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Alignment of reads to a reference 

  ..ACTGGGTCATCGTACGATCGATCGATCGATCGATCGGCTAGCTAGCTA.. 

  ..ACTGGGTCATCGTACGATCGATAGATCGATCGATCGCTAGCTAGCTA.. 

Reference  

Sample  



Why is short read alignment hard? 

The shorter a read, the 
less likely it is to have a 
unique match to a 
reference sequence 
 

Need over 7kb reads to 
uniquely place most 
reads from bacteria 



Why do we generate short reads? 

•  Sanger reads lengths ~ 800-2000bp 
 
•  Generally we define short reads as anything below this 
−  Illumina (50bp – 300bp) 
−  SoLID (80bp max) 
−  Ion Torrent (200-400bp max...) 
−  Roche 454 – 400-800bp 

 
•  Even with these platforms it is cheaper to produce short reads (e.g. 50bp) 
rather than 100 or 200bp reads 

•  Diminishing returns: 
−  For some applications 50bp is more than sufficient 
− Small-RNA 
− ChIP-Seq 
− Differential gene expression 
− Digital Gene Expression profiling 



Short read alignment applications 

Genotyping: 
 Methylation 
 SNPs  
 Indels 
  

Classify and measure peaks:  
 ChIP-Seq 
 RNA-Seq 
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Dot Matrix Method 
- Aligning by eye 

9 
http://arbl.cvmbs.colostate.edu/molkit/dnadot/index.html 



Sequence Alignment 

 ATCGATA-CG  
ATGGATTACG 

3 possibilities 

Mismatch 
…C… 
…G… 

Indel 
…-… 
…T… 

Match 
…A… 
…A… 
| 



A very simple alignment scoring system 

 
 

Points for a matching letter:           1 
 
Points for a non-matching letter:   0 
 
Points for inserting a gap:              0 



Global Pair-wise Alignment 

ATCGAT-ACG 
ATGGATTACG 

ATCGATACG, ATGGATTACG 

|| ||| ||| 
+1 +1 +1 +1 +1 +1 +1 +1 Matches: = +8 

0 Mismatches: = 0 
0 Gaps: = 0 

Total score = +8 

But, what does this score mean??  
Could we get a better alignment? 



How to choose the best alignment? 

•  Sequence 1: ACTGAGC 
•  Sequence 2: ATGATGC 

•  Some possible alignments: 
 

ACTGAGC-- ACTGA-GC A----CTGAGC 
A-TGA-TGC A-TGATGC ATGAT----GC 



Global alignment – Needleman-Wunsch 

A global alignment covers the entire lengths of the 
sequences involved 

  

The Needleman-Wunsch algorithm finds the best global 
alignment between 2 sequences across their whole length 

 



Step 1: Initialise 

A C T G A G C 

A 0 

T 0 

G 0 

A 0 

T 0 

G 0 

C 0 1 0 0 0 0 1 

Fill in far-right column and bottom row with: 
 0 for a mis-match 
 1 for a match 



Step 2: 

A C T G A G C 

A 0 

T 0 

G 0 

A 0 

T 0 

G 0 

C 0 1 0 0 0 0 1 

For each box, find the highest number out of the blue boxes 



Step 3: 

A C T G A G C 

A 0 

T 0 

G 0 

A 0 

T 0 

G 1+1=2 0 

C 0 1 0 0 0 0 1 

If there is a match in the yellow box as, take the highest value from the 
blue boxes and add 1 to it  

G matches G in the yellow box, so add 1 to the 1 in the blue box 



Step 2: 

A C T G A G C 

A 0 

T 0 

G 0 

A 0 

T 0 

G 0+1=1 2 0 

C 0 1 0 0 0 0 1 

A does not match G. So add zero to the 1 in the blue box. 



Step 2: 

A C T G A G C 

A 0 

T 0 

G 0 

A 0 

T 0 

G 1+1=2 1 2 0 

C 0 1 0 0 0 0 1 

If there is a match as here, take the highest value and add 1 to it 
 

G matches G so add 1 to 1 in the blue boxes 



Step 2: 

A C T G A G C 

A 0 

T 0 

G 0 

A 0 

T 0 

G 0+1=1 2 1 2 0 

C 0 1 0 0 0 0 1 

If there is a match as here, take the highest value and add 1 to it  
 

T does not match G. So add zero. 



Step 2: 

A C T G A G C 

A 0 

T 0 

G 0 

A 0 

T 0+1=1 0 

G 1 1 1 2 1 2 0 

C 0 1 0 0 0 0 1 

Highest out of the blue boxes is 1 
 

. 



Step 2: 

A C T G A G C 

A 0 

T 0 

G 0 

A 0 

T 2+0=2 1 0 

G 1 1 1 2 1 2 0 

C 0 1 0 0 0 0 1 

Highest out of the blue boxes is 2 
 

A does not match T  
 

. 



Step 2: 

A C T G A G C 

A 0 

T 0 

G 0 

A 0 

T 2+0=2 2 1 0 

G 1 1 1 2 1 2 0 

C 0 1 0 0 0 0 1 

Highest out of the blue boxes is 2 
 

G does not match T  
 

. 



Step 2: 

A C T G A G C 

A 0 

T 0 

G 0 

A 0 

T 3 2 2 1 0 

G 1 1 1 2 1 2 0 

C 0 1 0 0 0 0 1 

Highest out of the blue boxes is 2 
 

T does match T  
 

. 



