0.01	0.956	0.933
Double digest	0.0001	0.835	0.836
	0.001	0.858	0.851
	0.01	0.829	0.797

Bias in RAD-sequencing summary

		Mean	
		Recombina	tion
Protocol	θ per bp	θ_{we}/θ_{wa}	π_{e}/π_{a}
Standard	0.0001	0.994	0.995
	0.001	0.987	0.982
	0.01	0.956	0.933
Double digest	0.0001	0.835	0.836
	0.001	0.858	0.851
	0.01	0.829	0.797

Bias in RAD-sequencing summary

		Mean	
		Recombina	tion
Protocol	θ per bp	θ_{we}/θ_{wa}	π_{e}/π_{a}
Standard	0.0001	0.994	0.995
	0.001	0.987	0.982
	0.01	0.956	0.933
Double digest	0.0001	0.835	0.836
	0.001	0.858	0.851
	0.01	0.829	0.797

Why is ddRAD so much more biased?

Is RAD-seq suitable for phylogenetic inference? An in silico assessment and optimization

Ecology and Evolution

Species pair <i>D.</i> <i>melanogaster</i>	Node depth (My)	Orthologous tags	Retrieved orthologous tags (%)	In clusters including paralogs (%)
D.sechellia	5.4	2978	99	5
D.simulans	5.4	2892	99	4
D.erecta	12.6	2390	97	3
D.yakuba	12.8	2314	97	8
D.ananassae	44.2	916	68	9
D.persimilis	54.9	648	65	9
D.pseudoobscura	54.9	648	66	9
D.wilistoni	62.2	242	49	6
D.grimshawi	62.9	290	60	8
D.virilis	62.9	286	59	5
D.mojavensis	62.9	298	59	8

RAD-seq and phylogenetics

Ecology and Evolution

Open Access

Is RAD-seq suitable for phylogenetic inference? An in silico assessment and optimization

Marie Cariou, Laurent Duret & Sylvain Charlat

What if you don't have a genome sequence?

Genomically enabling very non-model organisms: RAD-seq can help

Julian Catchen, Allison Fuiten, Susie Bassham, Clay Small and Adam Jones

Seahorses, sea dragons and pipefishes

Gasterosteidae and Syngnathidae are historically considered to be closely related

Wilson et al. 2003

Gulf Pipefish Syngnathus scovelli

-160 mm (6.3")
-reversed sex roles
-sexual dimorphism
-specialized
suction feeding
-no sequences in
international databases

www.bio.tamu.edu/USERS/ajones/charlyn.html Fishbase.org

We're really interested in the head and body axis

Few teleost genomes are available Gasterosteiformes: only stickleback

Solution: 'genomically enable' pipefish

1) A high quality transcriptome

2) Very dense RAD genetic map

3) Deep coverage shotgun sequencing of genome

4) Order genomic and transcriptomic contigs against the RAD reference map

Pipefish Transcriptome

Building an EST database in pipefish

Pipefish embryonic mRNA ↓ Illumina sequencing: 100 nt, paired-end ↓ 200 million reads (two lanes) ↓ Assembly of transcripts

Transcriptome

Transcriptome

Pipefish Genetic Map

Generated an F1 family of 103 individuals RAD sequenced the parents and offspring Analyzed the data using Stacks Paired end local assemblies Output to JoinMap format Created Linkage map

The pipefish genetic map is closed; 22 LGs 6000 segregating SNPs; 30,000 RAD sites

Pipefish Genome Project

Generated DNA from a single individual Random Illumina shotgun sequencing Removed highly repetitive kmers

Produced several different genome assemblies

Illumina genomic libraries for pipefish genome

de novo Genome Sequencing

TAAAGAAAACATTCAGCAGTCACCATGGCGATGGCGGGGCTCTGAGATGGCTGCCGGGAGTGCTGACAGGCCTGTGTCAGAGCAGAATTTCCACCCGGCCATTAAGGATCACTCCGTCTCTCACCCCTCTTGA

de novo Genome Sequencing

TAAAGAAAACATTCAGCAGTCACCATGGCGATGGCGGGGCTCTGAGATGGCTGCCGGGAGTGCTGACAGGCCTGTGTCAGAGCAGAATTTCCACCCGGCCATTAAGGATCACTCCGTCTCTCACCCCTCTTGA

