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Alignment of reads to a reference

.ACTGGGTCATCGTACGATCGATCGATCGATCGATCGGCTAGCTAGCRe ference

.ACTGGGTCATCGTACGATCGATAGATCGATCGATCGCTAGCTAGCTASample




Why is short read alignment hard?

The shorter a read, the - S ———
less likely it is to have a [ eamametts
unique match to a 3 <1 ’
reference sequence 5 ‘;

15 |

1 |

Need over 7kb reads to o fll
uniquely place most — I T

0 z0 40 60 00 100 120 140

reads from bacteria Read Length

Fig. 1 The proportion of unigue sequence in the Streprococcus suis
(squares) and Mus muscudus (triangles) genomes for varying read
lengths. This graph indicates that read length has a cnitical affect on
the ability (o place reads uniquely to the genome



Why do we generate short reads?
 Sanger reads lengths ~ 800-2000bp

* Generally we define short reads as anything below this
— Illumina (50bp — 300bp)
— SoLID (80bp max)
— Ion Torrent (200-400bp max...)
— Roche 454 — 400-800bp

* Even with these platforms it 1s cheaper to produce short reads (e.g. 50bp)
rather than 100 or 200bp reads

* Diminishing returns:
— For some applications 50bp 1s more than sufficient
— Small-RNA
— ChIP-Seq
— Differential gene expression
— Digital Gene Expression profiling



Short read alignment applications

Genotyping:
Methylation
SNPs
CCATAG TATGCGCCC  CGGABATTT c%%ﬁ%f\%“ \
Indels - &&A1AC . JATGSS TCGAARATT  GGGTATAC
CCAT GGCTATATG CTATCGG GCGGTATA
"CCA AGGCTATAT CCTATGGG

A

. | TTGCGGTA C... ¢

CCA AGGCTATAT GCCCTATCG C..

'CC _AGGCTATAT _ GCCCIATCG |ABATTIGC _ ATAC...

CC TAGGCTATA GCGCCCTA ABATTTGC GTATAC... |
y.

...CCATAGGCTATATGCGCCCTATCGGCAATTTGCGGTATAC...

Classify and measure peaks:

ChIP-Seq
RNA—Seq - - Ggmmgcv
CGGAAATTT

CTATCGGAAA

CCTATCGGA  TTTGCGGT
GCCCTATCG AAATTTGC
...CC GCCCTATCG _AAATTTGC ATAC. ..

...CCATAGGCTATATGCGCCCTATCGGCAATTTGCGGTATAC. ..
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Dot Matrix Method
- Aligning by eye




Sequence Alignment

ATCGATA-CG
ATGGATTACG

3 possibilities

Match Mismatch Indel



A very simple alignment scoring system

Points for a matching letter: 1
Points for a non-matching letter: 0

Points for mnserting a gap: 0



Global Pair-wise Alignment

ATCGATACG, ATGGATTACG
ATCGAT-ACG

ATGGATTACS

Matches: +1  +1 +1 +1 +1 +1 +1 +1 = +8
Mismatches: 0 =0
Gaps: 0 =0

Total score = +8

But, what does this score mean??
Could we get a better alignment?



How to choose the best alignment?

* Sequence 1: ACTGAGC
* Sequence 2: ATGATGC

* Some possible alignments:

ACTGAGC—-- ACTGA-GC A----CTGAGC
A-TGA-TGC A-TGATGC ATGAT----GC



Global alignment — Needleman-Wunsch

A global alignment covers the entire lengths of the
sequences involved

The Needleman-Wunsch algorithm finds the best global
alignment between 2 sequences across their whole length



Step 1: Initialise

A C T G
A
T
G
A
T
G
C 0 1 0 0

Fill in far-right column and bottom row with:

0 for a mis-match
1 for a match




Step 2:

Al Qf = »| Qf = »

For each box, find the highest number out of the blue boxes



Step 3:

A C T G A G C
A 0
T 0
G 0
A 0
T 0
G 1+1=2 0
c ; : ; ; ; ; -

If there is a match in the yellow box as, take the highest value from the
blue boxes and add 1 to it
G matches G 1n the yellow box, so add 1 to the 1 in the blue box




Step 2:

T A
A
T
G
A
T
G 0+1=1
C

A does not match G. So add zero to the 1 in the blue box.




Step 2:

1+1=2 1 2 0

Al Qf = »| Qf = »

If there 1s a match as here, take the highest value and add 1 to it

G matches G so add 1 to 1 in the blue boxes



Step 2:

A C T G A G
A
T
G
A
T
G 0+1=1 2 1 2

If there 1s a match as here, take the highest value and add 1 to it

T does not match G. So add zero.




Step 2:

C T G A G
A
T
G
A
T 0+1=1
G 1 1 2 1 2
C 1 0 0 0 0

Highest out of the blue boxes is 1




Step 2:

C T G A
A
T
G
A
T 2+0=2
G 1 1 2 1
C 1 0 0 0

Highest out of the blue boxes is 2

A does not match T




Step 2:

C T G A G C
A 0
T 0
G 0
A 0
T 2+0=2 2 1 0
G 1 1 2
C 1 0 0

Highest out of the blue boxes is 2

G does not match T



Step 2:

Al Qf = »| Qf = »

Highest out of the blue boxes is 2

T does match T



Step 2:

C T G A
A
T
G
A
T 2+0=2 3 2 2
G
C

Highest out of the blue boxes is 2

C does not match T



Step 2:

Al Qf = »| Qf = »

Do the same for all remaining rows




Step 2:

T G
A
T
G
A 1+0=1
T 3 1
G 1 2
C 0 0

Do the same for all remaining rows




Step 2:

T A
A
T
G
A 2+1=3
T 3 2
G 1 1
C 0 0

Do the same for all remaining rows




Step 2:

T
A
T
G
A
T 3
G 1
C 0

Do the same for all remaining rows




Step 2:

Al Q =| »| Q| = »

Do the same for all remaining rows




Al Qf = »| Qf = »

C T G A
5 4 3 3
4 5 3 2
3 3 4 2
3 2 2 3
2 3 2 2
1 1 2 1
1 0 0 0

Do the same for all remaining rows




Step 3: Backtracking

A C T G A G C
A 6 5 4 3 3 1 0
T 4 4\) 5 3 2 1 0
G 3 3 3 4 2 1 0
A 4 3 2 2 3 1 0
T 2 2 3 2 2 1 0
G 1 1 1 2 1 2 0
C 0 1 0 0 0 0 1