Step 2: 

A C T G A G C 

A 0 

T 0 

G 0 

A 0 

T 2+0=2 3 2 2 1 0 

G 1 1 1 2 1 2 0 

C 0 1 0 0 0 0 1 

Highest out of the blue boxes is 2 
 

C does not match T  
 

. 



Step 2: 

A C T G A G C 

A 0 

T 0 

G 0 

A 0 

T 2 2 3 2 2 1 0 

G 1 1 1 2 1 2 0 

C 0 1 0 0 0 0 1 

Do the same for all remaining rows 
 

. 



Step 2: 

A C T G A G C 

A 0 

T 0 

G 0 

A 1+0=1 0 

T 2 2 3 2 2 1 0 

G 1 1 1 2 1 2 0 

C 0 1 0 0 0 0 1 

Do the same for all remaining rows 
 

. 



Step 2: 

A C T G A G C 

A 0 

T 0 

G 0 

A 2+1=3 1 0 

T 2 2 3 2 2 1 0 

G 1 1 1 2 1 2 0 

C 0 1 0 0 0 0 1 

Do the same for all remaining rows 
 

. 



Step 2: 

A C T G A G C 

A 0 

T 0 

G 0 

A 2+0=2 3 1 0 

T 2 2 3 2 2 1 0 

G 1 1 1 2 1 2 0 

C 0 1 0 0 0 0 1 

Do the same for all remaining rows 
 

. 



Step 2: 

A C T G A G C 

A 0 

T 0 

G 0 

A 2+0=2 2 3 1 0 

T 2 2 3 2 2 1 0 

G 1 1 1 2 1 2 0 

C 0 1 0 0 0 0 1 

Do the same for all remaining rows 
 

. 



Step 2: 

A C T G A G C 

A 6 5 4 3 3 1 0 

T 4 4 5 3 2 1 0 

G 3 3 3 4 2 1 0 

A 4 3 2 2 3 1 0 

T 2 2 3 2 2 1 0 

G 1 1 1 2 1 2 0 

C 0 1 0 0 0 0 1 

Do the same for all remaining rows 
 

. 



Step 3: Backtracking 

A C T G A G C 

A 6 5 4 3 3 1 0 

T 4 4 5 3 2 1 0 

G 3 3 3 4 2 1 0 

A 4 3 2 2 3 1 0 

T 2 2 3 2 2 1 0 

G 1 1 1 2 1 2 0 

C 0 1 0 0 0 0 1 

Follow largest numbers starting from top-left going down and to the 
right 

. 



A C T G A G C 

A 6 5 4 3 3 1 0 

T 4 4 5 3 2 1 0 

G 3 3 3 4 2 1 0 

A 4 3 2 2 3 1 0 

T 2 2 3 2 2 1 0 

G 1 1 1 2 1 2 0 

C 0 1 0 0 0 0 1 

Step 3: Backtracking 

Follow largest numbers starting from top-left going down and to the 
right 

. 



A C T G A G C 

A 6 5 4 3 3 1 0 

T 4 4 5 3 2 1 0 

G 3 3 3 4 2 1 0 

A 4 3 2 2 3 1 0 

T 2 2 3 2 2 1 0 

G 1 1 1 2 1 2 0 

C 0 1 0 0 0 0 1 

Step 3: Backtracking 

Follow largest numbers starting from top-left,  
going down and to the right 

. 



Step 4: Generate alignment 

A C T G A G C 

A 6 5 4 3 3 1 0 

T 4 4 5 3 2 1 0 

G 3 3 3 4 2 1 0 

A 4 3 2 2 3 1 0 

T 2 2 3 2 2 1 0 

G 1 1 1 2 1 2 0 

C 0 1 0 0 0 0 1 

Horizontal seq     A 
Vertical seq       A 



Step 4: Generate alignment 

A C T G A G C 

A 6 5 4 3 3 1 0 

T 4 4 5 3 2 1 0 

G 3 3 3 4 2 1 0 

A 4 3 2 2 3 1 0 

T 2 2 3 2 2 1 0 

G 1 1 1 2 1 2 0 

C 0 1 0 0 0 0 1 

Horizontal seq     ACT 
Vertical seq       A-T 

Gap 



Step 4: Generate alignment 

A C T G A G C 

A 6 5 4 3 3 1 0 

T 4 4 5 3 2 1 0 

G 3 3 3 4 2 1 0 

A 4 3 2 2 3 1 0 

T 2 2 3 2 2 1 0 

G 1 1 1 2 1 2 0 

C 0 1 0 0 0 0 1 

Horizontal seq     ACTG 
Vertical seq       A-TG 



Step 4: Generate alignment 

A C T G A G C 

A 6 5 4 3 3 1 0 

T 4 4 5 3 2 1 0 

G 3 3 3 4 2 1 0 

A 4 3 2 2 3 1 0 

T 2 2 3 2 2 1 0 

G 1 1 1 2 1 2 0 

C 0 1 0 0 0 0 1 

Horizontal seq     ACTGA 
Vertical seq       A-TGA 



Step 4: Generate alignment 

A C T G A G C 

A 6 5 4 3 3 1 0 

T 4 4 5 3 2 1 0 

G 3 3 3 4 2 1 0 

A 4 3 2 2 3 1 0 

T 2 2 3 2 2 1 0 

G 1 1 1 2 1 2 0 

C 0 1 0 0 0 0 1 

Horizontal seq     ACTGA- 
Vertical seq       A-TGAG 



Step 4: Generate alignment 

A C T G A G C 

A 6 5 4 3 3 1 0 

T 4 4 5 3 2 1 0 

G 3 3 3 4 2 1 0 

A 4 3 2 2 3 1 0 

T 2 2 3 2 2 1 0 

G 1 1 1 2 1 2 0 

C 0 1 0 0 0 0 1 

Horizontal seq     ACTGA-C 
Vertical seq       A-TGAGC 



Optimal global alignment  

 
ACTGA-C 
| ||| | 
A-TGAGC 



Local alignment 

A global alignment is often not appropriate as only parts 
of sequences may be conserved   

