
Konrad Paszkiewicz
University of Exeter, UK

k.h.paszkiewicz@exeter.ac.uk

Workshop on Genomics 2015
Sequence Alignment:
An brief introduction

Contents

•  Alignment algorithms for short-reads
-  Background – Blast (why can’t we use it?)
-  Adapting hashed seed-extend algorithms to work with

shorter reads
-  Suffix/Prefix Tries
-  Indels
-  Other alignment considerations
-  Typical alignment pipeline
-  Haplotype methods of variant calling

Alignment of reads to a reference

 ..ACTGGGTCATCGTACGATCGATCGATCGATCGATCGGCTAGCTAGCTA..

 ..ACTGGGTCATCGTACGATCGATAGATCGATCGATCGCTAGCTAGCTA..

Reference

Sample

Why is short read alignment hard?

The shorter a read, the
less likely it is to have a
unique match to a
reference sequence

Need over 7kb reads to
uniquely place most
reads from bacteria

Why do we generate short reads?

•  Sanger reads lengths ~ 800-2000bp

•  Generally we define short reads as anything below this
−  Illumina (50bp – 300bp)
−  SoLID (80bp max)
−  Ion Torrent (200-400bp max...)
−  Roche 454 – 400-800bp

•  Even with these platforms it is cheaper to produce short reads (e.g. 50bp)
rather than 100 or 200bp reads

•  Diminishing returns:
−  For some applications 50bp is more than sufficient
− Small-RNA
− ChIP-Seq
− Differential gene expression
− Digital Gene Expression profiling

Short read alignment applications

Genotyping:
 Methylation
 SNPs
 Indels

Classify and measure peaks:
 ChIP-Seq
 RNA-Seq

Contents

•  Alignment algorithms for short-reads

-  Background – Blast (why can’t we use it?)
-  Global alignment

-  Local alignment

-  Adapting hashed seed-extend algorithms to work with shorter reads

-  Indel detection

-  Suffix/Prefix Tries

-  Other alignment considerations

-  Typical alignment pipeline

-  Haplotype methods of variant calling

Dot Matrix Method
- Aligning by eye

9
http://arbl.cvmbs.colostate.edu/molkit/dnadot/index.html

Sequence Alignment

 ATCGATA-CG
ATGGATTACG

3 possibilities

Mismatch
…C…
…G…

Indel
…-…
…T…

Match
…A…
…A…
|

A very simple alignment scoring system

Points for a matching letter: 1

Points for a non-matching letter: 0

Points for inserting a gap: 0

Global Pair-wise Alignment

ATCGAT-ACG
ATGGATTACG

ATCGATACG, ATGGATTACG

|| ||| |||
+1 +1 +1 +1 +1 +1 +1 +1 Matches: = +8

0 Mismatches: = 0
0 Gaps: = 0

Total score = +8

But, what does this score mean??
Could we get a better alignment?

How to choose the best alignment?

•  Sequence 1: ACTGAGC
•  Sequence 2: ATGATGC

•  Some possible alignments:

ACTGAGC-- ACTGA-GC A----CTGAGC
A-TGA-TGC A-TGATGC ATGAT----GC

Global alignment – Needleman-Wunsch

A global alignment covers the entire lengths of the
sequences involved

The Needleman-Wunsch algorithm finds the best global
alignment between 2 sequences across their whole length

Step 1: Initialise

A C T G A G C

A 0

T 0

G 0

A 0

T 0

G 0

C 0 1 0 0 0 0 1

Fill in far-right column and bottom row with:
 0 for a mis-match
 1 for a match

Step 2:

A C T G A G C

A 0

T 0

G 0

A 0

T 0

G 0

C 0 1 0 0 0 0 1

For each box, find the highest number out of the blue boxes

Step 3:

A C T G A G C

A 0

T 0

G 0

A 0

T 0

G 1+1=2 0

C 0 1 0 0 0 0 1

If there is a match in the yellow box as, take the highest value from the
blue boxes and add 1 to it

G matches G in the yellow box, so add 1 to the 1 in the blue box

Step 2:

A C T G A G C

A 0

T 0

G 0

A 0

T 0

G 0+1=1 2 0

C 0 1 0 0 0 0 1

A does not match G. So add zero to the 1 in the blue box.

Step 2:

A C T G A G C

A 0

T 0

G 0

A 0

T 0

G 1+1=2 1 2 0

C 0 1 0 0 0 0 1

If there is a match as here, take the highest value and add 1 to it

G matches G so add 1 to 1 in the blue boxes

Step 2:

A C T G A G C

A 0

T 0

G 0

A 0

T 0

G 0+1=1 2 1 2 0

C 0 1 0 0 0 0 1

If there is a match as here, take the highest value and add 1 to it

T does not match G. So add zero.

Step 2:

A C T G A G C

A 0

T 0

G 0

A 0

T 0+1=1 0

G 1 1 1 2 1 2 0

C 0 1 0 0 0 0 1

Highest out of the blue boxes is 1

.

Step 2:

A C T G A G C

A 0

T 0

G 0

A 0

T 2+0=2 1 0

G 1 1 1 2 1 2 0

C 0 1 0 0 0 0 1

Highest out of the blue boxes is 2

A does not match T

.

