Single-cell genomics

2015 Workshop on Genomics, Cesky Krumlov January 22, 2015

Tanja Woyke, DOE-JGI

- A few words about the JGI
 who we are & what we do
 - Single-cell genomics

- the why, the how & what to expect from it

- Single-cell science vignettes
 - from symbionts to microbial dark matter
 - Crystal ball
 - what the future may bring

DOE Joint Genome Institute - a National User Facility

- DOE runs 50+ national user facilities
- Incl. JGI, a high-throughput sequencing & analysis facility
 - Walnut Creek
 - 250 employees
 - Research
 - New technologies
 - Collaborative research
 - Building user communities

Serving as a genomic user facility in support of the DOE missions . . .

JGI Programs & Infrastructure

JGI Sequencing Output

FY Total Bases (Gb) Sequenced

Staying State of the Art

Sanger Sequencing to Next-Gen Sequencing by Synthesis

07/2005 01/2007 04/2007 10/2007 07/2008 05/2009 12/2009 7/2010 11/2010 3/2011 12/2011 04/2013

JGI Sequencing Platforms

Most published single cells have been sequenced on the Illumina platform: HiSeq, (MiSeq)

Applications	Generator at	HiSeq	Library QC, R&D	de novo, SynBio validation, methylation/ epigenome
	*Not suppo	orted by Illumina		

A few words about the JGI
– who we are & what we do

Single-cell genomics

- the why, the how & what to expect from it

- from symbionts to microbial dark matter
- **Crystal ball**
 - what the future may bring

The cultivated minority

~1% cultivated

~99% uncultivated

ecological functions & metabolic capabilities largely unknown

In the context of phylogenetic diversity

Major uncultivated branches in the bacterial ToL

The situation is similar for archaea

Baker et al 2013 (Microbe)

EM3 GN01-GN05, GN09, GN13, GN14 BRC1 "guerrero negro" "bacterial rice cluster" **NKB19** AC1 **OD1** Marine group A = SAR406 "OP11-derived 1" **NC10** OP1-OP4, OP6-OP9, OP11-12 "Nullarbor cave" EM19 "obsidian pool" CD12 WYO **SPAM** TM6, TM7, spring alpine meadow" SR1 "sulphur river" WS1-5, WS6 WWE1, WWE3 Sediment-1 – Sediment-4 KSB2, KSB3 KB1 group MSBL2, MSBL3, MSBL5, MSBL6 TG2, TG3

cultivated

How to access the coding potential?

uncultivated

biased: only some players can	biased: limited lysis & cell	biased: only some organisms	biased: assemblies largely
be cultured	isolation	susceptible to enrichments	limited to abundant players
applicability: +	applicability: +++	applicability: +	applicability: ++++
culturing can introduce	genome snapshot at point in	genome snapshot at point in	genome snapshot at point in
genotype changes	time	time	time
axenic: no assembly	heterogenous populations	heterogenous populations:	heterogenous populations:
challenges	may be dissected	assembly challenge	assembly challenge
phenotypic characterization /	phenotypic characterization /	phenotypic characterization /	phenotypic characterization /
metadata: extensive	metadata: limited to non-	metadata: limited to non-	metadata: limited to non-
	existing	existing	existing
generally less expensive	requires more specialized	possibly requires more	generally less expensive
	equipment, costly, technical	specialized equipment, costly	
	challenges (bias, chimera)		

The single-cell approach: how it works

Multiple displacement amplification (MDA)

- isothermal amplification process
- requires polymerase + random primers + dNTPs

polymerase +	random hexamers	+ =	template DNA	
		<u> </u>		
			-> •	
				

MDA on linear & circular templates

J. Rajendhran et al, 2008 (Biotechnology Advances)

Phi29

- DNA polymerase from phage phi29 (Φ29)
- exceptional strand displacement properties
- --> 100 kb amplicons(!)
- replication at moderate temperatures
- extreme processivity
- $3' \rightarrow 5'$ exonuclease activity
- high-fidelity (error rate ~5x10⁻⁶)

Key challenges

CHALLENGE

Sample contamination ('hitchhiker' DNA)

No universal lysis for all taxa

Chimerism

Reagent contamination

MDA bias

Key challenges

QC of single cell data is critical

- 16S rRNA gene and marker gene phylogenetic analyzes
- Tetramer analysis (Kmer Frequency Analysis) and GC contents
- BLAST analyzes and IMG's Phylogenetic profiler
- Removal of contamination via binning and data reload

Tetramer analysis

2D View 3D View

Rhizobium sp. JGI 0001009-A16 - Plot of PC1, PC2, and PC3

The 3D below is generated using the KING applet.