Follow largest numbers starting from top-left going down and to the
right




Step 3: Backtracking

A C T G A G C
A 6 5 4 3 3 1 0
T 4 4\)5 3 2 1 0
G 3 3 3\34 2 1 0
A 4 3 2 2 3 1 0
T 2 2 3 2 2 1 0
G 1 1 1 2 1 2 0
C 0 1 0 0 0 0 1

Follow largest numbers starting from top-left going down and to the
right




Step 3: Backtracking

A C T G A G C
A 6 5 4 3 3 1 0
T 4 4\)5 3 2 1 0
G 3 3 3\34 2 1 0
A 4 3 2 2\3 1 0
T 2 2 3 2 2\1 0
G 1 1 1 2 1 2 0
C 0 1 0 0 0 0\31

Follow largest numbers starting from top-left,

going down and to the right




Step 4: Generate alignment

Al Qf = »| Qf = »

Horizontal seq A
Vertical seq A




Al Qf = »| Qf = »

Horizontal seq
Vertical seq

ACT
A-T




Step 4: Generate alignment

Al Qf = »| Qf = »

Horizontal seq ACTG
Vertical seq A-TG




Step 4: Generate alignment

Al Qf = »| Qf = »

Horizontal seq ACTGA
Vertical seq A-TGA




Step 4: Generate alignment

Al Q =| »| Q| = »

Horizontal seq ACTGA-
Vertical seq A-TGAG




Step 4: Generate alignment

Al Q =| »| Q| = »

Horizontal seq ACTGA-C
Vertical seq A-TGAGC




Optimal global alignment

ACTGA-C

.
A-TGAGC



Local alignment

A global alignment 1s often not appropriate as only parts
of sequences may be conserved

A local alignment only covers parts of the sequences

The Smith-Waterman algorithm finds the best local alignment between 2
sequences

QKESGPSSSYZC

| | | | |
Global alignment VOQESGLVRTTOC

E G

S
||
S

Local alignment G

|
E



Local alignment

A local alignment of 2 sequences 1s an alignment
between parts of the 2 sequences

E.g. Two proteins may be very similar in a functional site, but be very dissimilar
outside that region

A global alignment of such sequences would have:

(1) lots of matches in the region of high sequence similarity

(11) lots of mismatches & gaps (insertions/deletions) outside the region  of
similarity

It makes sense to find the best local alignment instead



human/1-422
fly/1-898

human/1-422
Aly/1-898

human/1-422
fly/1-898

human/1-422
fly/1-898

human/1-422
fly/1-898

human/1-422
fly/1-898

human/1-422
fly/1-898

human/1-422
fly/1-898
human/1-422
fly/1-898

human/1-422
fly/1-898

human/1-422
fly/1-898

human/1-422
fly/1-898

human/1-422
fly/1-898

human/1-422
fly/1-898

human/1-422
fly/1-898

human/1-422
fly/1-898

human/1-422
fly/1-898

human/1-422
fly/1-898

human/1-422
fly/1-898

TS MQNS 7
51 AGGSGLGGIAGKPSPTMEAVEASTASHPHSTSSYFATTYYHLTDDEC. 100
8 N 57
101 G 150
58 P Al 107
151 A s 200
108 sBe sefofv- - - - - 137
201 QEN AQKERCSTGSGSSSTSAGNS I SAKVS 250
= - DG 141
251 VS IGGNVSNVASGSRGTLSSSTDLMQTATPLNSSESGEMSNSGEGSEQEA 300
142 Mo BBt - - - - 154
301 I ME LENTEHAAGPGPLEPARAAPLVGQSPNHLGTRSSHPQLVHGNHQ 350
155 - - v oo - lGTI---PG-GlVPGQ B~ T 174
351 ALQQHQQQSMPPRHYSGS -MSLsEIBlISSAPNIASVTAYASGPSLAH 399
176 - e e e e e clllccE- - -Bo TH 188
400 SLSPPND IESLASIGHQRNCPVATED | HLKKELD@HESDETG SBE sl 440
189 s 1 sBNc ED s pEABVElC ol A 238
450 6GASM I GNTEDD@ARE ND@EMD S 400
239 Ao aasnflpsHipI[f 288
500 ciklle TPNSHGASATSE 540
280 Bsrsflsvvaor iBorTTrvEEF T mLBRTDTALTNTYEALPPMBEF TMA 338
550 BTsAMASLTDSENSLSACESLL AGBPSVSTINGLSE- - - - - TLST 504
3o fl-WCE-------- marBvBsaTssyEEML P8P sy SYD------ TYT 373
505 MvNABTLGAG IDSSESETE I PHIRPEE- - - ESDND QSEDCRRVCSPC 641
a7aBrama THMlscrme TsBTTsToL 1 sPevBvPvavreseErPDMSAY . 422
642 BLGVGGHONTHHIQSNBHAQGHALVEBIAIE- - - - - ----------- NF 875

676 NSGSFGAMYSNMHHTALSMSDSYGAVTPIPSFNHSAVGPLAPPSPIPQQG 725

726 DLTPSSLYPCHMTLRPPPMAPAHHHIVPGDGGRPAGVGLGSGQSANLGAS 775

776 CSGSGYEVLSAYALPPPPMASSSAADSSFSAASSASANVTPHHTIAQESC 825

826 PSPCSSASHFGVAHSSGFSSDPISPAVSSYAHMSYNYASSANTMTPSSAS 875

876 GTSAHVAPGKQQFFASCFYSPWV 808

Alignment of an orthologous protein in
D.melanogaster vs H.sapiens

Not suitable for global alignment

2 main regions of similarity

Better to use local alignment



Local alignment — Smith-Waterman algorithm

Example — align TCGA to GAC

0 - T C G A
- 0 0 0 0 0
G 0 - - 1 -1
A 0 - -2 - 2
C 0 - 0 -2 0

Points for match
Points for mismatch
Points for a gap insertion

+1
-1
-2



Local alignment — Smith-Waterman algorithm

Example — align TCGA to GAC

0 - T C G A
- 0 0 0 0 0
G 0
A 0
C 0

Points for match
Points for mismatch
Points for a gap insertion

+1
-1
-2



Local alignment — Smith-Waterman algorithm

O > ©®

 + GAP

- T G A
0 - 0 0 0
0 -1
0
0
+ MATCH + GAP ,
' T Points for match =+1
Points for mismatch =-]

Points for a gap insertion = -2



Local alignment — Smith-Waterman algorithm

0 - T C G A
- 0| 0 0 0 0
G 0 1

A 0 B

C 0

Points for match
Points for mismatch
Points for a gap insertion

+1
-1
-2



Local alignment — Smith-Waterman algorithm

0 - T C G A
- 0| 0 0 0 0
G 0 1
A 0 -1
C 0 -1

Points for match
Points for mismatch
Points for a gap insertion

+1
-1
-2



Local alignment — Smith-Waterman algorithm

Example — align TCGA to GAC

O > ©®

- T C G A

0 0 0 0 0
SN .