Step 2:

A C T G A G C

A 0

T 0

G 0

A 0

T 2+0=2 2 1 0

G 1 1 1 2 1 2 0

C 0 1 0 0 0 0 1

Highest out of the blue boxes is 2

G does not match T

.

Step 2:

A C T G A G C

A 0

T 0

G 0

A 0

T 3 2 2 1 0

G 1 1 1 2 1 2 0

C 0 1 0 0 0 0 1

Highest out of the blue boxes is 2

T does match T

.

Step 2:

A C T G A G C

A 0

T 0

G 0

A 0

T 2+0=2 3 2 2 1 0

G 1 1 1 2 1 2 0

C 0 1 0 0 0 0 1

Highest out of the blue boxes is 2

C does not match T

.

Step 2:

A C T G A G C

A 0

T 0

G 0

A 0

T 2 2 3 2 2 1 0

G 1 1 1 2 1 2 0

C 0 1 0 0 0 0 1

Do the same for all remaining rows

.

Step 2:

A C T G A G C

A 0

T 0

G 0

A 1+0=1 0

T 2 2 3 2 2 1 0

G 1 1 1 2 1 2 0

C 0 1 0 0 0 0 1

Do the same for all remaining rows

.

Step 2:

A C T G A G C

A 0

T 0

G 0

A 2+1=3 1 0

T 2 2 3 2 2 1 0

G 1 1 1 2 1 2 0

C 0 1 0 0 0 0 1

Do the same for all remaining rows

.

Step 2:

A C T G A G C

A 0

T 0

G 0

A 2+0=2 3 1 0

T 2 2 3 2 2 1 0

G 1 1 1 2 1 2 0

C 0 1 0 0 0 0 1

Do the same for all remaining rows

.

Step 2:

A C T G A G C

A 0

T 0

G 0

A 2+0=2 2 3 1 0

T 2 2 3 2 2 1 0

G 1 1 1 2 1 2 0

C 0 1 0 0 0 0 1

Do the same for all remaining rows

.

Step 2:

A C T G A G C

A 6 5 4 3 3 1 0

T 4 4 5 3 2 1 0

G 3 3 3 4 2 1 0

A 4 3 2 2 3 1 0

T 2 2 3 2 2 1 0

G 1 1 1 2 1 2 0

C 0 1 0 0 0 0 1

Do the same for all remaining rows

.

Step 3: Backtracking

A C T G A G C

A 6 5 4 3 3 1 0

T 4 4 5 3 2 1 0

G 3 3 3 4 2 1 0

A 4 3 2 2 3 1 0

T 2 2 3 2 2 1 0

G 1 1 1 2 1 2 0

C 0 1 0 0 0 0 1

Follow largest numbers starting from top-left going down and to the
right

.

A C T G A G C

A 6 5 4 3 3 1 0

T 4 4 5 3 2 1 0

G 3 3 3 4 2 1 0

A 4 3 2 2 3 1 0

T 2 2 3 2 2 1 0

G 1 1 1 2 1 2 0

C 0 1 0 0 0 0 1

Step 3: Backtracking

Follow largest numbers starting from top-left going down and to the
right

.

A C T G A G C

A 6 5 4 3 3 1 0

T 4 4 5 3 2 1 0

G 3 3 3 4 2 1 0

A 4 3 2 2 3 1 0

T 2 2 3 2 2 1 0

G 1 1 1 2 1 2 0

C 0 1 0 0 0 0 1

Step 3: Backtracking

Follow largest numbers starting from top-left,
going down and to the right

.