Mate-pair Sequencing

Pipefish genome assembly version 0.99 Nearly the whole genome is covered

Coverage	Scaffolds	Contigs	Scaffold N50	Contig N50
All (66.6x)	1,820	25,075	796,183	23,012

Max	Average Length	Total Length	Gap Length	%
5,676,603	162,928	296,529,585	27,303,839	(8.39%)

Overall Conclusions

Genomics can be a tool for enabling new research in models & nonmodels

- RAD-seq can be used for SNP identification and genotyping
- documenting patterns of genetic variation
- identifying the molecular genetic basis of important phenotypic variation
- assessing how ecological processes structure this genetic variation in genomes
- analytical and computational approaches are challenging but manageable

Not your father's genome assembly

- a mixture of data types can be efficiently combined
- a genetic map is extremely useful for pulling it all together
- having a tiled genome is good enough it doesn't have to be completely closed

Open Source Genomics provides a suite of breakthrough technologies

- the molecular approaches are not as daunting as they first appear
- analytical and computational approaches are challenging
 - New software tools can help, but knowledge of Unix and Scripting is essential
 - Also essential to be comfortable with classical and modern statistics

Acknowledgments

- Past and present lab members Paul Hohenlohe, Thom Nelson, Joe Dunham, Nicole Nishimura & Mark Currey
- Collaborators Eric Johnson, Patrick Phillips, Chuck Kimmel, John Postlethwait
- *Funding* from NSF & NIH, as well as Keck & Murdock Foundations
TUTORIAL - USING STACKS

G3: Genes, Genomes, Genetics

Stacks: Building and Genotyping Loci De Novo From Short-Read Sequences

Julian M. Catchen,* Angel Amores,[†] Paul Hohenlohe,* William Cresko,* and John H. Postlethwait^{†,1} *Center for Ecology and Evolutionary Biology and [†]Institute of Neuroscience, University of Oregon, Eugene, Oregon 97403

PROCESS_RADIAGS

= 1 🕸 (1 tags)											tags pe	r page 10 😫
Id	SNP		Consensus					Match	hing p	rogeny	Marker	Ratio	Genotype
∼103 annotate	Yes [2nuc]	TGCAGGAGCCCTCCCACTCGCTGA	TGGCCACTCCATTCAGTGGACCGAGAGC <mark>G</mark> CAAAGCAACACTTCACATTCC					2		92 / 91	ab/ac	aa: 25 (27.5% ab: 24 (26.4% bc: 24 (26.4%)	91
S	NPs	Alleles					Match	ning S	amples	1			
Column: 52; G/A Column: 70; T/G c : AG		A LIGT	View: Maplotypes 🗆 Allele Depths 🗆 Genotypes										
		c : AG	Male GT / GG	Female AG/GT	Progeny 1	Progeny 2	Proger		GG / GT	Progeny 5	Progeny (Frogeny 7	Progeny 8
			Progeny 9	Progeny 10	Progeny 11	Progeny 12	Progen	AG	I / AG	Progeny 1	Progeny 1	6 Progeny 17	Progeny IB
			Progeny 19	Progeny 20 AG / GG	Progeny 21	Progeny 22		AG C	rogeny 24	Progeny 2	5 Progeny 2 GG / GT	6 Progeny 27	Progeny 28
			Progeny 29	Progeny 31 GT	Progeny 32	Progény 33	Progen	y 34 Pr	nogeny 35	Progeny 3	5 Progeny 3	7 Progeny 38	AG/GT
			Progeny 40	Progény 41	Progeny 42	Progeny 43	Progen	GT Pr	GT 45	Progeny 4	6 Progeny 4	7 Progeny 48	Progeny 49
			Progeny 50	Progeny 51	Progeny 52	Progeny 53	Progen	GG A	AG/GG	Progeny 5	6 Progeny 5	7 Progeny 58	GG / GT
			Progeny 60	Progeny 61	Progeny 62	Progeny 63	Progen	GT Pr	GT 65	Progeny 6	6 Progeny 6	7 Progeny 68	Progeny 70
			Progeny 71	Progeny 72	Progeny 73	Progeny 74	Progen	9 75 Pr	rogeny 76	Progeny 7	7 Progeny 7	8 Progeny 79	Progeny 80
			Progeny 81	Progeny 82	Progeny 83	Progeny 84	Progen	9 85 Pr	nogeny 86	Progeny B	7 Progeny 8	8 Progeny 89	GG / AG
			Progeny 91	Progeny 92	Progeny 93	Progeny 94							