0 -1 -1 1 -1
AN

0 -1 -2 -1 | 2

|
0 -1 o T -2 0

Points for match
Points for mismatch
Points for a gap insertion

+1
-1
-2



Backtracking and final local alignment

T C G
0 0 0 0
0 1 1 1 N
0 1 2 1
0 1 0 2



Smith-Waterman — more details



Dynamic programming

Needleman-Wunsch and Smith-Waterman are a
class of methods known as ‘Dynamic
Programming’

Guaranteed to give you the best possible
alignment

In biology, this algorithm 1s very inefficient
because any 2 randomly selected DNA fragments
in a database are are unlikely to have any
similarity

Therefore, these methods take a long time to run



BLAST —
Basic Local Alignment Search Tool



Background — BLAST

* Primarily designed to identify homologous sequences

- Blast 1s a hashed seed-extend algorithm
- Negative selection

- Only some parts of a sequence are usually constrained




BLAST - Original version

Example:

Seed size =4,
No mismatches in seed

The matching word GGTC
initiates an alignment

Extension to the left and right
with no gaps until alignment
score falls below 50%

Output:
GTAAGGTCC

GTTAGGTCC

ACGAAGTAA

G GT C

CAGT

AN

CCcCCTTCICTGGATTGCGA




BLAST - Original algorithm

Finding seeds significantly increases the speed of BLAST
compared to doing a full local alignment over a whole sequence

Will not guarantee the best solution

BLAST first finds highly conserved or 1dentical sequences which
are then extended with a local alignment.




BLAST — Speed (or lack thereot)

Typically BLAST will take approximately 0.1 — 1 second to search
1 sequence against a database

Depends on size of database, e-value cutoff and number of hits to
report selected

60 million reads equates to 70 CPU days!
Even on multi-core systems this 1s too long!
Especially if you have multiple samples!

This 1s still true of FPGA and SIMD (vectorised) implementations
of BLAST



When NOT to use BLAST

* A typical situation: you have lots DNA sequences and want to
extend 1t or find where on a genome 1t maps.

* In other words, you want an exact or near-exact match to a
sequence that 1s part of an assembled genome.

* Short reads require very fast algorithms for finding near-exact
matches in genomic sequences:

- BLAT

- Highly recommended: the BLAT paper (Kent W] (2003) Genome Res
12:656-64) — very well written

- SOAP

- Bowtie/Bowtie 2
- MAQ

- BWA

— Shrimp2



Contents

* Alignment algorithms for short-reads

- Background — Blast (why can’t we use it?)

- Adapting hashed seed-extend algorithms to work with shorter reads
- Indel detection

- Suffix/Prefix Tries

- Other alignment considerations

- Typical alignment pipeline

- New methods of variant calling



Adapting hashed seed-extend algorithms to work
with shorter reads

* Improve seed matching sensitivity
— Allow mismatches within seed

— BLAST
— Allow mismatches + Adopt spaced-seed approach

—ELAND, SOAP, MAQ, RMAP, ZOOM
— Allow mismatches + Spaced-seeds + Multi-seeds

—SSAHA2, BLAT, ELAND2
* Above and/or Improve speed of local alignment for seed extension

— Single Instruction Multiple Data
— Shrimp2, CLCBio
— Reduce search space to region around seed



Hashed seed-extend algorithms

e These are most similar to BLAST

* Are not designed to work with large databases

* 2 step process
— Identify a match to the seed sequence 1n the reference

— Extend match using sensitive (but slow) Smith-
Waterman algorithm (dynamic programming)



Seed-extend algorithm

Reference sequence:

..ACTGGGTCATCGTACGATCGATCGATCGATCGATCGGCTAGCTAGCTA...

Short read:

GTCATCGTACGATCGATAGATCGATCGATCGGCTA

Note that the short read has 1 difference wrt to reference



Seed-extend algorithm

Reference sequence:

ACTGGGTCATCGTACGATCGATCGATCGATCGATCGGCTAGCTAGCTA...

Short read:
GTCATCGTACG ATCGATAGATCG ATCGATCGGCTA

11bp word 11bp word 11bp word

The algorithm will try to match each word to the reference. If there
1s a match at with any single word 1t will perform a local alignment
to extend the match



Seed-extend algorithm

Reference sequence:
Seed Extend with Smith Waterman

ACTGGGTCATCGTACG CTAGCTAGCTA...
GTCATCGTACK CGAACGATCGATCGATCGGCTA

Short read:

GTCATCGTACG ATCGATAGATCG ATCGATCGGCTA

Here the algorithm is able to match the short read with a word length of
11bp



Seed-extend algorithm

Reference sequence:

..ACTGGGTCATCGTACGATCGATCGATCGATCGATCGGCTAGCTAGCTA...

Short read:

GTCATCGTACGATCGATCGATCGATCGATCGGCAA

Note that the short read has 3 differences
Possibly sequencing errors, possibly SNPs



Seed-extend algorithm

Reference sequence:

..ACTGGGTCATCGTACGATCGATCGATCGATCGATCGGCTAGCTAGCTA...

Short read:

GTCATCGTACG ATCGATCGATCG
IM%CGGCAA 11bp word 11bp word

Note that the short read has 3 differences



Seed-extend algorithm

Reference sequence:

..ACTGGGTCATCGTACGATCGATCGATCGATCGATCGGCTAGCTAGCTA...

Short read:

GTCATCGTACG ATCGATCGATCG
ATCGATCGGCAA

No seeds match

Therefore the algorithm would find no haits at all!
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Adapting hashed seed-extend algorithms to work
with shorter reads

* Improve seed matching sensitivity

— Allow mismatches within seed

—BLAST
— Allow mismatches + Adopt spaced-seed approach

—ELAND, SOAP, MAQ, RMAP, ZOOM
— Allow mismatches + Spaced-seeds + Multi-seeds

—SSAHA?2, BLAT, ELAND2
* Above and/or Improve speed of local alignment for seed extension

— Single Instruction Multiple Data
— Shrimp2, CLCBio
— Reduce search space to region around seed



Adapting hashed seed-extend algorithms to work
with shorter reads

* Improve seed matching sensitivity

— Allow mismatches within seed

—BLAST
— Allow mismatches + Adopt spaced-seed approach

— ELAND, MAQ, RMAP, ZOOM
— Allow mismatches + Spaced-seeds + Multi-seeds

—SSAHA?2, BLAT, ELAND2
* Above and/or Improve speed of local alignment for seed extension

— Single Instruction Multiple Data
— Shrimp2, CLCBio
— Reduce search space to region around seed



Consecutive seed

Consecutive seed 9bp allowing no mismatches:

ACTCCCATCGTCATCGTACTAGGGATCGTAACA Reterence sequence

CCACTGTCCTCCTACATAGGAACGA SNP ‘heavy’ read
TCATCGTAC
Cannot find seed match due to A->C SNP
TCCTCCTAC 1nd G>C SNP

Even allowing for 2 mismatches in
the seed - no seeds match.
No hits!