Step 4: Generate alignment

A C T G A G C

A 6 5 4 3 3 1 0

T 4 4 5 3 2 1 0

G 3 3 3 4 2 1 0

A 4 3 2 2 3 1 0

T 2 2 3 2 2 1 0

G 1 1 1 2 1 2 0

C 0 1 0 0 0 0 1

Horizontal seq A
Vertical seq A

Step 4: Generate alignment

A C T G A G C

A 6 5 4 3 3 1 0

T 4 4 5 3 2 1 0

G 3 3 3 4 2 1 0

A 4 3 2 2 3 1 0

T 2 2 3 2 2 1 0

G 1 1 1 2 1 2 0

C 0 1 0 0 0 0 1

Horizontal seq ACT
Vertical seq A-T

Gap

Step 4: Generate alignment

A C T G A G C

A 6 5 4 3 3 1 0

T 4 4 5 3 2 1 0

G 3 3 3 4 2 1 0

A 4 3 2 2 3 1 0

T 2 2 3 2 2 1 0

G 1 1 1 2 1 2 0

C 0 1 0 0 0 0 1

Horizontal seq ACTG
Vertical seq A-TG

Step 4: Generate alignment

A C T G A G C

A 6 5 4 3 3 1 0

T 4 4 5 3 2 1 0

G 3 3 3 4 2 1 0

A 4 3 2 2 3 1 0

T 2 2 3 2 2 1 0

G 1 1 1 2 1 2 0

C 0 1 0 0 0 0 1

Horizontal seq ACTGA
Vertical seq A-TGA

Step 4: Generate alignment

A C T G A G C

A 6 5 4 3 3 1 0

T 4 4 5 3 2 1 0

G 3 3 3 4 2 1 0

A 4 3 2 2 3 1 0

T 2 2 3 2 2 1 0

G 1 1 1 2 1 2 0

C 0 1 0 0 0 0 1

Horizontal seq ACTGA-
Vertical seq A-TGAG

Step 4: Generate alignment

A C T G A G C

A 6 5 4 3 3 1 0

T 4 4 5 3 2 1 0

G 3 3 3 4 2 1 0

A 4 3 2 2 3 1 0

T 2 2 3 2 2 1 0

G 1 1 1 2 1 2 0

C 0 1 0 0 0 0 1

Horizontal seq ACTGA-C
Vertical seq A-TGAGC

Optimal global alignment

ACTGA-C
| ||| |
A-TGAGC

Local alignment

A global alignment is often not appropriate as only parts
of sequences may be conserved

A local alignment only covers parts of the sequences

 The Smith-Waterman algorithm finds the best local alignment between 2
sequences

 Global alignment

 Local alignment

Q K E S G P S S S Y C

V Q Q E S G L V R T T C
| | | | |

 E S G

 E S G
 | | |

Local alignment

A local alignment of 2 sequences is an alignment
between parts of the 2 sequences

E.g. Two proteins may be very similar in a functional site, but be very dissimilar
outside that region

 A global alignment of such sequences would have:
 (i) lots of matches in the region of high sequence similarity
 (ii) lots of mismatches & gaps (insertions/deletions) outside the region of
similarity

 It makes sense to find the best local alignment instead

Alignment of an orthologous protein in
D.melanogaster vs H.sapiens

Not suitable for global alignment

2 main regions of similarity

Better to use local alignment

Local alignment – Smith-Waterman algorithm

Example – align TCGA to GAC

0 - T C G A

- 0 0 0 0 0

G 0 -1 -1 1 -1

A 0 -1 -2 -1 2

C 0 -1 0 -2 0

Points for match = +1
Points for mismatch = -1
Points for a gap insertion = -2

Local alignment – Smith-Waterman algorithm

Example – align TCGA to GAC

0 - T C G A

- 0 0 0 0 0

G 0

A 0

C 0

Points for match = +1
Points for mismatch = -1
Points for a gap insertion = -2

Local alignment – Smith-Waterman algorithm

+ MATCH + GAP

+ GAP
Points for match = +1
Points for mismatch = -1
Points for a gap insertion = -2

0 - T C G A

- 0 0 0 0 0

G 0 -1

A 0

C 0

Local alignment – Smith-Waterman algorithm

Points for match = +1
Points for mismatch = -1
Points for a gap insertion = -2

 -1

0 - T C G A

- 0 0 0 0 0

G 0 -1

A 0 -1

C 0

Local alignment – Smith-Waterman algorithm

Points for match = +1
Points for mismatch = -1
Points for a gap insertion = -2

 -1

 -3

0 - T C G A

- 0 0 0 0 0

G 0 -1

A 0 -1

C 0 -1

Local alignment – Smith-Waterman algorithm

Example – align TCGA to GAC

0 - T C G A

- 0 0 0 0 0

G 0 -1 -1 1 -1

A 0 -1 -2 -1 2

C 0 -1 0 -2 0

Points for match = +1
Points for mismatch = -1
Points for a gap insertion = -2

51

Backtracking and final local alignment

 GA
GA
||

0 - T C G A

- 0 0 0 0 0

G 0 -1 -1 1 -1

A 0 -1 -2 -1 2

C 0 -1 0 -2 0

Smith-Waterman – more details

http://www.youtube.com/watch?v=IVRSFaGCGeE

Dynamic programming

•  Needleman-Wunsch and Smith-Waterman are a
class of methods known as ‘Dynamic
Programming’

•  Guaranteed to give you the best possible
alignment

•  In biology, this algorithm is very inefficient
because any 2 randomly selected DNA fragments
in a database are are unlikely to have any
similarity

•  Therefore, these methods take a long time to run

BLAST –
Basic Local Alignment Search Tool

Background – BLAST

•  Primarily designed to identify homologous sequences
-  Blast is a hashed seed-extend algorithm
-  Negative selection
-  Only some parts of a sequence are usually constrained

BLAST - Original version

A C G A A G T A A G G T C C A G T

C

C

C

T
 T

C

 C
 T

G

G

A

 T

T
 G

 C

G

A

Example:

Seed size = 4,
No mismatches in seed

The matching word GGTC

initiates an alignment

Extension to the left and right

with no gaps until alignment
score falls below 50%

Output:
GTAAGGTCC
GTTAGGTCC

BLAST - Original algorithm

•  Finding seeds significantly increases the speed of BLAST
compared to doing a full local alignment over a whole sequence

•  Will not guarantee the best solution
•  BLAST first finds highly conserved or identical sequences which

are then extended with a local alignment.