 
A local alignment only covers parts of the sequences 

 The Smith-Waterman algorithm finds the best local alignment between 2 
sequences 

 Global alignment 
  

 
 Local alignment 

 
  
  

Q K E S G P S S S Y C  

V Q Q E S G L V R T T C 
|   | | |           | 

    E S G 

      E S G 
    | | | 



Local alignment 

A local alignment of 2 sequences is an alignment 
between parts of the 2 sequences 

  

E.g. Two proteins may be very similar in a functional site, but be very dissimilar 
outside that region 

 
 A global alignment of such sequences would have: 
  (i) lots of matches in the region of high sequence similarity 
 (ii) lots of mismatches & gaps (insertions/deletions) outside the region  of 
similarity   

 
 It makes sense to find the best local alignment instead 

  
  



Alignment of an orthologous protein in  
D.melanogaster vs H.sapiens 

 
Not suitable for global alignment 
 
2 main regions of similarity  
 
Better to use local alignment 
 
 



Local alignment – Smith-Waterman algorithm 

  

Example – align TCGA  to GAC 

0 - T C G A

- 0 0 0 0 0

G 0 -1 -1 1 -1

A 0 -1 -2 -1 2

C 0 -1 0 -2 0

Points for match              = +1 
Points for mismatch         = -1 
Points for a gap insertion = -2 



Local alignment – Smith-Waterman algorithm 

  

Example – align TCGA  to GAC 

0 - T C G A

- 0 0 0 0 0

G 0

A 0

C 0

Points for match              = +1 
Points for mismatch         = -1 
Points for a gap insertion = -2 



Local alignment – Smith-Waterman algorithm 

  
+ MATCH + GAP

+ GAP
Points for match              = +1 
Points for mismatch         = -1 
Points for a gap insertion = -2 

0 - T C G A

- 0 0 0 0 0

G 0 -1

A 0

C 0



Local alignment – Smith-Waterman algorithm 

  

Points for match              = +1 
Points for mismatch         = -1 
Points for a gap insertion = -2 

           -1 

0 - T C G A

- 0 0 0 0 0

G 0 -1

A 0 -1

C 0



Local alignment – Smith-Waterman algorithm 

  

Points for match              = +1 
Points for mismatch         = -1 
Points for a gap insertion = -2 

           -1 

     -3 

0 - T C G A

- 0 0 0 0 0

G 0 -1

A 0 -1

C 0 -1



Local alignment – Smith-Waterman algorithm 

  

Example – align TCGA  to GAC 

0 - T C G A

- 0 0 0 0 0

G 0 -1 -1 1 -1

A 0 -1 -2 -1 2

C 0 -1 0 -2 0

Points for match              = +1 
Points for mismatch         = -1 
Points for a gap insertion = -2 



51 

Backtracking and final local alignment 

  GA 
GA 
|| 

0 - T C G A

- 0 0 0 0 0

G 0 -1 -1 1 -1

A 0 -1 -2 -1 2

C 0 -1 0 -2 0



Smith-Waterman – more details 

http://www.youtube.com/watch?v=IVRSFaGCGeE 



Dynamic programming 

•  Needleman-Wunsch and Smith-Waterman are a 
class of methods known as ‘Dynamic 
Programming’ 

•  Guaranteed to give you the best possible 
alignment 

•  In biology, this algorithm is very inefficient 
because any 2 randomly selected DNA fragments 
in a database are are unlikely to have any 
similarity 

•  Therefore, these methods take a long time to run 



BLAST –  
Basic Local Alignment Search Tool 



Background – BLAST 

•  Primarily designed to identify homologous sequences  
-  Blast is a hashed seed-extend algorithm 
-  Negative selection 
-  Only some parts of a sequence are usually constrained 
 

 
 



BLAST - Original version 

A   C   G   A   A   G   T  A   A   G   G  T   C   C  A   G   T 

C
   

C
   

C
   

T 
  T

   
C

  C
  T

   
G

   
G

   
A 

 T
   

T 
  G

  C
   

G
   

A 

Example: 
 
Seed size  = 4, 
No mismatches in seed 
 
The matching word GGTC 

initiates an alignment 
 
Extension to the left and right 

with no gaps until alignment 
score falls below 50% 

 
Output: 
GTAAGGTCC 
GTTAGGTCC 



BLAST - Original algorithm 

•  Finding seeds significantly increases the speed of BLAST 
compared to doing a full local alignment over a whole sequence 

•  Will not guarantee the best solution 
•  BLAST first finds highly conserved or identical sequences which 

are then extended with a local alignment.  
 