Spaced seeds

To increase sensitivity we can used spaced-seeds:

111111111 Consecutive seed template with length 9bp
ACTATCATCGTACACAT Reference
TCATCGTAC Query

11001100110011001  Spaced-seed template with weight 9bp
ACTATCATCGTACACAT Reference
ACTCTCACCGTACACAT Query



Spaced seeds

Spaced seed with weight 9bp and no mismatches:

ACTCCCATTGTCATCGTACTTGGGATCGTAACA Reference sequence

CCACTGTAATCGTACATGGGAACGA SNP ‘heavy’ read

CCATTGTCATCGTACAT

CCXXTGXXATXXTAXXT Despite SNPs — seed matched with 0
mismatches

Can now extend with Smith-Waterman or other local alignment



Spaced seeds

Spaced seeds:

* A seed template ‘111010010100110111” 1s 55% more sensitive than
BLAST’s default template ‘11111111111° for two sequences of 70%
similarity

* Typically seeds of length ~30bp and allow up to 2 mismatches in short
read datasets

1

T T T
110100110010101111

(RRRRRRRRRR I

0.8 |- IREEEREEEE e

09

sensitivity
© © o ©
o <D ~

T

o o
w
T T T
R

g
—

o
o o
T T

T

0.2 0.3 04 0.5 0.6 0.7 0.8 0.9 1
similarity

Ma, B. et al. PatternHunter. Bioinformatics Vol 18, No 3, 2002
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Suffix-Prefix Trie

* Trie — data structure which stores the suffixes (1.e. ends of a sequence)

* A family of methods which uses a Trie structure to search a reference
sequence

— Bowtie
— BWA aln (<70bp reads) and MEM algorithm (>70bp reads)
— SOAP version 2

* Key advantages:

— Alignment of multiple copies of an identical sequence in the
reference only needs to be done once

— Use of an FM-Index to store Trie can drastically reduce memory
requirements (e.g. Human genome can be stored in 2Gb of RAM)

— Burrows Wheeler Transform to perform fast lookups



Suffix Trie

Read
AGGAGC

Heng Li & Nils Homer.
Sequence alignment
algorithms for next-
generation sequencing.
Briefings in
Bioinformatics. Vol 11.
No 5. 473 483, 2010




Encodes data so that it is easier to compress
Burrows-Wheeler transform of the word BANANA

Can later be reversed to recover the original word

Input

................

________________

Burrows-Wheeler Algorithm

All
Rotations

________________

“BANANZA
“BANANA
A | "BANAN
NA| “BANA
ANA | “BAN
NANA| “BA
ANENA| "B
BANANA |~

________________

Transformation

Sorting All Rows in Alphabetical
Order by their first letters

Taking

.....................................................

ANANA| "B
ANA| “BAN
A | "BANAN
BRANANA |~
NANA| “BA
NA| “BANA
“BRNANA |
“BANANA

_____________________________________________________

Output

Last Column Last Column

................

________________



More Burrows-Wheeler

Input SIX.MIXED.PIXIES.SIFT.SIXTY.PIXIE.DUST.BOXES

Burrows-Wheeler Output TEXYDST.E.IXIXIXXSSMPPS.B..E.S.EUSFXDIIOIIIT

Repeated characters mean that it is easier to compress
Suffix Trie for a bacterial genome would be > 1Tb
We have to compress it

Use FM-Index/BW transform to do this compression



Bowtie/ BWA example

Reference

BWT( Reference )

Query:
AATGATACGGCGACCACCGAGATCTA

Courtesy Mike Schatz



Bowtie/ BWA example

Reference

BWT( Reference )

Query:
AATGATACGGCGACCACCGAGATCT@

Courtesy Mike Schatz



Bowtie/ BWA example

Reference

BWT( Reference )

Query:
AATGATACGGCGACCACCGAGATC

Courtesy Mike Schatz



Bowtie/ BWA example

Reference

BWT( Reference )

Query:
AATGATACGGCGACCACCGAGAT@

Courtesy Mike Schatz



Bowtie/ BWA example

Reference

Uuouvouw ¢ W ouovwwoov v WL WU
T SHHH:F

BWT( Reference )

Query:

Courtesy Mike Schatz



Bowtie/ BWA example

Reference

1 | | |
e TEHHHHH

BWT( Reference )

Courtesy Mike Schatz



Bowtie/ BWA example

Reference
. ]
G
BWT( Reference )

Query:

AT A A A A AAAARAAAARA~AAAA~AANTATA

Courtesy Mike Schatz



Bowtie/ BWA example

Reference

| | |
T TESSHHHH

BWT( Reference )

Query:

Courtesy Mike Schatz



Bowtie/ BWA example

Reference

S EEE

BWT( Reference )

Que%:

Courtesy Mike Schatz



Bowtie/Soap2 vs. BWA

* Bowtie 1 and Soap2 cannot handle gapped alignments
— No indel detection => Many false SNP calls

Bowtie/Soap2:

ACTCCCATTGTCATCGTACTTGGGATCGTAACA Reference

CCATTGTCATCGTACTTGGGATCTA
TCATCGTACTTGGGATCTA \
False SNPs

TTGGGATCTA

N.B. Bowtie2 can handle gapped alignments



Bowtie/Soap2 vs. BWA

* Bowtie 1 and Soap2 cannot handle gapped alignments
— No indel detection => Many false SNP calls

BWA:

ACTCCCATTGTCATCGTACTTGGGATCGTAACA Reference

CCATTGTCATCGTACTTGGGATC-TA
TCATCGTACTTGGGATC-TA

TTGGGATC-TA

N.B. Bowtie2 can handle gapped alignments



Comparison

Hash referenced spaced seeds Indexed Suffix/Prefix Trie
* Requires ~50Gb of memory ¢ Requires <2Gb of memory

* Runs 30-fold slower * Runs 30-fold faster
 Is much simpler to * Is much more complicated
program to program

e Most sensitive * ] east sensitive



There are limits however

With longer 100-300 bp reads, multiple indels or variable regions
longer than a few bp are likely to be missed

ACTCCCATTGTCATCGTACTTGGGATCGTAACA Reference

CCATTGTCAACCATCTAGTAGCT-TA
TCAACCATCTAGTAGCT-TA

ACCATCTA-TA



You only find what you are looking for

* What happens if there are SNPs and Indels in the same region?