BLAST – Speed (or lack thereof)

•  Typically BLAST will take approximately 0.1 – 1 second to search
1 sequence against a database

•  Depends on size of database, e-value cutoff and number of hits to
report selected

•  60 million reads equates to 70 CPU days!
•  Even on multi-core systems this is too long!
•  Especially if you have multiple samples!
•  This is still true of FPGA and SIMD (vectorised) implementations

of BLAST

When NOT to use BLAST

•  A typical situation: you have lots DNA sequences and want to
extend it or find where on a genome it maps.

•  In other words, you want an exact or near-exact match to a
sequence that is part of an assembled genome.

•  Short reads require very fast algorithms for finding near-exact
matches in genomic sequences:
−  BLAT

−  Highly recommended: the BLAT paper (Kent WJ (2003) Genome Res
12:656-64) – very well written

−  SOAP
−  Bowtie/Bowtie 2
−  MAQ
−  BWA
−  Shrimp2

Contents

•  Alignment algorithms for short-reads
-  Background – Blast (why can’t we use it?)

-  Adapting hashed seed-extend algorithms to work with shorter reads

-  Indel detection

-  Suffix/Prefix Tries

-  Other alignment considerations

-  Typical alignment pipeline

-  New methods of variant calling

Adapting hashed seed-extend algorithms to work
with shorter reads

•  Improve seed matching sensitivity
−  Allow mismatches within seed

− BLAST
−  Allow mismatches + Adopt spaced-seed approach

− ELAND, SOAP, MAQ, RMAP, ZOOM
−  Allow mismatches + Spaced-seeds + Multi-seeds

− SSAHA2, BLAT, ELAND2
•  Above and/or Improve speed of local alignment for seed extension
−  Single Instruction Multiple Data

− Shrimp2, CLCBio
−  Reduce search space to region around seed

Hashed seed-extend algorithms

•  These are most similar to BLAST
•  Are not designed to work with large databases

•  2 step process
−  Identify a match to the seed sequence in the reference
− Extend match using sensitive (but slow) Smith-

Waterman algorithm (dynamic programming)

Seed-extend algorithm

Reference sequence:

...ACTGGGTCATCGTACGATCGATCGATCGATCGATCGGCTAGCTAGCTA...

Short read:

GTCATCGTACGATCGATAGATCGATCGATCGGCTA

Note that the short read has 1 difference wrt to reference

Seed-extend algorithm

Reference sequence:

...ACTGGGTCATCGTACGATCGATCGATCGATCGATCGGCTAGCTAGCTA...

Short read:

GTCATCGTACG ATCGATAGATCG ATCGATCGGCTA

11bp word 11bp word 11bp word

The algorithm will try to match each word to the reference. If there
is a match at with any single word it will perform a local alignment
to extend the match

Seed-extend algorithm

Reference sequence:

...ACTGGGTCATCGTACGATCGATCGATCGATCGATCGGCTAGCTAGCTA...

Short read:

GTCATCGTACG ATCGATAGATCG ATCGATCGGCTA

Seed Extend with Smith Waterman

Here the algorithm is able to match the short read with a word length of
11bp

GTCATCGTACG

ATCGAACGATCGATCGATCGGCTA

Seed-extend algorithm

Reference sequence:

...ACTGGGTCATCGTACGATCGATCGATCGATCGATCGGCTAGCTAGCTA...

Short read:

GTCATCGTACGATCGATCGATCGATCGATCGGCAA

Note that the short read has 3 differences
Possibly sequencing errors, possibly SNPs

Seed-extend algorithm

Reference sequence:

...ACTGGGTCATCGTACGATCGATCGATCGATCGATCGGCTAGCTAGCTA...

Short read:

GTCATCGTACG ATCGATCGATCG

 ATCGATCGGCAA

Note that the short read has 3 differences

11bp word 11bp word 11bp word

Seed-extend algorithm

Reference sequence:

...ACTGGGTCATCGTACGATCGATCGATCGATCGATCGGCTAGCTAGCTA...

No seeds match

Therefore the algorithm would find no hits at all!

Short read:

GTCATCGTACG ATCGATCGATCG

 ATCGATCGGCAA

Adapting hashed seed-extend algorithms to work
with shorter reads

•  Improve seed matching sensitivity
−  Allow mismatches within seed

− BLAST
−  Allow mismatches + Adopt spaced-seed approach

− ELAND, SOAP, MAQ, RMAP, ZOOM
−  Allow mismatches + Spaced-seeds + Multi-seeds

− SSAHA2, BLAT, ELAND2
•  Above and/or Improve speed of local alignment for seed extension
−  Single Instruction Multiple Data

− Shrimp2, CLCBio
−  Reduce search space to region around seed

Adapting hashed seed-extend algorithms to work
with shorter reads

•  Improve seed matching sensitivity
−  Allow mismatches within seed

− BLAST
−  Allow mismatches + Adopt spaced-seed approach

− ELAND, MAQ, RMAP, ZOOM
−  Allow mismatches + Spaced-seeds + Multi-seeds

− SSAHA2, BLAT, ELAND2
•  Above and/or Improve speed of local alignment for seed extension
−  Single Instruction Multiple Data

− Shrimp2, CLCBio
−  Reduce search space to region around seed

Consecutive seed

CCACTGTCCTCCTACATAGGAACGA

Consecutive seed 9bp allowing no mismatches:

ACTCCCATCGTCATCGTACTAGGGATCGTAACA
SNP ‘heavy’ read

Reference sequence

Even allowing for 2 mismatches in
the seed - no seeds match.
No hits!