۳

1 - (1 tags)								_				tags pe	r page 10		
Id	SNP		Consensus				Mat	ching	Progeny	Marker	Ratio	Genotype				
~ 103 annotate	Yes [2nuc]	TOCAGGAG	AGGAGCCCTCCCACTCGCTGATGGCCACTCCATTCAGTGGACCGAGAGCGCAAAGCAACACTTCACATTCCC							2	<u>92 / 91</u>	ab/ac	aa: 25 (27.5%) ab: 24 (26.4%) bc: 24 (26.4%)	91		
SNPs Alleles				Matching Samples												
Columi	n: 52; G/ n: 70; T/	A G	b : GG	View: 🗹 Haplotypes 🗹 Allele Depths 🖂 Genotypes												
		c : AG		Male GT / GG 34 / <u>13</u>	Female AG/GT 12/14	Progeny 1	Progeny 2 <u>AG / GG</u> <u>8 / 16</u>	6G / 26 /	AG 14	Progeny <u>GG</u> / C <u>15</u> / 11	4 Progeny 5 GG / AG 14 / 8	Progeny (AG 29	GT / GG 22 / 11	Progeny 8 AG / GT 12 / 5		
				Progeny 9	Progeny 10 GT 23	Progeny 11 <u>GG</u> / <u>GT</u> <u>32</u> / <u>14</u>	Progeny 12 GT / AG 22 / 7		ny 13 AG 8	Progeny 3 GT / AG Z / 8	4 Progeny 1 GI/GG 2/3	5 Progeny 3 GG / GT 19 / 14	6 Progeny 17 <u>GG / AG</u> <u>9 / 4</u>	Progeny 18		
				Progeny 19 GT / AG 6 / 3	Progeny 20 AG/GG 6/9	Progeny 21 GI / AG 18 / 9	Progeny 22 AG/GI 4/5	GG /	AG	GG / AC 8 / 10	A Progeny 2 GI	GG / G1 10 / 16	6 Progeny 27 GG / AG 3 / 3	Progeny 28 GG / GT 4 / 5		
				Progeny 29 GT / GG E / 5	Progeny 31	Progeny 32	Propeny 33	Proge	ny 34 I 0	Progeny 3 GI/GO 7/3	5 Progény 3	6 Progeny 3	7 Progeny 38	AG/GT 12/7		
						Progeny 40	Progeny 41 GI 5	Progeny #2	Prognmy 43 GT / <u>GG</u> 9 / <u>12</u>	Proget		Progeny A	5 Progeny 4 GG / GT 4 / 11	GG/AC 3/Z	7 Progeny 48	Progeny 49 GT / GG 5 / 6
				Progeny 50 GT 18	Progeny 51	Progeny 52 GT / AG 8 / 5	Progeny 53 <u>GG / GT</u> <u>10 / 8</u>		6 6	Progeny 5 AG / GO <u>B</u> / 10	5 Progeny 5	5 Progeny 5 AG/GT 17/16	7 Progeny 58 GT / AG 23 / 24	Progeny 59 <u>GG / GT</u> <u>25 / 13</u>		
					Progeny 60 GT / GG 12 / 18	Prageny 61 GT / GG 22 / 29	Progeny 82 GT / AG 7 / 23	Progeny 63 <u>GG / AG</u> <u>15 / 11</u>	GG /	ny 64 1 GT 1 20	Frogeny t GT 44	61 G1 27	GG / G1 23 / 17	7 Progeny 88	Progeny 70 <u>GG / AG</u> <u>14 / 13</u>	
				Progeny 71 <u>GG / AG</u> <u>15 / Z</u>	Progeny 72 AG / GG 9 / 6	Progeny 73 GI 4Z	Progeny 74 GG / AG 31 / 29	Prógen	ny 75 GG 22	Progeny 7	6 Progeny 7 GG / AG 14 / 17	GG / AG 25 / 17	8 Progeny 79 GT / GG 29 / 14	Progeny SO GT 34		
				Progeny 81 GT / AG 17 / 29	Progeny 82 GT / AG 29 / 24	Progeny 83 <u>GG / AG</u> <u>16 / 25</u>	Progeny 84 GT 41	Proper GT / 14 /	my 85 GG 24	Progeny B GI/GC G/4	6 Progeny B	7 Progeny 8 GG / AG 5 / 11	8 Progeny 89 GT 18	Progeny 50 GG / AG 5 / 17		
				Progeny 91 AG / GG	Progeny 92	Progeny 93	Progeny 94									