Let’s assume that the SNP caller made this call of a single SNP:

ATGTATGTA
ATGTGTGTA

and the indel caller produced this call of a 3 base deletion:

ATGTATGTA
ATGT---TA

Should we assume this 1s a heterozygous SNP opposite a
heterozygous Indel or a more complex locus?



Comparison

* Bowtie's reported 30-fold speed increase over hash-based methods with
small loss 1n sensitivity
* Limitations to Trie-based approaches:
— Only able to find alignments within a certain 'edit distance’
— Important to quality clip reads (-q in BWA)
— Non-A/C/G/T bases on reads are often treated as mismatches
— Make sure Ns are removed!

Hash based approaches are more suitable for divergent alignments
. Rule of thumb:
<2% divergence -> Trie-based
— E.g. human alignments
— >2% divergence -> Seed-extend based approach
—E.g. wild mouse strain alignments



>

75 paired | | 50 paired

50 single

75 single

Precision and recall by amount of variation for 4
datasets, by polymorphism:
(number of SNPs, Indel size)

Program
SHRIMP
BFAST
BWA
Bowtie

SHRIMP
BFAST
BWA
Bowtie

SHRIMP
BFAST
BWA
Bowtie

SHRIMP
BFAST
BWA
Bowtie

(0,0)

(1,0)

(2,0)

0,3)

(1,3)

2,3)

4,3)

Prec. Recl.

Prec. Recl.

93.2 623 86.5

93.3
93.0

3 79.7 93.0
2 65.5 92.1

92.6
90.5

Prec. Recl.

David M et al. Bioinformatics 2011;27:1011-1012

.|Prec. Recl.

Prec. Recl.

- 90.6

Prec. Recl.

Prec. Recl.

89.5 953 835 93.0 69.6 83.4
5.2 80.4 92.8 68.7 89.0 53.5 78.0

921 94.3 81.6

300.0

289.0

290.0



False discovery rates for variants were ascertained using
cFDR for three fungal NGS datasets

False Positives (%)

False Positives (%)
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Bd JEL423 S50mers (4.5X)

Bd JEL423 30mers (13.4X)
Bd JEL423 30mers (10X)

Bd JEL423 30mers (10X) CDS
Pt BBBD1 76mers (38X)

Pt BBBD1 30mers (18X)

Pt BBBD1 30mers (10X)

Pt BBBD1 30mers (10X) CDS
Sc S288C 36mers (67.9X)

Sc $288C 30mers (65.2X)

Sc S288C 30mers (10X)

Sc $288C 30mers (10X) CDS

< BWA and Percent cut-off
= BWA and Sam/Bcftools

BWA and GATKZ2

“ BWA and BiSCaP

* SHRIMP and Percent cut-off
+ SHRIMP and Sam/Bcftools
* SHRIMP and BiSCaP



Summary of open-source short read alignment programs

Bfast Hashing ref

Bowtie2* FM-Index Yes Yes Yes Yes Yes
Blat Hashing ref No Yes Yes No No
BWA FM-Index Yes Yes Yes Yes No
MAQ Hashing reads  Yes No Yes Yes Yes
Mosaik Hashing ref Yes Yes Yes Yes No
Novoalign ~ Hashing ref No No Yes Yes Yes
Shrimp2 Hashing ref Yes Yes Yes Yes Yes
SOAP2 FM-Index No No No Yes Yes
SSAHA2 Hashing ref. No No No Yes Yes

Heng Li & Nils Homer. Sequence alignment algorithms for next-generation sequencing.
Briefings in Bioinformatics. Vol 11. No 5. 473 483, 2010

* Bowtiel does not support gapped alignments



Aligner phylogeny

Mauve AR i SOAP
Mummer -' Lagan \/
Mavid | L — , Bowtie
- Chaining & Nettin
'|\ I/“\---- g g
BLASTZ
Maq
SHRIMP
FASTA _—ELAND
BLAST
Pair-HMM
BLAT Exonerate Smith Waterman

Needleman-Wuncsh

Whole genome Large data set aligners



Sequence read aligners I use

* Genomic alignments BWA-Mem

* Scales well with read lengths and will tolerate more errors
as read lengths increase

* Bowtie2/Tophat for RNA-seq alignment

* Splice aware and fits into a nice eco-system of tools to
perform abundance expression (Cufflinks) and
visualisation (cummeRbund)

« BLASR
* Designed for PacBio reads



Alignment format for short reads — Sequence AlignMent
(SAM format)

* Plain text format — human readable (sort-of)
* Eleven mandatory fields and a variable amount of optional fields.

* The optional fields are a key-value pair of TAG:TYPE:VALUE. These store
extra information

* Can be converted to Binary AlignMent format (BAM) to save space and speed
up look-up operations using SAMTools



Alignment format for short reads — Sequence AlignMent
(SAM format)

Table 1. Mandatory fields in the SAM format

No. Name Description

I QNAME Query NAME of the read or the read pair
2 FLAG Bitwise FLAG (pairing, strand, mate strand, etc.)
3 RNAME Reference sequence NAME

- POS |-Based leftmost POSition of clipped alignment
h) MAPQ MAPping Quality (Phred-scaled)

6 CIGAR Extended CIGAR string (operations: MIDNSHP)
7 MRNM Mate Reference NaMe (*=" if same as RNAME)
8 MPOS |-Based leftmost Mate POSition

9 ISIZE Inferred Insert SIZE

10 SEQ Query SEQuence on the same strand as the reference

11 QUAL Query QUALIity (ASCII-33=Phred base quality)




SAM format — Optional fields

Tag Type Description

X7 ? Reserved fields for end users (together with Y? and Z7)

AM i The smallest template-independent mapping quality of fragments in the rest

AS i Alignment score generated by aligner

BQ Z Offset to base alignment quality (BAQ), of the same length as the read sequence. At the
i-th read base, BAQ, = Q. — (BQ, — 64) where @, is the i-th base quality.