Cannot find seed match due to A->C SNP
and G->C SNP

TCATCGTAC
TCCTCCTAC

Spaced seeds

To increase sensitivity we can used spaced-seeds:

 111111111

11001100110011001

Consecutive seed template with length 9bp

Spaced-seed template with weight 9bp

ACTATCATCGTACACAT
TCATCGTAC

ACTATCATCGTACACAT
ACTCTCACCGTACACAT

Reference
Query

Reference

Query

Spaced seeds

CCACTGTAATCGTACATGGGAACGA

Spaced seed with weight 9bp and no mismatches:

ACTCCCATTGTCATCGTACTTGGGATCGTAACA
SNP ‘heavy’ read

Reference sequence

Can now extend with Smith-Waterman or other local alignment

Despite SNPs – seed matched with 0
mismatches

CCATTGTCATCGTACAT
CCXXTGXXATXXTAXXT

Spaced seeds

Ma, B. et al. PatternHunter. Bioinformatics Vol 18, No 3, 2002

Spaced seeds:

•  A seed template ‘111010010100110111’ is 55% more sensitive than
BLAST’s default template ‘11111111111’ for two sequences of 70%
similarity
•  Typically seeds of length ~30bp and allow up to 2 mismatches in short
read datasets

Contents

•  Alignment algorithms for short-reads
-  Background – Blast (why can’t we use it?)

-  Adapting hashed seed-extend algorithms to work with shorter reads

-  Suffix/Prefix Tries

-  Indel detection

-  Other alignment considerations

-  Typical alignment pipeline

-  New methods of SNP calling

Suffix-Prefix Trie

•  Trie – data structure which stores the suffixes (i.e. ends of a sequence)
•  A family of methods which uses a Trie structure to search a reference

sequence
−  Bowtie
−  BWA aln (<70bp reads) and MEM algorithm (>70bp reads)
−  SOAP version 2

•  Key advantages:
−  Alignment of multiple copies of an identical sequence in the

reference only needs to be done once
−  Use of an FM-Index to store Trie can drastically reduce memory

requirements (e.g. Human genome can be stored in 2Gb of RAM)
−  Burrows Wheeler Transform to perform fast lookups

Suffix Trie

Heng Li & Nils Homer.
Sequence alignment
algorithms for next-
generation sequencing.
Briefings in
Bioinformatics. Vol 11.
No 5. 473 483, 2010

Read
AGGAGC

Burrows-Wheeler Algorithm

•  Encodes data so that it is easier to compress
•  Burrows-Wheeler transform of the word BANANA
•  Can later be reversed to recover the original word

More Burrows-Wheeler

Input SIX.MIXED.PIXIES.SIFT.SIXTY.PIXIE.DUST.BOXES

Burrows-Wheeler Output TEXYDST.E.IXIXIXXSSMPPS.B..E.S.EUSFXDIIOIIIT

Repeated characters mean that it is easier to compress

Suffix Trie for a bacterial genome would be > 1Tb

We have to compress it

Use FM-Index/BW transform to do this compression

Bowtie/BWA example

Courtesy Mike Schatz

Bowtie/BWA example

Courtesy Mike Schatz

Bowtie/BWA example

Courtesy Mike Schatz

Bowtie/BWA example

Courtesy Mike Schatz

Bowtie/BWA example

Courtesy Mike Schatz

Bowtie/BWA example

Courtesy Mike Schatz

Bowtie/BWA example

Courtesy Mike Schatz

Bowtie/BWA example

Courtesy Mike Schatz

Bowtie/BWA example

Courtesy Mike Schatz

Bowtie/Soap2 vs. BWA

•  Bowtie 1 and Soap2 cannot handle gapped alignments
−  No indel detection => Many false SNP calls

CCATTGTCATCGTACTTGGGATCTA
ACTCCCATTGTCATCGTACTTGGGATCGTAACA Reference

 TCATCGTACTTGGGATCTA
 TTGGGATCTA

False SNPs

Bowtie/Soap2:

N.B. Bowtie2 can handle gapped alignments

Bowtie/Soap2 vs. BWA

•  Bowtie 1 and Soap2 cannot handle gapped alignments
−  No indel detection => Many false SNP calls

CCATTGTCATCGTACTTGGGATC-TA
ACTCCCATTGTCATCGTACTTGGGATCGTAACA Reference

 TCATCGTACTTGGGATC-TA
 TTGGGATC-TA

BWA:

N.B. Bowtie2 can handle gapped alignments

Comparison

Indexed Suffix/Prefix Trie
•  Requires <2Gb of memory
•  Runs 30-fold faster
•  Is much more complicated

to program
•  Least sensitive

Hash referenced spaced seeds
•  Requires ~50Gb of memory
•  Runs 30-fold slower
•  Is much simpler to

program
•  Most sensitive

There are limits however

CCATTGTCAACCATCTAGTAGCT-TA
ACTCCCATTGTCATCGTACTTGGGATCGTAACA Reference

 TCAACCATCTAGTAGCT-TA
 ACCATCTA-TA

With longer 100-300 bp reads, multiple indels or variable regions
longer than a few bp are likely to be missed

You only find what you are looking for

•  What happens if there are SNPs and Indels in the same region?

