Genemo

Walter Salzburger

Zoological Institute University of Basel, Switzerland

Genome Size Evolution

Saccharomyces cerevisiae	12.05	6213	
Plasmodium falciparum	22.85	5268	
Trypanosoma spp.	39.2	10000	
Aspergillus nidulans	30.07	9541	
Dictyostelium doscoideum	34	9000	
Arabidopsis thaliana	125	25498	
Oryza sativa	466	60256	
Lotus japonicus	472	26000	

Lynch (2006)

Genome Size Evolution

Caenorhabditis elegans	100.26	21200	
Drosophila melanogaster	137	16000	
Ciona intestinalis	156 16000		
Anopheles gambiae	278	13683	
Fugu rubripes	365	38000	
Gallus gallus	1050	21500	
Mus musculus	sculus 2500 24000		
Homo sapiens	2900	24000	

Lynch (2006)

Genome Size Evolution

"C-value enigma"

 $1 \text{ pg} \approx 1000 \text{ Mb} = 1 \text{Gb}$

Genome Size Evolution

Chromosomal Rearrangements

Chromosomal mutations

- Mutations that affect entire chromosomes or large parts thereof are called chromosomal mutations
- The phenotypic effects of chromosome mutations are difficult to generalize
- Phenotypic consequences also arise, as gene expression is at least partly regulated by the relations between neighboring genes

Recombination

- ...occurs by the crossing-over of homologous chromosomes during meiosis
- …leads to the exchange of DNA between a pair of chromosomes
- As a consequence, two previously unlinked genes may become linked or vice versa
- ...may lead to rearrangements

Chromosomal Rearrangements

Recombination

Chromosomal Rearrangements

Chromosomal Fission

Chromosomal Fusion

Chromosomal Rearrangements

Chromosomal fusion: human chromosome 2

An extreme case: muntjak deers

Chromosomal Rearrangements

An extreme case: muntjak deers

Synteny

 In comparative genomic terms, synteny describes the preserved order of genes on chromosomes as a result of common ancestry

Chromosomal Rearrangements

Bekpen et al. (2005)

Gene duplication

- A gene can be duplicated by **various kinds of mechanisms**, *e.g.*, genome duplications, chromosome mutations, unequal crossing over, etc.
- Any such duplication will be rare initially but may increase its frequency by **natural selection** or **random drift**.
- Duplicated genes may undergo different evolutionary fates such as non-functionalization, neo-functionalization or subfunctionalization.

Gene and Genome Duplications

Gene clusters

 ...is a set of two or more genes of common ancestry that encode similar products

Unequal crossing over: misalignment

Gene and Genome Duplications

Unequal crossing over: misalignment

Misalignment is more likely when several copies of similar sequences are already present

Unequal crossing over: misalignment

Unequal crossing over is likely at repetitive sequence motives

Gene and Genome Duplications

Sosumo Ohno (1970):
Evolution by Gene Duplication

- Ohno also postulated that whole genome duplications exist and argued that the whole genome had duplicated twice near the origin of the vertebrates (2R hypothesis)
- Many more genome duplication events have been suggested since, *e.g.*, the fish-specific genome duplication (**3R hypothesis**)

Hox gene clusters

Gene and Genome Duplications

fish specific genome duplication

paralogs, orthologs and ohnologs

ohnologs

... are paralogs that go back to the same whole genome duplication event

Gene and Genome Duplications

paralogs, orthologs and ohnologs

l Braasch, W Salzburger & A Meyer (2006) Molecular Biology and Evolution

Gene and Genome Duplications

'vista' plots

http://genome.lbl.gov/vista/index.shtml

I Braasch, W Salzburger & A Meyer (2006) Molecular Biology and Evolution

non-functionalization

Gene and Genome Duplications

sub-functionalization

neo-functionalization

Gene and Genome Duplications

DDC model

Transposable Elements

TEs

- Transposable elements (TEs) are discrete DNA sequences that move from one location to another within the genome
- TEs were discovered by Barbara McClintock (1902-1992) in the 1940s and 1950s. She received the Nobel Prize in 1983.
- TEs are found in nearly all species and constitute a large fraction of some genomes, including the human genome
- TEs can generate variation in the host genome

Transposable Elements

Transposable Elements

"retrotransposons"

LTRs	These transposable genetic elements are characterized by flanking long terminal repeats . LTRs are similar to retroviruses and contain a group specific antigen (<i>gag</i>).
LINEs	Long interspersed nuclear elements are autonomous retrotransposons. LINEs have two open reading frames (ORFs); ORF2 encodes for a reverse transcriptase (rvt)
SINEs	Short interspersed nuclear elements are non-autonomous retrotransposons that exploit the enzymatic retrotransposition machinery of LINEs

Transposable Elements

DNA transposons

- DNA transposons follow a different way of transposition and do not use an RNA stage and reverse transcription
- There are two classes of DNA transposons:
 - The majority of DNA transposons use a cut-and-paste mechanism
 - The other group uses a **rolling circle** (RC) mechanism

Transposable Elements

Transposable Elements

	yeast	slime mold	C. elegans	Arabidopsis	human
LTRs	3.1	4.4	0.1	6.4	7.9
SINEs, LINEs	0	3.7	0.4	0.7	31.2
DNA transposons	0	1.5	5.3	6.8	2.8
total	3.1	9.6	6.5	14	44.8

in % of genomes

Kidwell (2005)

Speciation Genomics

Speciation Genomics

Speciation Genomics:

••• M Roesti, A Hendry, W Salzburger & D Berner (2012) Molecular Ecology

Speciation Genomics:

RAD genome scans

Speciation Genomics:

Barrett et al. (2008) Science

Jones et al. (2012) Nature

Speciation Genomics:

Ellegren et al. (2012) Nature

Speciation Genomics

pathogen evolution

Speciation Genomics