CM i Edit distance between the color sequence and the color reference (see also NM)

cQ Z Color read quality on the original strand of the read. Same encoding as QUAL; same
length as CS.

(o] Z Color read sequence on the original strand of the read. The primer base must be included.

E2 Z The 2nd most likely base calls. Same encoding and same length as QUAL.

FI i The index of fragment in the template.

FS Z Fragment suffix.

LB Z Library. Value to be consistent with the header RG-LB tag if @RG is present.

HO i Number of perfect hits

H1 i Number of 1-difference hits (see also NM)

H2 i Number of 2-difference hits

HI i Query hit index, indicating the alignment record is the i-th one stored in SAM

IH i Number of stored alignments in SAM that contains the query in the current record

MD Z String for mismatching positions. Regezr: [0-9]+(([ACGTN] |\~ [ACGTN]+) [0-9]+)**

MQ i Mapping quality of the mate/next fragment

NH i Number of reported alignments that contains the query in the current record

NM i Edit distance to the reference, including ambiguous bases but excluding clipping

0Q Z Original base quality (usually before recalibration). Same encoding as QUAL.

0P i Original mapping position (usually before realignment)

oc Z Original CIGAR (usually before realignment)

PG Z Program. Value matches the header PG-ID tag if @PG is present.

PQ i Phred likelihood of the template, conditional on both the mapping being correct

PU Z Platform unit. Value to be consistent with the header RG-PU tag if @RG is present.

Q2 Z Phred quality of the mate/next fragment. Same encoding as QUAL.

R2 VA Sequence of the mate/next fragment in the template.

RG Z Read group. Value matches the header RG-ID tag if @RG is present in the header.

SM i Template-independent mapping quality

TC i The number of fragments in the template.

U2 Z Phred probility of the 2nd call being wrong conditional on the best being wrong. The
same encoding as QUAL.

uQ i Phred likelihood of the fragment, conditional on the mapping being correct
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Contents

* Alignment algorithms for short-reads

- Background — Blast (why can’t we use it?)

- Adapting hashed seed-extend algorithms to work with shorter reads
- Indel detection

- Suffix/Prefix Tries

- Other alignment considerations

- Typical alignment pipeline

- New methods of SNP calling



Other alignment considerations

* Indel detection

* Effect of paired-end alignments

* Using base quality to inform alignments

* PCR duplicates

* Methylation experiments — bisulfite treated reads

* Multi-mapping reads

* Aligning spliced-reads from RNA-seq experiments
 Local realignment to improve SNP/Indel detection
* Platform specific errors

* Unmapped reads



Indel detection

Spaced seed with weight 9bp and no mismatches:

ACTCCCATTGTCATCGTACTTGGGATCGTAACA Reference sequence

CCATTGTCATGTACTTGGGATCGT Read containing a
\ / deletion
CCATTGTCATCGTACAT
CCXXTGXXATXXACXXG Seed not matched due to frame shift caused
by gap

No seed match. No alignment!



Indel detection

Reference sequence:
Seed Extend with Smith Waterman

»

..ACTGGGTCATCGTACG ~TAGCTAGCTA...
GTCATCGTACE

Most alignment programs can only detect gaps in
Smith-Waterman phase
once a seed has been identified. Some algorithms (e.g.
Bowtie) do not allow gaps at this stage to improve
speed

This reduces sensitivity especially with multiple
insertions in a small region



Indel detection

* Some algorithms do allow gaps within seed

— Indel seeds for homology search Bioinformatics (2006) 22(14): e341-e349
doi:10.1093/bioinformatics/bti263

— Weese D, Emde AK, Rausch T, et al. RazerS—fast read mapping with
sensitivity control. Genome Res 2009;19:1646-54

— Rumble SM, Lacroute P, Dalca AV, et al. SHRi1MP: accurate mapping of
short color-space reads. PLoS Comput Biol 2009;5:¢1000386

* Use of multiple seeds
— Especially useful for longer reads (>50bp)

— L1R, L1Y, Kristiansen K, et al. SOAP: short oligonucleotide alignment
program. Bioinformatics 2008;24:713—4

— Jiang H, Wong WH. SeqMap: mapping massive amount of oligonucleotides
to the genome. Bioinformatics 2008;24: 2395-6



Paired-end reads are important

Known Distance

/ /

Read 1 Read 2

Repetitive DNA
Unique DNA

Paired read maps uniquely

—_\ ] ]

_—

Single read maps to
multiple positions




Eftect of paired-end alignments
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Effect of coverage on SNP call accuracy

* Depends on ploidy

* Bacterial genomes can get away with 10-20x

* For human genomes and other diploids 30x

* Poly-ploids (e.g wheat) may need much higher coverage

_a% o o) 4Q0 o99
a 0\ -?9—" o7 Q.17 Q7
~cQ . )+ \
N

Probability of Correct Call

o /a0 Source — Illumina Tech Note
0.0 4— — ¢ y , . . , Human diploid sample
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Fold Coverage
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PCR duplicates

« 2nd generation sequencers are not single-molecule sequencers

— All have at least one PCR amplification step
— Can result in duplicate DNA fragments
— This can bias SNP calls or introduce false SNPs

* Generally duplicates only make up a small fraction of the results

— Good libraries have < 2-3% of duplicates

— SAMtools and Picard can 1dentify and remove these when aligned
against a reference genome

— Debatable whether do this for RNA-seq and ChIP-seq

— Depends on the complexity of the sample



PCR duplicates
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Base quality impacts on read mapping

103 LI L A S AL B A L B | L 1
novo-noQual ———- | | |
novo-qual —8— | I !
mag-noQual —+— I ! !
» maq-qual - ' ' |
@ | | | | |
02
= 10% L — __.__!l _______ IL —
: e
& | |
S | | ose.
o | e e SR E S =
8 10' | — _._.__I+ _______ — —
: -
- N
R
| : |
350 360 370 410
# mapped reads (x10%)
Heng Li & Nils Homer.

Sequence alignment
algorithms for next-
generation sequencing.
Briefings in
Bioinformatics. Vol 11.
No 5.473 483, 2010



Multiple mapping reads

B

* A single read may occur more than once in the reference genome.
* Could be due to:

* Paralogs (duplicated genes).

* Transcripts which share exons.

* Mutations in genotype relative to the reference.