Let’s assume that the SNP caller made this call of a single SNP:

ATGTATGTA
ATGTGTGTA

and the indel caller produced this call of a 3 base deletion:

ATGTATGTA
ATGT---TA

Should we assume this is a heterozygous SNP opposite a
heterozygous Indel or a more complex locus?

•  Bowtie's reported 30-fold speed increase over hash-based methods with
 small loss in sensitivity
•  Limitations to Trie-based approaches:
−  Only able to find alignments within a certain 'edit distance’
−  Important to quality clip reads (-q in BWA)
−  Non-A/C/G/T bases on reads are often treated as mismatches
−  Make sure Ns are removed!

Hash based approaches are more suitable for divergent alignments
•  Rule of thumb:
−  <2% divergence -> Trie-based
− E.g. human alignments

−  >2% divergence -> Seed-extend based approach
− E.g. wild mouse strain alignments

Comparison

 Precision and recall by amount of variation for 4
datasets, by polymorphism:
(number of SNPs, Indel size)

David M et al. Bioinformatics 2011;27:1011-1012

 False discovery rates for variants were ascertained using
cFDR for three fungal NGS datasets

http://www.nature.com/srep/2013/130321/srep01512/full/srep01512.html

Summary of open-source short read alignment programs

Heng Li & Nils Homer. Sequence alignment algorithms for next-generation sequencing.
Briefings in Bioinformatics. Vol 11. No 5. 473 483, 2010

* Bowtie1 does not support gapped alignments

Program Algorithm SoLID Long reads Gapped
alignment

Paired-end Quality
scores used?

Bfast Hashing ref Yes No Yes Yes No
Bowtie2* FM-Index Yes Yes Yes Yes Yes
Blat Hashing ref No Yes Yes No No
BWA FM-Index Yes Yes Yes Yes No
MAQ Hashing reads Yes No Yes Yes Yes
Mosaik Hashing ref Yes Yes Yes Yes No
Novoalign Hashing ref No No Yes Yes Yes
Shrimp2 Hashing ref Yes Yes Yes Yes Yes
SOAP2 FM-Index No No No Yes Yes
SSAHA2 Hashing ref. No No No Yes Yes

Aligner phylogeny

Whole genome Large data set aligners
Pairwise heuristic Sensitive global aligners

Sequence read aligners I use

•  Genomic alignments BWA-Mem
•  Scales well with read lengths and will tolerate more errors

as read lengths increase

•  Bowtie2/Tophat for RNA-seq alignment
•  Splice aware and fits into a nice eco-system of tools to

perform abundance expression (Cufflinks) and
visualisation (cummeRbund)

•  BLASR
•  Designed for PacBio reads

Alignment format for short reads – Sequence AlignMent
(SAM format)

•  Plain text format – human readable (sort-of)
•  Eleven mandatory fields and a variable amount of optional fields.
•  The optional fields are a key-value pair of TAG:TYPE:VALUE. These store

extra information
•  Can be converted to Binary AlignMent format (BAM) to save space and speed

up look-up operations using SAMTools

Alignment format for short reads – Sequence AlignMent
(SAM format)

SAM format – Optional fields

SAM output

Contents

•  Alignment algorithms for short-reads
-  Background – Blast (why can’t we use it?)

-  Adapting hashed seed-extend algorithms to work with shorter reads

-  Indel detection

-  Suffix/Prefix Tries

-  Other alignment considerations
-  Typical alignment pipeline

-  New methods of SNP calling

Other alignment considerations

•  Indel detection
•  Effect of paired-end alignments
•  Using base quality to inform alignments
•  PCR duplicates
•  Methylation experiments – bisulfite treated reads
•  Multi-mapping reads
•  Aligning spliced-reads from RNA-seq experiments
•  Local realignment to improve SNP/Indel detection
•  Platform specific errors
•  Unmapped reads

Indel detection

CCATTGTCATGTACTTGGGATCGT

Spaced seed with weight 9bp and no mismatches:

ACTCCCATTGTCATCGTACTTGGGATCGTAACA
Read containing a
deletion

Reference sequence

No seed match. No alignment!

Seed not matched due to frame shift caused
by gap

CCATTGTCATCGTACAT
CCXXTGXXATXXACXXG

Indel detection

Reference sequence:

...ACTGGGTCATCGTACGATCGATCGATCGATCGATCGGCTAGCTAGCTA...