This red scaffold has points in the main cloud but extends well out.

Clicking on the points in this scaffold opens a separate window with more detail on the scaffold shown below.

im	g/me	er 🚺	···\	EXPER	INTEGR T REVIEW	ATED M	ICROBIAL (CROBIOME	GENOMES SAMPLES	
IMG/M Home	Find Genomes	Find Genes	Find Functions	Compare Genomes	Analysis Cart	My IMG		Companion Systems	Using IMG/M
Home > Find Ge	nomes					Loaded.			
Chromos	ome Viewe	r - Colore	d by COG						
Switch coloring	to: Select F	unction 💌							
Rhizobium sp. JGI 0001009-A16 : B027DRAFT_NODE-unique_54_len_24289.54(bins: Rhizobium9A16 Cleaned(tetramer, GC)) (24289bp gc=0.58 depth=1.00) (coordinates 1-24289)									
ohint: M	ouse over a gene	to to see details	i.						
		9001		15001		24001	27001		
L	γ	L		4 γ					
Rhiz	obium		Pha	age	Rhiz	zobium			

Tetramer analysis

Staphylococcus sp. JGI 0001002-I23 - Plot of PC1, PC2, and PC3

The 3D below is generated using the KING applet.

GC contents

Select GC Content from drop down menu then click Show Histogram.

Phylogenetic profiler

Guideline by Scott Clingenpeel (https://img.jgi.doe.gov)

V	в	Acidobacteria	7 (1)	<u>1</u> (1)	0.08%	1			1			1
V	в	Actinobacteria	280 (1)	<u>1</u> (1)	0.08%	1			1			1
	в	Cyanobacteria	64 (2)	<u>2</u> (2)	0.17%	1			1			1
V	в	Bacilli	568 (30)	<u>27</u> (15)	2.23%	1 - C	<u>54</u> (19)	4.47%		<u>925</u> (17)	76.51%	
V	в	Clostridia	231 (2)	<u>2</u> (2)	0.17%	1			1			1
V	в	Planctomycetes	11 (2)	<u>2</u> (2)	0.17%	1			1			1
V	в	Alphaproteobacteria	255 (17)	<u>13</u> (12)	1.08%	1	<u>8</u> (6)	0.66%	1	<u>1</u> (1)	0.08%	1
V	в	Betaproteobacteria	179 (2)	<u>4</u> (2)	0.33%	1			1			1
V	в	Deltaproteobacteria	57 (1)	<u>1</u> (1)	0.08%	1			1			1
V	в	Gammaproteobacteria	636 (8)	<u>6</u> (6)	0.50%	1	<u>1</u> (1)	0.08%	1	<u>1</u> (1)	0.08%	1
	в	Spirochaetes	60 (6)	<u>20</u> (6)	1.65%	1	<u>6</u> (1)	0.50%	1			1
V	в	Thermi	19 (1)	<u>1</u> (1)	0.08%	1			1			1
V	в	Thermotogae	14 (1)	<u>1</u> (1)	0.08%	1			1			1
V	Р	Bacilli	339 (8)	<u>2</u> (2)	0.17%	1	<u>3</u> (3)	0.25%	1	<u>3</u> (3)	0.25%	1
V	v	dsDNA viruses, no RNA stage	902 (3)	<u>1</u> (1)	0.08%	T			T	<u>3</u> (2)	0.25%	I
	-	Unassigned	-	<u>120</u>	9.93%		<u>204</u>	16.87%		<u>276</u>	22.83%	-
Filter Select All Clear All					Show	All Phyla	-					

Key challenges

CHALLENGE

Sample contamination ('hitchhiker' DNA)

No universal lysis for all taxa

Chimerism

Reagent contamination

MDA bias

A fraction of single cells can be recovered

Clingenpeel et al 2014 (Frontiers in Microbiol)

Key challenges

CHALLENGE

Sample contamination ('hitchhiker' DNA)

No universal lysis for all taxa

Chimerism

Reagent contamination

MDA bias

Chimeric rearrangements

Lasken et al 2007 (BMC Biotechnology)

Key challenges

CHALLENGE

Sample contamination ('hitchhiker' DNA)

No universal lysis for all taxa

Chimerism

Reagent contamination

MDA bias

MDA – coverage bias

E.coli genome, Mbp

A Copeland

MDA coverage bias

Shotgun sequencing theoretical kmer distribution

A Copeland

MDA DNA normalization (wet lab)

Coverage normalization (computational)

JGI single-cell sequencing pipeline

1-2 ul MDA reactions possible with Echo LH

Current limitations: 100 cells ≠ 100 SAGs

Recovered diversity: 16S tags vs SAGs

Benchmark experiment: what to expect?