BLAST – Speed (or lack thereof) 

•  Typically BLAST will take approximately 0.1 – 1 second to search 
1 sequence against a database 

•  Depends on size of database, e-value cutoff  and number of hits to 
report selected 

•  60 million reads equates to 70 CPU days! 
•  Even on multi-core systems this is too long!  
•  Especially if you have multiple samples! 
•  This is still true of FPGA and SIMD (vectorised) implementations 

of BLAST 
 



When NOT to use BLAST 

•  A typical situation: you have lots DNA sequences and want to 
extend it or find where on a genome it maps. 

•  In other words, you want an exact or near-exact match to a 
sequence that is part of an assembled genome. 

•  Short reads require very fast algorithms for finding near-exact 
matches in genomic sequences: 
−  BLAT 

−  Highly recommended: the BLAT paper (Kent WJ (2003) Genome Res 
12:656-64) – very well written 

−  SOAP  
−  Bowtie/Bowtie 2  
−  MAQ 
−  BWA 
−  Shrimp2 
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Adapting hashed seed-extend algorithms to work 
with shorter reads 

•  Improve seed matching sensitivity 
−  Allow mismatches within seed  

− BLAST 
−  Allow mismatches + Adopt spaced-seed approach  

− ELAND, SOAP, MAQ, RMAP, ZOOM 
−  Allow mismatches + Spaced-seeds + Multi-seeds 

− SSAHA2, BLAT, ELAND2 
•  Above and/or Improve speed of local alignment for seed extension 
−  Single Instruction Multiple Data 

− Shrimp2, CLCBio 
−  Reduce search space to region around seed 



Hashed seed-extend algorithms 

•  These are most similar to BLAST 
•  Are not designed to work with large databases 

•  2 step process 
−  Identify a match to the seed sequence in the reference 
− Extend match using sensitive (but slow) Smith-

Waterman algorithm (dynamic programming) 



Seed-extend algorithm 

Reference sequence: 
 
...ACTGGGTCATCGTACGATCGATCGATCGATCGATCGGCTAGCTAGCTA... 
 
 

    
 
Short read: 
 
GTCATCGTACGATCGATAGATCGATCGATCGGCTA 

Note that the short read has 1 difference wrt to reference  



Seed-extend algorithm 

Reference sequence: 
 
...ACTGGGTCATCGTACGATCGATCGATCGATCGATCGGCTAGCTAGCTA... 
 
 

    
 
Short read: 
 
GTCATCGTACG    ATCGATAGATCG      ATCGATCGGCTA 

11bp word  11bp word  11bp word  

The algorithm will try to match each word to the reference. If there 
is a match at with any single word it will perform a local alignment 
to extend the match 



Seed-extend algorithm 

Reference sequence: 
 
...ACTGGGTCATCGTACGATCGATCGATCGATCGATCGGCTAGCTAGCTA... 
 
 

    
 
Short read: 
 
GTCATCGTACG    ATCGATAGATCG      ATCGATCGGCTA 

Seed Extend with Smith Waterman  

Here the algorithm is able to match the short read with a word length of 
11bp 

GTCATCGTACG 
 

ATCGAACGATCGATCGATCGGCTA 



Seed-extend algorithm 

Reference sequence: 
 
...ACTGGGTCATCGTACGATCGATCGATCGATCGATCGGCTAGCTAGCTA... 
 
 

    
 
Short read: 
 
GTCATCGTACGATCGATCGATCGATCGATCGGCAA 

Note that the short read has 3 differences 
Possibly sequencing errors, possibly SNPs 



Seed-extend algorithm 

Reference sequence: 
 
...ACTGGGTCATCGTACGATCGATCGATCGATCGATCGGCTAGCTAGCTA... 
 
 

    
 
Short read: 
 
GTCATCGTACG   ATCGATCGATCG  

 ATCGATCGGCAA 

Note that the short read has 3 differences 

11bp word  11bp word  11bp word  



Seed-extend algorithm 

Reference sequence: 
 
...ACTGGGTCATCGTACGATCGATCGATCGATCGATCGGCTAGCTAGCTA... 
 
 

    
 

No seeds match 
  

Therefore the algorithm would find no hits at all! 

Short read: 
 
GTCATCGTACG   ATCGATCGATCG  

 ATCGATCGGCAA 





Adapting hashed seed-extend algorithms to work 
with shorter reads 

•  Improve seed matching sensitivity 
−  Allow mismatches within seed  

− BLAST 
−  Allow mismatches + Adopt spaced-seed approach  

− ELAND, SOAP, MAQ, RMAP, ZOOM 
−  Allow mismatches + Spaced-seeds + Multi-seeds 

− SSAHA2, BLAT, ELAND2 
•  Above and/or Improve speed of local alignment for seed extension 
−  Single Instruction Multiple Data 

− Shrimp2, CLCBio 
−  Reduce search space to region around seed 



Adapting hashed seed-extend algorithms to work 
with shorter reads 

•  Improve seed matching sensitivity 
−  Allow mismatches within seed  

− BLAST 
−  Allow mismatches + Adopt spaced-seed approach  

− ELAND, MAQ, RMAP, ZOOM 
−  Allow mismatches + Spaced-seeds + Multi-seeds 

− SSAHA2, BLAT, ELAND2 
•  Above and/or Improve speed of local alignment for seed extension 
−  Single Instruction Multiple Data 

− Shrimp2, CLCBio 
−  Reduce search space to region around seed 



Consecutive seed 

CCACTGTCCTCCTACATAGGAACGA 

Consecutive seed 9bp allowing no mismatches: 

ACTCCCATCGTCATCGTACTAGGGATCGTAACA 
SNP ‘heavy’ read 

Reference sequence 

Even allowing for 2 mismatches in 
the seed - no seeds match.  
No hits! 