Seed Extend with Smith Waterman

Most alignment programs can only detect gaps in
Smith-Waterman phase

 once a seed has been identified. Some algorithms (e.g.
Bowtie) do not allow gaps at this stage to improve

speed

This reduces sensitivity especially with multiple
insertions in a small region

GTCATCGTACG

ATCGA-CGATCGATCGATCGGCTA

Indel detection

•  Some algorithms do allow gaps within seed
−  Indel seeds for homology search Bioinformatics (2006) 22(14): e341-e349

doi:10.1093/bioinformatics/btl263

−  Weese D, Emde AK, Rausch T, et al. RazerS–fast read mapping with
sensitivity control. Genome Res 2009;19:1646–54

−  Rumble SM, Lacroute P, Dalca AV, et al. SHRiMP: accurate mapping of
short color-space reads. PLoS Comput Biol 2009;5:e1000386

•  Use of multiple seeds
−  Especially useful for longer reads (>50bp)

−  Li R, Li Y, Kristiansen K, et al. SOAP: short oligonucleotide alignment
program. Bioinformatics 2008;24:713–4

−  Jiang H, Wong WH. SeqMap: mapping massive amount of oligonucleotides
to the genome. Bioinformatics 2008;24: 2395–6

Paired-end reads are important

Repetitive DNA
Unique DNA

Single read maps to
multiple positions

Paired read maps uniquely

Read 1 Read 2

Known Distance

Effect of paired-end alignments

BWA-MEM

http://arxiv.org/pdf/
1303.3997v2.pdf

Effect of coverage on SNP call accuracy

Source – Illumina Tech Note
Human diploid sample

•  Depends on ploidy
•  Bacterial genomes can get away with 10-20x
•  For human genomes and other diploids 30x
•  Poly-ploids (e.g wheat) may need much higher coverage

PCR duplicates

•  2nd generation sequencers are not single-molecule sequencers
−  All have at least one PCR amplification step
−  Can result in duplicate DNA fragments
−  This can bias SNP calls or introduce false SNPs

•  Generally duplicates only make up a small fraction of the results
−  Good libraries have < 2-3% of duplicates
−  SAMtools and Picard can identify and remove these when aligned

against a reference genome
−  Debatable whether do this for RNA-seq and ChIP-seq

− Depends on the complexity of the sample

PCR duplicates

Base quality impacts on read mapping

Heng Li & Nils Homer.
Sequence alignment
algorithms for next-
generation sequencing.
Briefings in
Bioinformatics. Vol 11.
No 5. 473 483, 2010

Multiple mapping reads

•  A single read may occur more than once in the reference genome.
•  Could be due to:

•  Paralogs (duplicated genes).
•  Transcripts which share exons.
•  Mutations in genotype relative to the reference.
•  Transposons and other common repetitive sequences

•  Some aligners automatically assign a multi-mapping read to one of the
locations at random (e.g. Tophat)

•  Aligners may allow you to chose how these are dealt with – others
may not

Allelic bias when SNP calling

http://bioinformatics.oxfordjournals.org/content/25/24/3207.full.pdf

Missing alternate
allele

Methylation experiments

Unmethylated cytosine are
converted to uracil

Methylation experiments

•  Directly aligning reads against a reference will fail due to excessive
mismatches in non-methylated regions

•  Most packages deal with this by creating 2 reference sequences
−  One has all Cs converted to Ts
−  One has all Gs converted to As

•  Convert Cs to Ts in all reads aligned against C->T reference
•  Convert Gs to As in all reads aligned against G->A reference

•  If there are no mutations or sequencing errors the reads will always
map to one of the two references

http://www.biomedcentral.com/1471-2164/14/774

Spliced-read mapping

•  Need packages which can account for splice variants
•  Examples: TopHat, STAR, GMAP, MapSplice

Spliced-read mapper evaluation

http://www.nature.com/nmeth/journal/v10/n12/full/nmeth.2722.html

Local realignment to improve SNP/Indel detection

•  Read aligners map each read (or read pair) independently of all
other reads
•  Around indels and other variants it can be helpful to make use of
other metrics

e.g. Global median coverage for multi-mapping reads
•  Tools such as GATK, SAMtools, Pindel and Breakdancer realign
reads in the vicinity of variants to improve calls

http://www.broadinstitute.org/gsa/wiki/index.php/The_Genome_Analysis_Toolkit

Chen, K. BreakDancer: an algorithm for high-resolution mapping of genomic structural
variation Nature Methods 6, 677 - 681 (2009)
Li H.*, Handsaker B.*, Wysoker A., Fennell T., Ruan J., Homer N., Marth G., Abecasis G.,
Durbin R. and 1000 Genome Project Data Processing Subgroup (2009) The Sequence
alignment/map (SAM) format and SAMtools. Bioinformatics, 25, 2078-9

Figure 6. A visual examination of a spurious gene (CDC27).

Jia P, Li F, Xia J, Chen H, et al. (2012) Consensus Rules in Variant Detection from Next-Generation Sequencing Data. PLoS ONE 7(6): e38470.
doi:10.1371/journal.pone.0038470
http://www.plosone.org/article/info:doi/10.1371/journal.pone.0038470

All platforms have errors and artefacts

Illumina PacBio Roche 454 Ion Torrent

1.  Removal of low quality bases
2.  Removal of adaptor sequences

3.  Platform specific artefacts (e.g homopolymers)

Table 2. Spurious genes having mutations detected in 30 samples.