* Transposons and other common repetitive sequences

* Some aligners automatically assign a multi-mapping read to one of the
locations at random (e.g. Tophat)

* Aligners may allow you to chose how these are dealt with — others
may not



Allelic bias when SNP calling

A Reference bias in simulated reads
100 %
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e M 0.0 error/base
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Methylation experiments

Unmethylated cytosine are

‘///////////' converted to uracil

5'-atcgCCcgatalga-3"
3'-tagcgggltatgct-5"'

Bisulfite
treatment
v 5'-atcgliTlcgatalga-3' (1)
5'-atcgUUcgatalga-3" —»3'-tagcAAgCtatAct-5" (2)
Amplification
3'-tagcgggUtatgct-5"' D' -atcgcccAatacga-3' (3)

3'-tagcgggltatgct-5" (4)



Methylation experiments

* Directly aligning reads against a reference will fail due to excessive
mismatches in non-methylated regions

* Most packages deal with this by creating 2 reference sequences
— One has all Cs converted to Ts

— One has all Gs converted to As

* Convert Cs to Ts 1n all reads aligned against C->T reference
* Convert Gs to As 1n all reads aligned against G->A reference

* [f there are no mutations or sequencing errors the reads will always
map to one of the two references

http://www.biomedcentral.com/1471-2164/14/774



Spliced-read mapping

Mapping to genome

* Need packages which can account for splice variants
* Examples: TopHat, STAR, GMAP, MapSplice



Spliced-read mapper evaluation

@ Both uniquely mapped @ Both multimapped [ One unique and one multi [ One unique and one unmapped @ One multi and one unmapped

K562 Mouse brain Simulation 1 Simulation 2

BAGET ann

GEM ann

GEM cons

GEM cons ann
GSNAP

GSNAP ann
GSTRUCT
GSTRUCT ann
MapSplice
MapSplice ann
PALMapper
PALMapper ann
PALMapper cons
PALMapper cons ann
PASS

PASS cons
ReadsMap
SMALT

STAR 1-pass
STAR 1-pass ann
STAR 2-pass
STAR 2-pass ann
TopHat1

TopHat1 ann
TopHat2
TopHat2 ann

60 80 100 O
Mapped fragments (%)



Local realignment to improve SNP/Indel detection

* Read aligners map each read (or read pair) independently of all

other reads
* Around indels and other variants it can be helpful to make use of

other metrics
¢.g. Global median coverage for multi-mapping reads
* Tools such as GATK, SAMtools, Pindel and Breakdancer realign

reads 1n the vicinity of variants to improve calls

http://www.broadinstitute.org/gsa/wiki/index.php/The Genome Analysis Toolkit

Chen, K. BreakDancer: an algorithm for high-resolution mapping of genomic structural
variation Nature Methods 6, 677 - 681 (2009)

L1 H.*, Handsaker B.*, Wysoker A., Fennell T., Ruan J., Homer N., Marth G., Abecasis G.,
Durbin R. and 1000 Genome Project Data Processing Subgroup (2009) The Sequence
alignment/map (SAM) format and SAMtools. Bioinformatics, 25, 2078-9



Figure 6. A visual examination of a spurious gene (CDC27).
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All platforms have errors and artefacts

| =
— N
—_— ———
I1lumina PacBio Roche 454 Ion Torrent

NN LS

Removal of low quality bases
2. Removal of adaptor sequences
3. Platform specific artefacts (e.g homopolymers)



Table 2. Spurious genes having mutations detected in 30 samples.

CCDS ID Gene symbol Exon # samples
CCDS11509.1 CDC27 138 36
CCDS12749.1 CGB 3 36
CCDS12752.1 CGB5 1= 36
CCDS41378.1 NBPF11 9™ 36
CCDS43407.1 FAM153C 4™ 36
CCDS5931.1 MLL3 4o 36
CCDS34703.1 STAG3 33" 34
CCDS5590.1 POMZP3 1™ 34
CCDS10638.1 EIF3C g 32
CCDS30836.1 NBPF14 22" 31

CCDS: Consensus coding sequence. Exon: the specific exon in which the
variants are detected.
doi:10.1371/journal.pone.0038470.t002

@’PLOS ‘ ONE



Illumina artefacts

Sequence-specific error profile of lllumina

sequencers

Kensuke Nakamura'*, Taku Oshima®, Takuya Morimoto?>, Shun lkeda’,
Hirofumi Yoshikawa*®, Yuh Shiwa®, Shu Ishikawa?, Margaret C. Linak®, Aki Hirai',
Hiroki Takahashi', Md. Altaf-Ul-Amin', Naotake Ogasawara? and Shigehiko Kanaya'

'Graduate School of Information Science, 2Graduate School of Biological Sciences, Nara Institute of Science
and Technology, 8916-5 Takayama-cho, Ikoma, Nara 630-0192, Japan, ®Biological Science Laboratories,

Kao Corporation, 2606 Akabane, Ichikai, Haga, Tochigi 321-3497, 4Department of Bioscience, Tokyo

University of Agriculture, *Genome Resgarch Center, NODAI Research Institute, Tokyo University of Agriculture,
1-1-1 Sakuragaoka Setagaya-ku, Tokyo, 156-8502, Japan and ®Department of Chemical Engineering and
Material Science, University of Minnesota, 223 Amundson Hall, 421 Washington Avenue S.E., Minneapolis,

MN 55455, USA

Received February 3, 2011; Revised April 25, 2011; Accepted April 26, 2011

ABSTRACT

We identified the sequence-specific starting pos-
itions of consecutive miscalls in the mapping of
reads obtained from the lllumina Genome Analyser
(GA). Detailed analysis of the miscall pattern indi-
cated that the underlying mechanism involves
sequence-specific interference of the base elong-
ation process during sequencing. The two major
sequence patterns that trigger this sequence-
specific error (SSE) are: (i) inverted repeats and
(i) GGC sequences. We speculate that these se-
quences favor dephasing by inhibiting single-base

platforms [Illumina/Solexa Genome Analyser (4), Life
Technologies/ABI SOLID System (5) and Roche/454
Genome Sequencer FLX (6)], the Illumina Genome
Analyser (GA) is, at the moment, the most popular choice
for the analysis of genomic information (7). The Illumina/
Solexa sequencers are characterized by: (i) solid-phase
amplification and (ii)) a cyclic reversible termination
(CRT) process, also termed sequencing-by-synthesis
(SBS) technology (8). The sequencer can generate hun-
dreds of millions of relatively short (30-100bp) read se-
quences per run.