.

Id ~ 103 onotate SNE	Yes		Consens											
~ 103 nnotate SNF	Yes		Consensus					Match	nts P	rogeny	Marker	Ratio	Genotype	
SNE	[kilde]	TGCAGGAGCCCTCCCACTCGCTGATGGCCACTCCATTCAGTGGACCGAGAGCGCAAAGCAACACTTCACATTCC						2	9	92 / 91	ab/ac	aa: 25 (27.5%) ab: 24 (26.4%) bc: 24 (26.4%)	91	
Calena	Ps	Alleles	Matching Samples											
Column: 52; G/A Column: 70; T/G		b GG	View: Maplotypes Allele Depths M Genotypes											
		c : AG	Maie GT / <u>GG</u> 34 / 13	Female AG/GT 12/14	Progeny 1 GT Z aa	Progeny 2 AG / GG 8 / 16 bc	GG / 26 / bo	AG G 14 1	G / GT 5 / 11 ab	Progeny 5 GG / AG 14 / 8 bc	Progeny I AG 29 AC	Frogeny 7 57/ <u>66</u> 22/11 ab	AG/GT 12/5 ac	
			Progeny 9 GT 25 aa	Progeny 10 GT 23 aa	Progeny 11 <u>GG / GT</u> <u>32</u> / 14 ab	Progeny 12 GT / AG 22 / 7 ac •	GG / 1/ bo	AG G	I/AG 1/AG 2/8 ac	Progeny 1 GT / GG 2 / 3 ab	GG / GT 19 / 14 ab	GG / AG 9 / 4 bc	Progeny 18 GI 15 aa	
			Progeny 19 GI / AG 6 / 3 ac	Progeny 20 AG / GG 6 / 9 bc	Progeny 21 GT / AG 18 / 9 ac	Progeny 22 AG/GI 4/5 ac	GG / 1/ b	AG G	G / AG 8 / 10 bc	Progeny 25	GG / GI 10 / 15 ab	GG / AG 3 / 3 bc	Progeny 28 GG / GI 4 / 5 ab	
			Progeny 29 GT / <u>GG</u> 8 / 5 ab	Progeny 31	Progeny 32 GT 10 aa	Progenty 33	Proger	ny 34 Pro	1/ <u>GG</u> 1/ <u>3</u> ab	Progeny 38	Progeny 3 GT / AG 12 / 4 ac	7 Progeny 38	AG/GI 12/2 ac	
			Progeny 40	Progeny 41	Progeny 42 GI 9 aa	Progeny 43 GT / <u>GG</u> 9 / 12 ab	GG / 3 / at	NY 44 Pro	AC	Progeny 44 GG / GT 4 / 11 ab	GG / AG 3 / 7 bc	7 Progeny 48 GI 18 aa	Progeny 49 GT / GG 5 / 6 ab	
					Progeny, SO GT 18 aa	Progeny 51	Progeny 52 GT / AG B / 5 ac	Propeny 53 GG / GT 10 / B ab	GI/ S/ at	GG A	G / GG 8 / 10 bc	Progeny 50	AG / GI 17 / 16 ac	7 Progeny 58 GT / AG 23 / 24 ac
			Progeny 60 GT / <u>GG</u> 12 / 18 ab	Progeny 61 GT / <u>GG</u> 22 / 29 ab	Progeny 62 GT / AG 7 / 23 ac	Progeny 63 GG / AG 15 / 11 bc	GG / 13 / at	GT 20	GI 44 aa	Progeny 61	6 Progeny 6 <u>GG</u> / <u>G</u> 23 / 17 ab	7 Progeny 68 GT 30 aa	Progeny 70 <u>GG / AG</u> <u>14 / 13</u> bc	
			Progeny 71 <u>GG / AG</u> <u>15 / 7</u> bc	Progeny 72 AG / GG 9 / 6 bc	Progeny 73 GT 42 aa	Propeny 74 <u>GG / AG</u> <u>31 / 29</u> bc	GI / IS / at	GG 22	GT 41 aa	Progeny 7 <u>GG / AG</u> <u>14 / 17</u> bc	GG / AC 25 / 17 bc	8 Progeny 79 GT / GG 29 / 14 ab	Progeny 80 GT 34 aa	