Cannot find seed match due to A->C SNP 
and G->C SNP 

TCATCGTAC 
TCCTCCTAC 



Spaced seeds 

To increase sensitivity we can used spaced-seeds: 

 111111111 

11001100110011001 

Consecutive seed template with length 9bp 

Spaced-seed template with weight 9bp 

ACTATCATCGTACACAT 
TCATCGTAC 

ACTATCATCGTACACAT 
ACTCTCACCGTACACAT 

Reference 
Query 

Reference 

Query 



Spaced seeds 

CCACTGTAATCGTACATGGGAACGA 

Spaced seed with weight 9bp and no mismatches: 

ACTCCCATTGTCATCGTACTTGGGATCGTAACA 
SNP ‘heavy’ read 

Reference sequence 

Can now extend with Smith-Waterman or other local alignment 

Despite SNPs – seed matched with 0 
mismatches 

CCATTGTCATCGTACAT 
CCXXTGXXATXXTAXXT 



Spaced seeds 

Ma, B. et al. PatternHunter. Bioinformatics Vol 18, No 3, 2002    

Spaced seeds: 

•  A seed template ‘111010010100110111’ is 55% more sensitive than 
BLAST’s default template ‘11111111111’ for two sequences of 70% 
similarity 
•  Typically seeds of length ~30bp and allow up to 2 mismatches in short 
read datasets 
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Suffix-Prefix Trie 

•  Trie – data structure which stores the suffixes (i.e. ends of a sequence)  
•  A family of methods which uses a Trie structure to search a reference 

sequence 
−  Bowtie 
−  BWA aln (<70bp reads) and MEM algorithm (>70bp reads) 
−  SOAP version 2 

•  Key advantages: 
−  Alignment of multiple copies of an identical sequence in the 

reference only needs to be done once  
−  Use of an FM-Index to store Trie can drastically reduce memory 

requirements (e.g. Human genome can be stored in 2Gb of RAM) 
−  Burrows Wheeler Transform to perform fast lookups 



Suffix Trie 

Heng Li & Nils Homer. 
Sequence alignment 
algorithms for next-
generation sequencing. 
Briefings in 
Bioinformatics. Vol 11. 
No 5. 473 483, 2010 

Read 
AGGAGC 



Burrows-Wheeler Algorithm 

•  Encodes data so that it is easier to compress 
•  Burrows-Wheeler transform of the word BANANA 
•  Can later be reversed to recover the original word 



More Burrows-Wheeler 

Input SIX.MIXED.PIXIES.SIFT.SIXTY.PIXIE.DUST.BOXES 

Burrows-Wheeler Output TEXYDST.E.IXIXIXXSSMPPS.B..E.S.EUSFXDIIOIIIT 

Repeated characters mean that it is easier to compress 
 

Suffix Trie for a bacterial genome would be > 1Tb 
 

We have to compress it 
 

Use FM-Index/BW transform to do this compression 



Bowtie/BWA example 

Courtesy Mike Schatz 



Bowtie/BWA example 

Courtesy Mike Schatz 



Bowtie/BWA example 

Courtesy Mike Schatz 



Bowtie/BWA example 

Courtesy Mike Schatz 



Bowtie/BWA example 

Courtesy Mike Schatz 



Bowtie/BWA example 

Courtesy Mike Schatz 



Bowtie/BWA example 

Courtesy Mike Schatz 



Bowtie/BWA example 

Courtesy Mike Schatz 



Bowtie/BWA example 

Courtesy Mike Schatz 



Bowtie/Soap2 vs. BWA 

•  Bowtie 1 and Soap2 cannot handle gapped alignments 
−  No indel detection => Many false SNP calls 

 

CCATTGTCATCGTACTTGGGATCTA 
ACTCCCATTGTCATCGTACTTGGGATCGTAACA Reference 

      TCATCGTACTTGGGATCTA 
       TTGGGATCTA 

False SNPs 

Bowtie/Soap2: 

N.B. Bowtie2 can handle gapped alignments 



Bowtie/Soap2 vs. BWA 

•  Bowtie 1 and Soap2 cannot handle gapped alignments 
−  No indel detection => Many false SNP calls 

 

CCATTGTCATCGTACTTGGGATC-TA 
ACTCCCATTGTCATCGTACTTGGGATCGTAACA Reference 

      TCATCGTACTTGGGATC-TA 
       TTGGGATC-TA 

BWA: 

N.B. Bowtie2 can handle gapped alignments 



Comparison 

Indexed Suffix/Prefix Trie 
•  Requires <2Gb of memory 
•  Runs 30-fold faster 
•  Is much more complicated 

to program 
•  Least sensitive 
 

Hash referenced spaced seeds 
•  Requires ~50Gb of memory 
•  Runs 30-fold slower 
•  Is much simpler to      

program 
•  Most sensitive 
 



There are limits however 

CCATTGTCAACCATCTAGTAGCT-TA 
ACTCCCATTGTCATCGTACTTGGGATCGTAACA Reference 

      TCAACCATCTAGTAGCT-TA 
       ACCATCTA-TA 

With longer 100-300 bp reads, multiple indels or variable regions 
longer than a few bp are likely to be missed 



You only find what you are looking for 

•  What happens if there are SNPs and Indels in the same region? 