The application of data obtained from this NGS tech-
nologv can be roughlv categorized into the following three

Nakamura, K. et al. Sequence-specific error profile of Illumina sequencers
Nucl. Acids Res. (2011) May 16, 2011




Illumina artefacts

1. GC rich regions are under represented

a. PCR

b. Sequencing
2. Substitutions more common than insertions
3. GGC/GCC motif 1s associated with low quality and
mismatches
4. Filtering low quality reads exacerbates low coverage
of GC regions

Alignment software should ideally account for technology
specific bias but generally does not



Your alignments are only as good as your library prep

 Even if all other artefacts are removed:

* If your library prep is biased, your alignments will also
reflect this bias



3' fragment end

Tophat/Cufflinks aside

5' fragment end

* Applies to random primed
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Effect of bias correction

]
0.6

3 Corrected m S ifi itioniai
B Initial equence specific + positiona

(0)) B Sequence specific
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Fraction explained discrepancy
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0.1
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ligation ligation
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N.B. Out-dated version of Cufflinks used here



Pacific Biosciences alignment

Median PacBio reads are 12kb with an
single-read error rate of around 12-13%

Most common distance between errors in a
PacBio read is around 30bp

Long length compensates and enables seeds
to be located in many places to begin
alignment

However, this can be computationally costly

* Need to balance number of seeds
required to get a good alignment vs
computational time

PacBio developed BLASR to do this

Frequency

1e+02 1e+04 1e+06

1e+00

I I I
50 100 150

Number of bases between errors

http://bioinformatics.oxfordjournals.org/content/28/18/i349.full



Pacific Biosciences read correction via alignment

Long reads

— - Construct
Longest = preassembled
‘seed’ reads reads
Preassembled _ e
reads — e e R e e [ c— Assemble
L T SIS S S D SSED G G SN S G S G to finished
Genome genome

Alignment can also be used to generate a consensus to reduce the number of
errors

Most errors in PacBio seem to be randomly distributed

If we have enough coverage, we can correct these errors by aligning all the short
reads to the longer reads and correct based on the consensus

These can then be used for denovo assembly
Hierarchical Genome Assembly Process (HGAP)

http://www.nature.com/nmeth/journal/v10/n6/full/nmeth.2474.html



Unmapped reads
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Unmapped reads

* Can be the result of:
— Sequencing errors (should be small fraction if quality filtering
applied before mapping)
— Contamination
— Excessive matches to repeats
— Highly divergent regions between samples
— Novel genetic material not present in reference
— Plasmids

* Should be assembled de-novo with paired-end information if possible

* Resulting contigs run through MegaBlast against NCBI NT to check
species

* Check against RepBase to remove repetitive contigs

 Call ORFs

* Blast ORFs using BlastP against NCBI NR or Swissprot and Blast2GO
* Run through PFAM



Typical alignment pipeline

*Remove low quality bases
*Remove reads containing adaptor sequences
*Trim or remove reads containing Ns

QC

*Generate reference or read index
* Align reads to index

Alignment *SAM output file

*Sort SAM file and convert to BAM with SAMtools

*Remove suspected PCR duplicates with SAMtools

*Perform local realignment around indels using GATK

*Supply BAM file to variant caller (e.g. Samtools mpileup)

Post alignment | *Analyse variants (are they within genes, synonymous vs nonsynonymous changes etc)*
*Locate missing genes/regulatory regions

* Assemble unmapped reads (e.g. using Velvet)
Assemble *Call Open Reading Frames (ORFs)
unmapped reads *Search for homologous genes (BLASTP), protein families (PFAM)

*Identify novel genes

* http://bioinformatics.net.au/software.nesoni.shtml



Contents

* Alignment algorithms for short-reads

- Background — Blast (why can’t we use it?)

- Adapting hashed seed-extend algorithms to work with shorter reads
- Indel detection

- Suffix/Prefix Tries

- Other alignment considerations

- Typical alignment pipeline

- Haplotype methods of variant calling



Haploytype SNP calling

* FreeBayes (
 GATK — Haplotype caller
» Haplotype calling in polyploids
ACCTGTA  Reference Genome
Assume a SNP at both 5° A->T and 3’ A->G in a diploid
Do we have a heterozygous?
Allele 1: ACCTGTG
Allele 2: TCCTGTC
Or do we have a homozygous?

Allele 1: TCCTGTG
Allele 2: TCCTGTG




Haplotype issue calling — Long reads to the rescue

SNP1 SNP2 SNP3 SNP4
A T GT
C C Gl ATGT
Short-read ATAC
Genotyping ACGT
Approach ACAC
CTGT
CTAC
CCGT
CCAC
Long-read A - &

Approach v CC A,&:C CCAC



New methods of SNP calling

* Why align at all?
* We only do this because of computational constraints

* Ideally we want to assemble denovo and then align to
reference genome

 Fermi and Cortex are tools to enable this:

* Denovo genome assembler, but keeps track of differences
which could be due to SNPs/Indels Halouzygous

g s W g

Homozygous

——

Repeat

Heng Li Exploring single-sample SNP and INDEL calling with whole-genome de novo assembly Bioinformatics (2012) 28 (14): 1838-1844 first published online May 7, 2012doi:10.1093/bioinformatics/bts280



Variant calling with de-novo assembly

Exploring single-sample SNP and INDEL calling with
whole-genome de novo assembly

Heng Li'-

!Broad Institute, 7 Cambridge Center, Cambridge, MA 02142, USA

Associate Editor: Dr. Michael Brudno

ABSTRACT

Motivation: Eugene Myers in his stri
suggested that in a string graph or &
path spells a valid assembly. As a st
every valid assembly of reads, such
be constructed comectly, is in fact
reads. In principle, every analysis bas
sequencing (WGS) data, such as SNP
calling, can also be achieved with uniti

nature
genetlcs

De novo assembly and genotyping of variants using

colored de Bruijn graphs

Zamin Igbal'23, Mario Caccamo?®3, Isaac Turner!, Paul Flicek? & Gil McVean'#

Detecting genetic variants that are highly divergent from a
reference sequence remains a major challenge in genome
sequencing. We introduce de novo assembly algorithms using
colored de Bruijn graphs for detecting and genotyping simple
and complex genetic variants in an individual or population.
We provide an efficient software implementation, Cortex,

the first de novo assembler capable of assembling multiple
eukaryotic genomes simultaneously. Four applications of
Cortex are presented. First. we detect and validate both simple

a single suitable reference, as in ecological sequencing?!. Fourth,
methods for variant calling from mapped reads typically focus on a
single variant type. However, in cases in which variants of different
types cluster, focus on a single type can lead to errors, for example,
through incorrect alignment around indel polymorphisms®’. Fifth,
although there are methods for detecting large structural variants,
such as using array comparative genomic hybridization (aCGH)?2-%5
and mapped reads'!'>!%26  these cannot determine the exact
location. size or allelic seauence of variants. Finallv. mapping
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