Stacks Analysis Pipeline: RAD-Tag Viewer

🔹 🔄 🕼 🕂 🛨 👘 http://genome.uoregon.edu/stacks/tag.php?db=gartut_radtags&batch_id=1&sample_id=2&tag_id=73

Stacks

Batch #1 [2011-08-10; 80bp Lepisosteus oculatus F1 Genetic Map RAD-Tag Samples]

RAD-Tag Sample #2 [female]

Sequence #73

Catalog ID	Depth	SNPs		A	lieles	Deleveraged?	Lumberjackstack?	Blacklisted?
#103	26x	Column: 52	G/A	AG	46.15%	Fales	Falsa	Fales
		Column: 70	T/G	GT	53.85%	raise	raise	raise

	Relationship	Seq ID	Sequence	
			01211547031 10 10 10 10 10 10 10 10 10 10 10 10 10	
	consensus		TGCAGGAGCCCTCCCACTCGCTGATGGCCACTCCATTCAGTGGACCGAGAGCGCAAAGCAACACTTCACATTCCC	
1.0	model		000000000000000000000000000000000000000	
1	primary	CAGTC_2_0018_768_1365_1[35245]	TGCAGGAGCCCTCCCACTCGCTGATGGCCACTCCATTCAGTGGACCGAGAGCACAAAGCACACGACGACGACGACGACGAC	
2	primary	CAGTC_2_0029_1628_1751_1[35245]	TGCAGGAGCCCTCCCACTCGCTGATGGCCACTCCATTCAGTGGACCGAGAGCACAAAGCAACACTCACAGTCCC	
3	primary	CAGTC 2 0053 1692 1388 1[35245]	TGCAGGAGCCCTCCCACTCGCTGATGGCCACTCCATTCAGTGGACCGAGAGCACAAAGCAACACTTCACAGTCCC	
4	primary	CAGTC 2_0058_1588_1038_1[35245]	TGCAGGAGCCCTCCCACTCGCTGATGGCCACTCCATTCAGTGGACCGAGAGCACAAAGCAACACTTCACAGTCCC	
5	primary	CAGTC 2 0059 1524 1186 1(35245)	TGCAGGAGCCCTCCCACTCGCTGATGGCCACTCCATTCAGTGGACCGAGAGCACAAAGCAACACTTCACAGTCCC	
6	primary	CAGTC 2 0094 1356 1854 1[35245]	TGCAGGAGCCCTCCCACTCGCTGATGGCCACTCCATTCAGTGGACCGAGAGCACAAAGCAACACTTCACAGTCCC	
7	primary	CAGTC 2 0096 1791 1246 1(35245)	TOCAGGAGCCCTCCCACTCGCTGATCGCCACTCCATTCAGTGGACCGAGAGCACAAAGCAACACTTCACAGTCCC	
8	primary	CAGTC 2 0021 877 296 1[35245]	TGCAGGAGCCCTCCCACTCGCTGATGGCCACTCCATTCAGTGGACCGAGAGCGCAAAGCAACACTTCACATTCCC	
9	primary	CAGTC_2_0024_307_735_1[35245]	TGCAGGAGCCCTCCCACTCGCTGATGGCCACTCCATTCAGTGGACCGAGAGCGCAAAGCAACACTTCACATTCCC	
10	primary	CAGTC 2 0025 108 810 1[35245]	TGCAGGAGCCCTCCCACTCGCTGATGGCCACTCCATTCAGTGGACCGAGAGCGCAAAGCAACACTTCACATTCCC	