P: *Pedobacter heparinus* Size: 5,167,383 bp GC-content: 42%

E: *Escherichia coli* str. K-12 Size: 4,639,675 bp GC-content: 51%

Sequenced 8 single-cell

genomes/each

M: *Meiothermus ruber* Size: 3,097,457 bp GC-content: 63%

Image source: http://www.standardsingenomics.org

Assemblies are draft quality

Clingenpeel et al 2014 (Frontiers in Microbiol)

With minimal errors

Clingenpeel et al 2014 (Frontiers in Microbiol)

SAG assemblies complement each other

Clingenpeel et al 2014 (Frontiers in Microbiol)

Low CP values lead to larger assemblies

A few words on sample preservation & preparation

Does sample pre-treatment affect genome recovery?

Clingenpeel et al 2014 (ISME J)

Large-scale linkage of phylogeny and function

Inferring metabolism of uncultured microbes

relationships

• A few words about the JGI

- who we are & what we do
- Single-cell genomics

- the why, the how & what to expect from it

- Single-cell science vignettes
 - from symbionts to microbial dark matter
 - **Crystal ball**
 - what the future may bring

Two draft single-cell genomes

Extensive manual gap closures

17 contigs Longest 680 kb

SAGs are representative of their environment

Green sharpshooter symbionts

5 µm

Green sharpshooter (D. minerva)

- sap-feeding leafhoppers
- harbors two symbionts
- involved in plant pathogen spread (*Xylella*)
- causes serious plant diseases

- uncultured
- small genome size
- simple single cell isolation
- fresh sample availability
- polyploid

Single cell & metagenome approach

Are the genomes identical?

Are the genomes identical?

One complete single-cell genome

Evaluation of population variation

Arabidopsis microbiome project

1117 samplesPlant age – bolting (young) vs. senescent (old)16S pyrotag profilesGenotype – 8 ecotypes

Individual – Aim for 10 individuals per condition

J. Dangl

The Arabidopsis microbiome

Isolates, single cells & enriched metagenomes

Expansion of phylogenetic diversity

Using single-cell genomics to look outside the lamp post

Expansion of phylogenetic diversity

16S rRNA tree of known bacterial phyla

Phillip Hugenholz

Nikos Kyrpides

Natalia Ivanova

Jonathan Eisen

Ramunas Stepanauskas

Steven Hallam

Stefan Sievert

Wen-Tso Liu

George Tsiamis

Brian Hedlund

Christian Rinke

Alex Sczyrba

Patrick Schwientek

Samples from 9 sites were selected

Some sites of high underexplored diversity

Sakinaw Lake

From nearly 10,000 cells to 200 draft genomes

Assembly statistics of SAGs

Rinke et al 2013 (Nature)

Estimated genome recoveries

Filling some gaps in the ToL

Genomic and functional novelty

Rinke et al 2013 (Nature)

Single cells as phylogenetic anchors

Example: Sakinaw Lake

Rinke et al 2013 (Nature)

Single cells assist in metagenome assignments

Single cells as phylogenetic anchors

Rinke et al 2013 (Nature)

Single cells as phylogenetic anchors

Novel stop codon reassignment

UAG ("amber") UAA ("ochre") U→ ("→al") → g

 \rightarrow glycine

new translation table:

"Candidate Division SR1 and Gracilibacteria Code"

UGA is an additional glycine codon in uncultured SR1 bacteria from the human microbiota

James H. Campbell^{a,1}, Patrick O'Donoghue^{b,1}, Alisha G. Campbell^{a,c}, Patrick Schwientek^d, Alexander Sczyrba^e, Tanja Woyke^d, Dieter Söll^{b,f,2}, and Mircea Podar^{a,c,g,2}

^aBiosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831; ^bDepartment of Molecular Biophysics and Biochemistry and ^fDepartment of Chemistry, Yale University, New Haven, CT 06520; ^cGenome Science and Technology Program and ⁹Department of Microbiology, University of Tennessee, Knoxville, TN 37998; ^dDepartment of Energy Joint Genome Institute, Walnut Creek, CA 94598; and ^eCenter for Biotechnology, Bielefeld University, 33501 Bielefeld, Germany

Stop codon reassignments in the wild

Eddy Rubin

Ivanova

Nikos Kyrpides

Schwientek

Sites of stop codon reassignments

Bacterial opal recoding in freshwater and human

Two stop codon assignment evens in bacteria

Microbial Dark Matter phase II: A community effort

Ramunas Stepanauskas Bigelow Lab

Steven Hallam UCB

John Spear Colorado

Mostafa Elshaed OK State

Sean Crowe UBC

Brian Hedlund U Nevada

Peter Dunfield U of Calgary

Andreas Teske UNC

Hailiang Dong North China

Paul van de Wielen KWR Water

Sari Peura Uppsala U.

Konstaninos Kormas U. Thessaly

Nikolai Ravin Russian Acad. Sci.

Matt Stott GNC Science

Chuanlun Zhang Tongji University

Karin Rengefors Lund University

Deep Steve Lindemann Declined sitepNNL

Nils-Kare Birkeland U of Bergen

Expected outcome

- More novel discoveries
- Improved binning of metagenome data

Archaea

- Understanding of DOE—relevant systems of JGI Users
- Microbial ecology & evolution
 - Functional roles of candidate phyla in the environment
 - Phylogenetic distribution of key metabolic functions
 - Co-occurrences of candidate phyla
 - Early evolution of bacterial & archaeal domains

What else is out there?

Search for new major branches

One approach to look for "new major branches"

Amplified sorted single cells without 16S amplicon: ~4,000

Where else should one look?

Where else should one look?

Environments mimicking that of early Earth

Sanford Underground Research Facility (D Moser)

 \rightarrow Deep subsurface "oxygen free" environments

• A few words about the JGI

- who we are & what we do
- Single-cell genomics
 - the why, the how & what to expect from it

- Single-cell science vignettes
 - from symbionts to microbial dark matter

Crystal ball

- what the future may bring

fnx-driven single-cell genomics

Modified from imgkid.com

Function-driven single-cell genomics

- "Next generation single-cell sequencing":
- Identification and pre-enrichment of uncultivated environmental microbes that are involved in biogeochemical processes of interest:
 - targeted/ function-driven
 - prior to sequencing
 - without relying on any known genetic markers
 - without cultivation biases

"finding the needles in the haystack"

Why function-driven genomics?

- Need to move beyond sequencing yet another genome and narrow our focus on studying microbes that are involved in biogeochemical processes of interest
- Function-driven genomics is part of JGIs strategic future
- For single cells, adding a functional component is technologically highly novel ("Next-gen SCG")

What is needed:

<u>Metagenomics</u>: high throughput, but genome context of functional genes often missing <u>Single-cell genomics</u>: enables genome context, but low throughput

Neither methods is generally targeted

Function-driven single-cell genomics

Function-driven single-cell genomics

Two examples:

Nitrifier diversity ETOP: Michi Wagner (Vienna)/ Roman Stocker (MIT)

Massachusetts Institute of Technology

Plant carbon decomposition

Raman-activated colony sorting

Plant-carbon decomposition project

Fluorescent-labeled substrate approach

Acknowledgements

Team of MDM collaborators

Phil Hugenholz (U Queensland) Ramunas Stepanauskas (Bigelow Lab) Jonathan Eisen (UC Davis) Alex Sczyrba (U Bielefeld, GER) Aaron Darling (UC Davis) Dongying Wu (UC Davis) Nikos Kyrpides (DOE-JGI) Steve Hallam (U British Columbia) Stefan Sievert (WHOI) George Tsiamis (U Ioannina) Wen-Tso Liu (U Illinois) Brian Hedlund (U Nevada)

Phase II MDM collaborators

DOE-JGI

Chris Rinke Patrick Schwientek Natalia Ivanova Iain Anderson Jan-Fang Cheng Nikos Kyrpides Rex Malmstrom Stephanie Malfatti Susannah Tringe Scott Clingenpeel Janey Lee Alicia Clum Alex Copeland Rubin, Bristow, Pennacchio Labs Kyrpides & Markovitz Groups (IMG team)

Department of Energy Dan Drell

Thank you!

Questions?