Let’s assume that the SNP caller made this call of a single SNP: 
 
ATGTATGTA 
ATGTGTGTA 
 
and the indel caller produced this call of a 3 base deletion: 
 
ATGTATGTA 
ATGT---TA 
 
Should we assume this is a heterozygous SNP opposite a 
heterozygous Indel or a more complex locus? 
 



•    Bowtie's reported 30-fold speed increase over hash-based methods with 
     small loss in sensitivity 
•    Limitations to Trie-based approaches:  
−  Only able to find alignments within a certain 'edit distance’ 
−  Important to quality clip reads (-q in BWA) 
−  Non-A/C/G/T bases on reads are often treated as mismatches 
−  Make sure Ns are removed! 

 
Hash based approaches are more suitable for divergent alignments 
•   Rule of thumb:  
−    <2% divergence -> Trie-based 
− E.g. human alignments 

−    >2% divergence -> Seed-extend based approach 
− E.g. wild mouse strain alignments 

 

Comparison 



 Precision and recall by amount of variation for 4 
datasets, by polymorphism:  
(number of SNPs, Indel size) 

David M et al. Bioinformatics 2011;27:1011-1012 



 False discovery rates for variants were ascertained using 
cFDR for three fungal NGS datasets 

http://www.nature.com/srep/2013/130321/srep01512/full/srep01512.html 



Summary of open-source short read alignment programs 

Heng Li & Nils Homer. Sequence alignment algorithms for next-generation sequencing. 
Briefings in Bioinformatics. Vol 11. No 5. 473 483, 2010 
 
* Bowtie1 does not support gapped alignments 

Program Algorithm SoLID Long reads Gapped 
alignment 

Paired-end Quality 
scores used? 

Bfast Hashing ref Yes No Yes Yes No 
Bowtie2* FM-Index Yes Yes Yes Yes Yes 
Blat Hashing ref No Yes Yes No No 
BWA FM-Index Yes Yes Yes Yes No 
MAQ Hashing reads Yes No Yes Yes Yes 
Mosaik Hashing ref Yes Yes Yes Yes No 
Novoalign Hashing ref No No Yes Yes Yes 
Shrimp2 Hashing ref Yes Yes Yes Yes Yes 
SOAP2 FM-Index No No No Yes Yes 
SSAHA2 Hashing ref. No No No Yes Yes 



Aligner phylogeny 

Whole genome   Large data set aligners 
Pairwise heuristic   Sensitive global aligners 



Sequence read aligners I use 

•  Genomic alignments BWA-Mem  
•  Scales well with read lengths and will tolerate more errors 

as read lengths increase 

•  Bowtie2/Tophat for RNA-seq alignment 
•  Splice aware and fits into a nice eco-system of tools to 

perform abundance expression (Cufflinks) and 
visualisation (cummeRbund) 

•  BLASR 
•  Designed for PacBio reads 



Alignment format for short reads – Sequence AlignMent 
(SAM format) 

•  Plain text format –  human readable (sort-of) 
•  Eleven mandatory fields and a variable amount of optional fields. 
•  The optional fields are a key-value pair of TAG:TYPE:VALUE. These store 

extra information 
•  Can be converted to Binary AlignMent format (BAM) to save space and speed 

up look-up operations using SAMTools 



Alignment format for short reads – Sequence AlignMent 
(SAM format) 



SAM format – Optional fields 



SAM output 



Contents 

•  Alignment algorithms for short-reads 
-  Background – Blast (why can’t we use it?) 

-  Adapting hashed seed-extend algorithms to work with shorter reads 

-  Indel detection 

-  Suffix/Prefix Tries 

-  Other alignment considerations 
-  Typical alignment pipeline 

-  New methods of SNP calling 



Other alignment considerations 

•  Indel detection 
•  Effect of paired-end alignments 
•  Using base quality to inform alignments 
•  PCR duplicates  
•  Methylation experiments – bisulfite treated reads 
•  Multi-mapping reads 
•  Aligning spliced-reads from RNA-seq experiments 
•  Local realignment to improve SNP/Indel detection 
•  Platform specific errors 
•  Unmapped reads 



Indel detection 

CCATTGTCATGTACTTGGGATCGT 

Spaced seed with weight 9bp and no mismatches: 

ACTCCCATTGTCATCGTACTTGGGATCGTAACA 
Read containing a  
deletion 

Reference sequence 

No seed match. No alignment! 

Seed not matched due to frame shift caused 
by gap 

CCATTGTCATCGTACAT 
CCXXTGXXATXXACXXG 



Indel detection 

Reference sequence: 
 
...ACTGGGTCATCGTACGATCGATCGATCGATCGATCGGCTAGCTAGCTA... 
 