11	primary	CAGTC 2 0039 1252 1764 11352451	TCCAGGAGCCCTCCCACTCGCTGATGGCCACTCCATTCAGTGGACCGAGAGCGCAAAGCAACACTTCACATTCCC	
12	primary	CAGTC 2 0061 596 159 1[35245]	TGCAGGAGCCCTCCCACTCGCTGATGGCCACTCCATTCAGTGGACCGAGAGCGCAAAGCAACACTTCACATTCCC	
13	primary	CAGTC 2 0068 1310 997 1[35245]	TGCAGGAGCCCTCCCACTCGCTGATGGCCACTCCATTCAGTGGACCGAGAGCGCAAAGCAACACTTCACATTCCC	
14	primary	CAGTC 2 0070 644 2040 1(35245)	TGCAGGAGCCCTCCCACTCGCTGATGGCCACTCCATTCAGTGGACCGAGAGCGCAAAGCAACACTTCACATTCCC	
15	primary	CAGTC 2 0074 328 659 1[35245]	TGCAGGAGCCCTCCCACTCGCTGATGGCCACTCCATTCAGTGGACCGAGAGCGCAAAGCAACACTTCACATTCCC	
16	primary	CAGTC 2 0075 1668 1862 1[35245]	TGCAGGAGCCCTCCCACTCGCTGATGGCCACTCCATTCAGTGGACCGAGAGCGCAAAGCAACACTTCACATTCCC	
17	primary	CAGTC 2 0079 1481 505 1[35245]	TGCAGGAGCCCTCCCACTCGCTGATGGCCACTCCATTCAGTGGACCGAGAGCGCAAAGCAACACTTCACATTCCC	
18	primary	CAGTC 2 0084 805 1974 1[35245]	TOCAGGAGCCCTCCCACTCGCTGATGGCCACTCCATTCAGTGGACCGAGAGCGCAAAGCAACACTTCACATTCCC	
19	primary	CAGTC 2 0100 481 1043 1[35245]	TGCAGGAGCCCTCCCACTCGCTGATGGCCACTCCATTCAGTGGACCGAGAGCGCAAAGCAACACTTCACATTCCC	
20	secondary	CAGTC 2 0014 728 1008 1(35245)	TGCAGGAGCCCTCCCACTCGCTGATGGCCACTCCATTCAGTGGACCGAGAGCACAAAGCAAAGCAACACTTCACAGACCC	
21	secondary	CAGTC 2 0016 86 1022 1[35245]	TGCAGGAGCCCTCCCACTCGCTGATGGCCACTCCATTCAGTGGACCGAGAGCGCAAAGCAACACTTCACATACCC	
22	secondary	CAGTC 2 0042 426 1001 11352451	TGCAGGAGCCCTCCCACTCGCTGATGGCCACTCCATTCAGTGGACCGAGAGCACCAAGCAACACTTCACAGTCCC	
23	secondary	CAGTC 2 0052 867 1387 11352451	TGCAGGAGCCCTCCCACTCGCTGATGGCCACTCCATTCCGTGGACCGAGAGCACAAAGCAACACTTCACAGTCCC	
24	secondary	CAGTC 2 0012 221 1043 11352451	TGCAGGAGCCCTCCCACTAGCTGATGGCCACTCCATTCAGTGGACCGAGAGCACAAAGCAACACTTCACAGTCCC	
25	secondary	CAGTC 2 0095 120 1067 11352451	TOCAGGAGCCCTCCCACTCGCTGATGGCCCACTCCATTCAGTGGACCGACAGCGCAAAGCCACACTTCACATCCCC	
26	secondary	CAGTC 2 0077 1003 356 1[35245]	TGCAGGAGCCCTCCCACTCGCTGATGGCCACTCCATTCAGTGGACCGAGAGCACAAAGCAACACCTCACAGTCCC	

version 0.998

C Q. Google