Jia P, Li F, Xia J, Chen H, et al. (2012) Consensus Rules in Variant Detection from Next-Generation Sequencing Data. PLoS ONE 7(6): e38470.
doi:10.1371/journal.pone.0038470
http://www.plosone.org/article/info:doi/10.1371/journal.pone.0038470

Illumina artefacts

Nakamura, K. et al. Sequence-specific error profile of Illumina sequencers
Nucl. Acids Res. (2011) May 16, 2011

Illumina artefacts

1.  GC rich regions are under represented
a.  PCR
b.  Sequencing

2.  Substitutions more common than insertions
3. GGC/GCC motif is associated with low quality and
mismatches
4. Filtering low quality reads exacerbates low coverage
of GC regions

Alignment software should ideally account for technology
specific bias but generally does not

Your alignments are only as good as your library prep

•  Even if all other artefacts are removed:

•  If your library prep is biased, your alignments will also

reflect this bias

Tophat/Cufflinks aside

http://genomebiology.com/2011/12/3/R22

•  Applies to random primed
RNA-seq libraries

•  Main potential biases:
•  Random hexamer priming biases

•  5’ or 3’ ends of cDNA are likely
to be mis-represented

•  Some packages correct for this
(e.g. Tophat/Cufflinks)

Effect of bias correction

N.B. Out-dated version of Cufflinks used here

http://genomebiology.com/2011/12/3/R22

Pacific Biosciences alignment

•  Median PacBio reads are 12kb with an
single-read error rate of around 12-13%

•  Most common distance between errors in a
PacBio read is around 30bp

•  Long length compensates and enables seeds
to be located in many places to begin
alignment

•  However, this can be computationally costly
•  Need to balance number of seeds

required to get a good alignment vs
computational time

•  PacBio developed BLASR to do this

http://bioinformatics.oxfordjournals.org/content/28/18/i349.full

Pacific Biosciences read correction via alignment

•  Alignment can also be used to generate a consensus to reduce the number of
errors

•  Most errors in PacBio seem to be randomly distributed
•  If we have enough coverage, we can correct these errors by aligning all the short

reads to the longer reads and correct based on the consensus

•  These can then be used for denovo assembly
•  Hierarchical Genome Assembly Process (HGAP)

http://www.nature.com/nmeth/journal/v10/n6/full/nmeth.2474.html

Unmapped reads

Unmapped reads

•  Can be the result of:
−  Sequencing errors (should be small fraction if quality filtering

applied before mapping)
−  Contamination
−  Excessive matches to repeats
−  Highly divergent regions between samples
−  Novel genetic material not present in reference
−  Plasmids

•  Should be assembled de-novo with paired-end information if possible
•  Resulting contigs run through MegaBlast against NCBI NT to check
species
•  Check against RepBase to remove repetitive contigs
•  Call ORFs
•  Blast ORFs using BlastP against NCBI NR or Swissprot and Blast2GO
•  Run through PFAM

Typical alignment pipeline

QC

• Remove low quality bases
• Remove reads containing adaptor sequences
• Trim or remove reads containing Ns

Alignment

• Generate reference or read index
• Align reads to index
• SAM output file

Post alignment

• Sort SAM file and convert to BAM with SAMtools
• Remove suspected PCR duplicates with SAMtools
• Perform local realignment around indels using GATK
• Supply BAM file to variant caller (e.g. Samtools mpileup)
• Analyse variants (are they within genes, synonymous vs nonsynonymous changes etc)*
• Locate missing genes/regulatory regions

Assemble
unmapped reads

• Assemble unmapped reads (e.g. using Velvet)
• Call Open Reading Frames (ORFs)
• Search for homologous genes (BLASTP), protein families (PFAM)
• Identify novel genes

* http://bioinformatics.net.au/software.nesoni.shtml

Contents

•  Alignment algorithms for short-reads
-  Background – Blast (why can’t we use it?)

-  Adapting hashed seed-extend algorithms to work with shorter reads

-  Indel detection

-  Suffix/Prefix Tries

-  Other alignment considerations

-  Typical alignment pipeline

-  Haplotype methods of variant calling

Haploytype SNP calling

•  FreeBayes (http://arxiv.org/pdf/1207.3907v2.pdf)
•  GATK – Haplotype caller

•  Haplotype calling in polyploids
 ACCTGTA Reference Genome
 Assume a SNP at both 5’ A->T and 3’ A->G in a diploid

Do we have a heterozygous?
Allele 1: ACCTGTG
Allele 2: TCCTGTC
Or do we have a homozygous?
Allele 1: TCCTGTG
Allele 2: TCCTGTG

Haplotype issue calling – Long reads to the rescue

New methods of SNP calling

•  Why align at all?
•  We only do this because of computational constraints
•  Ideally we want to assemble denovo and then align to

reference genome

•  Fermi and Cortex are tools to enable this:
•  Denovo genome assembler, but keeps track of differences

which could be due to SNPs/Indels

Heng Li Exploring single-sample SNP and INDEL calling with whole-genome de novo assembly Bioinformatics (2012) 28 (14): 1838-1844 first published online May 7, 2012doi:10.1093/bioinformatics/bts280

Variant calling with de-novo assembly

Questions!