 

    
 

Seed Extend with Smith Waterman  

Most alignment programs can only detect gaps in 
Smith-Waterman phase 

 once a seed has been identified. Some algorithms (e.g. 
Bowtie) do not allow gaps at this stage to improve 

speed 
 

This reduces sensitivity especially with multiple 
insertions in a small region 

GTCATCGTACG 
 

ATCGA-CGATCGATCGATCGGCTA 



Indel detection 

•  Some algorithms do allow gaps within seed 
−  Indel seeds for homology search Bioinformatics (2006) 22(14): e341-e349 

doi:10.1093/bioinformatics/btl263  

−  Weese D, Emde AK, Rausch T, et al. RazerS–fast read mapping with 
sensitivity control. Genome Res 2009;19:1646–54 

−  Rumble SM, Lacroute P, Dalca AV, et al. SHRiMP: accurate mapping of 
short color-space reads. PLoS Comput Biol 2009;5:e1000386 

•  Use of multiple seeds 
−  Especially useful for longer reads (>50bp) 

−  Li R, Li Y, Kristiansen K, et al. SOAP: short oligonucleotide alignment 
program. Bioinformatics 2008;24:713–4 

−  Jiang H, Wong WH. SeqMap: mapping massive amount of oligonucleotides 
to the genome. Bioinformatics 2008;24: 2395–6 

 



Paired-end reads are important 

Repetitive DNA 
Unique DNA 

Single read maps to  
multiple positions 

Paired read maps uniquely 

Read 1 Read 2 

Known Distance 



Effect of paired-end alignments 

BWA-MEM  
 
http://arxiv.org/pdf/
1303.3997v2.pdf 



Effect of coverage on SNP call accuracy 

Source – Illumina Tech Note 
Human diploid sample  

•  Depends on ploidy 
•  Bacterial genomes can get away with 10-20x  
•  For human genomes and other diploids 30x  
•  Poly-ploids (e.g wheat) may need much higher coverage 



PCR duplicates 

•  2nd generation sequencers are not single-molecule sequencers 
−  All have at least one PCR amplification step 
−  Can result in duplicate DNA fragments 
−  This can bias SNP calls or introduce false SNPs 

 
•  Generally duplicates only make up a small fraction of the results 
−  Good libraries have < 2-3% of duplicates 
−  SAMtools and Picard can identify and remove these when aligned 

against a reference genome 
−  Debatable whether do this for RNA-seq and ChIP-seq 

− Depends on the complexity of the sample 
  



PCR duplicates 



Base quality impacts on read mapping 

Heng Li & Nils Homer. 
Sequence alignment 
algorithms for next-
generation sequencing. 
Briefings in 
Bioinformatics. Vol 11. 
No 5. 473 483, 2010 



Multiple mapping reads 

•  A single read may occur more than once in the reference genome. 
•  Could be due to: 

•  Paralogs (duplicated genes). 
•  Transcripts which share exons. 
•  Mutations in genotype relative to the reference. 
•  Transposons and other common repetitive sequences 

•  Some aligners automatically assign a multi-mapping read to one of the 
locations at random (e.g. Tophat) 

•  Aligners may allow you to chose how these are dealt with – others 
may not 



Allelic bias when SNP calling 

http://bioinformatics.oxfordjournals.org/content/25/24/3207.full.pdf 

Missing alternate 
allele 



Methylation experiments 

Unmethylated cytosine are 
converted to uracil 



Methylation experiments 

•  Directly aligning reads against a reference will fail due to excessive 
mismatches in non-methylated regions 
 
•  Most packages deal with this by creating 2 reference sequences 
−  One has all Cs converted to Ts 
−  One has all Gs converted to As 

•  Convert Cs to Ts in all reads aligned against C->T reference 
•  Convert Gs to As in all reads aligned against G->A reference 

•  If there are no mutations or sequencing errors the reads will always 
map to one of the two references 

http://www.biomedcentral.com/1471-2164/14/774 



Spliced-read mapping 

 

•  Need packages which can account for splice variants   
•  Examples: TopHat, STAR, GMAP, MapSplice 



Spliced-read mapper evaluation 

http://www.nature.com/nmeth/journal/v10/n12/full/nmeth.2722.html 



Local realignment to improve SNP/Indel detection 

•  Read aligners map each read (or read pair) independently  of all 
other reads 
•  Around indels and other variants it can be helpful to make use of 
other metrics 

e.g. Global median coverage for multi-mapping reads 
•  Tools such as GATK, SAMtools, Pindel and Breakdancer realign 
reads in the vicinity of variants to improve calls 
 

http://www.broadinstitute.org/gsa/wiki/index.php/The_Genome_Analysis_Toolkit 

Chen, K. BreakDancer: an algorithm for high-resolution mapping of genomic structural 
variation Nature Methods 6, 677 - 681 (2009)  
Li H.*, Handsaker B.*, Wysoker A., Fennell T., Ruan J., Homer N., Marth G., Abecasis G., 
Durbin R. and 1000 Genome Project Data Processing Subgroup (2009) The Sequence 
alignment/map (SAM) format and SAMtools. Bioinformatics, 25, 2078-9  
 
  



Figure 6. A visual examination of a spurious gene (CDC27). 

Jia P, Li F, Xia J, Chen H, et al. (2012) Consensus Rules in Variant Detection from Next-Generation Sequencing Data. PLoS ONE 7(6): e38470. 
doi:10.1371/journal.pone.0038470 
http://www.plosone.org/article/info:doi/10.1371/journal.pone.0038470 



All platforms have errors and artefacts 

Illumina PacBio Roche 454 Ion Torrent 

1.  Removal of low quality bases 
2.  Removal of adaptor sequences 

3.  Platform specific artefacts (e.g homopolymers)  



Table 2. Spurious genes having mutations detected in 30 samples. 

Jia P, Li F, Xia J, Chen H, et al. (2012) Consensus Rules in Variant Detection from Next-Generation Sequencing Data. PLoS ONE 7(6): e38470. 
doi:10.1371/journal.pone.0038470 
http://www.plosone.org/article/info:doi/10.1371/journal.pone.0038470 



Illumina artefacts 

Nakamura, K. et al. Sequence-specific error profile of Illumina sequencers  
Nucl. Acids Res. (2011) May 16, 2011  



Illumina artefacts 

1.  GC rich regions are under represented 
a.  PCR 
b.  Sequencing 

2.  Substitutions more common than insertions 
3.   GGC/GCC motif is associated with low quality and 
mismatches 
4.   Filtering low quality reads exacerbates low coverage 
of GC regions 

Alignment software should ideally account for technology 
specific bias but generally does not 

 



Your alignments are only as good as your library prep 

•  Even if all other artefacts are removed: 
 
•  If your library prep is biased, your alignments will also 

reflect this bias  



Tophat/Cufflinks aside 

http://genomebiology.com/2011/12/3/R22 

•  Applies to random primed 
RNA-seq libraries 

•  Main potential biases: 
•  Random hexamer priming biases 

•  5’ or 3’ ends of cDNA are likely 
to be mis-represented 

•  Some packages correct for this 
(e.g. Tophat/Cufflinks) 



Effect of bias correction 

N.B. Out-dated version of Cufflinks used here 

http://genomebiology.com/2011/12/3/R22 



Pacific Biosciences alignment 

•  Median PacBio reads are 12kb with an 
single-read error rate of around 12-13% 

•  Most common distance between errors in a 
PacBio read is around 30bp  

•  Long length compensates and enables seeds 
to be located in many places to begin 
alignment 

•  However, this can be computationally costly  
•  Need to balance number of seeds 

required to get a good alignment vs 
computational time 

•  PacBio developed BLASR to do this 

 
http://bioinformatics.oxfordjournals.org/content/28/18/i349.full 



Pacific Biosciences read correction via alignment  

•  Alignment can also be used to generate a consensus to reduce the number of 
errors 

•  Most errors in PacBio seem to be randomly distributed 
•  If we have enough coverage, we can correct these errors by aligning all the short 

reads to the longer reads and correct based on the consensus  

•  These can then be used for denovo assembly 
•  Hierarchical Genome Assembly Process (HGAP) 

http://www.nature.com/nmeth/journal/v10/n6/full/nmeth.2474.html 



Unmapped reads 



Unmapped reads 

•  Can be the result of: 
−  Sequencing errors (should be small fraction if quality filtering 

applied before mapping) 
−  Contamination 
−  Excessive matches to repeats  
−  Highly divergent regions between samples 
−  Novel genetic material not present in reference 
−  Plasmids 

•  Should be assembled de-novo with paired-end information if possible 
•  Resulting contigs run through MegaBlast against NCBI NT to check 
species 
•  Check against RepBase to remove repetitive contigs 
•  Call ORFs 
•  Blast ORFs using BlastP against NCBI NR or Swissprot and Blast2GO 
•  Run through PFAM 
 



Typical alignment pipeline 

QC 

• Remove low quality bases 
• Remove reads containing adaptor sequences 
• Trim or remove reads containing Ns 

Alignment 

• Generate reference or read index 
• Align reads to index 
• SAM output file 

Post alignment  

• Sort SAM file and convert to BAM with SAMtools 
• Remove suspected PCR duplicates with SAMtools 
• Perform local realignment around indels using GATK 
• Supply BAM file to variant caller  (e.g. Samtools mpileup) 
• Analyse variants (are they within genes, synonymous vs nonsynonymous changes etc)* 
• Locate missing genes/regulatory regions 

Assemble 
unmapped reads 

• Assemble unmapped reads (e.g. using Velvet)  
• Call Open Reading Frames (ORFs) 
• Search for homologous genes (BLASTP), protein families (PFAM) 
• Identify novel genes 

* http://bioinformatics.net.au/software.nesoni.shtml 



Contents 
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Haploytype SNP calling  

•  FreeBayes (http://arxiv.org/pdf/1207.3907v2.pdf) 
•  GATK – Haplotype caller 

•  Haplotype calling in polyploids 
  ACCTGTA   Reference Genome   
  Assume a SNP at both 5’ A->T and 3’ A->G in a diploid 

Do we have a heterozygous? 
Allele 1: ACCTGTG    
Allele 2: TCCTGTC 
Or do we have a homozygous? 
Allele 1: TCCTGTG   
Allele 2: TCCTGTG 
 

  



Haplotype issue calling – Long reads to the rescue 



New methods of SNP calling 

•  Why align at all? 
•  We only do this because of computational constraints 
•  Ideally we want to assemble denovo and then align to 

reference genome 

•  Fermi and Cortex are tools to enable this: 
•  Denovo genome assembler, but keeps track of differences 

which could be due to SNPs/Indels 
 

 
Heng Li Exploring single-sample SNP and INDEL calling with whole-genome de novo assembly  Bioinformatics (2012) 28 (14): 1838-1844 first published online May 7, 2012doi:10.1093/bioinformatics/bts280  



Variant calling with de-novo assembly 



Questions! 


