Maximum Likelihood in Phylogenetics

28 January 2015

Paul O. Lewis

Department of Ecology \& Evolutionary Biology

Goals

* Explain jargon
* Increase comfort level
* Provide background

In other words...give a hand up

Tree jargon

The Plan

- Likelihood
- Substitution models
- What does it mean?
- Likelihood of a single sequence
- Maximum likelihood distances
- Likelihoods of trees
- Markov model basics
- Transition probabilities
- Survey of models
- Rate heterogeneity
- Codon models
- Amino acid models

Combining probabilities

- Multiply probabilities if the component events must happen simultaneously (i.e. where you would naturally use the word AND when describing the problem)

Using 2 dice, what is the probability of

$$
\underset{(1 / 6) \times(1 / 6)=1 / 36}{\bullet}
$$

AND rule in phylogenetics

probability of A at tip given ancestral state A

Combining probabilities

- Add probabilities if the component events are mutually exclusive (i.e. where you would naturally use the word OR in describing the problem)

Using one die, what is the probability of

$$
\underbrace{\ominus}_{(1 / 6)+(1 / 6)=1 / 3} \text { or }: \vdots \text { ? }
$$

Combining AND and OR

What is the probability that the sum of two dice is 7 ?

$$
(1 / 36)+(1 / 36)+(1 / 36)+(1 / 36)+(1 / 36)+(1 / 36)=1 / 6
$$

Using both AND and OR in phylogenetics

AND rule used to compute probability of the observed data for each combination of ancestral states.

OR rule used to combine different combinations of ancestral states.

Independence

This is always true...

$$
\underset{\text { joint probability }}{\operatorname{Pr}(\mathrm{A} \text { and } \mathrm{B})}=\operatorname{Pr}(\mathrm{A}) \underset{\substack{\text { conditional } \\ \text { probability }}}{\operatorname{Pr}(\mathrm{B} \mid \mathrm{A})}
$$

If we can say this...

$$
\operatorname{Pr}(\mathrm{B} \mid \mathrm{A})=\operatorname{Pr}(\mathrm{B})
$$

...then events A and B are independent and we can express the joint probability as the product of $\operatorname{Pr}(\mathrm{A})$ and $\operatorname{Pr}(\mathrm{B})$

$$
\operatorname{Pr}(\mathrm{A} \text { and } \mathrm{B})=\operatorname{Pr}(\mathrm{A}) \operatorname{Pr}(\mathrm{B})
$$

Non-independence in molecular evolution

A = state in descendant $\mathrm{B}=$ state in ancestor

$$
\operatorname{Pr}(A \mid B) \neq \operatorname{Pr}(A)
$$

That is, the state in the descendant depends on the state in the ancestor

$$
\operatorname{Pr}(A \mid B, t, r)
$$

The state in the descendant also

depends on the amount time t separating ancestor and descendant and the rate of substitution r

Conditional Independence

Assume both A and B depend on C :

$$
\operatorname{Pr}(\mathrm{A} \mid \mathrm{C}) \neq \operatorname{Pr}(\mathrm{A}) \quad \operatorname{Pr}(\mathrm{B} \mid \mathrm{C}) \neq \operatorname{Pr}(\mathrm{B})
$$

If we can say this...

$$
\operatorname{Pr}(\mathrm{B} \mid \mathrm{A}, \mathrm{C})=\operatorname{Pr}(\mathrm{B} \mid \mathrm{C})
$$

...then events A and B are conditionally independent and we can express the joint (conditional) probability as the product of $\operatorname{Pr}(\mathrm{A} \mid \mathrm{C})$ and $\operatorname{Pr}(\mathrm{B} \mid \mathrm{C})$

$$
\operatorname{Pr}(\mathrm{A} \text { and } \mathrm{B} \mid \mathrm{C})=\operatorname{Pr}(\mathrm{A} \mid \mathrm{C}) \operatorname{Pr}(\mathrm{B} \mid \mathrm{C})
$$

Conditional independence in molecular evolution

The site data patterns AGG and TCC are conditionally independent.

The patterns all depend on the underlying tree (including edge lengths) and the substitution model.
$\operatorname{Pr}(\mathrm{AGG}$ and $\mathrm{TCC} \mid$ tree, model $)=\operatorname{Pr}(\mathrm{AGG} \mid$ tree, model $) \operatorname{Pr}(\mathrm{TCC} \mid$ tree, model $)$

Likelihood

The Likelihood Criterion

The probability of the observations computed using a model tells us how surprised we should be.
The preferred model is the one that surprises us least.

Suppose I threw 20 dice down on the table and this was the result...

The Fair Dice model

$\operatorname{Pr}($ obs. \mid fair dice model $)=\left(\frac{1}{6}\right)^{20}=\frac{1}{3,656,158,440,062,976}$

You should have been very surprised at this result because the probability of this event is very small: only 1 in 3.6 quadrillion!

The Trick Dice model

 (assumes dice each have 5 on every side)$\operatorname{Pr}($ obs. \mid trick dice $\operatorname{model})=1^{20}=1$

You should not be surprised at all at this result because the observed outcome is certain under this model

Results

Model	Likelihood	Surprise level
Fair Dice	$\frac{1}{3,656,158,440,062,976}$	Very, very, very surprised
Trick Dice	1	Not surprised at all

winning model maximizes likelihood (and thus minimizes surprise)

Likelihood: why a new term?

Likelihood and model comparison

- Analyses using likelihoods ultimately involve model comparison
- The models compared can be discrete (as in the fair vs. trick dice example)
- More often the models compared differ continuously:
- Model 1: branch length is 0.05
- Model 2: branch length is 0.06

Rather than having an infinity of models, we instead think of the branch length as a parameter within one model

Likelihoods vs. log-likelihoods

Likelihood of a single sequence

First 32 nucleotides of the $\psi \eta$-globin gene of gorilla:

GAAGTCCTTGAGAAATAAACTGCACACACTGG

$$
\begin{aligned}
& L=\pi_{G} \pi_{A} \pi_{A} \pi_{G} \pi_{T} \pi_{C} \pi_{C} \pi_{T} \pi_{T} \pi_{G} \pi_{A} \pi_{G} \pi_{A} \pi_{A} \pi_{A} \pi_{T} \pi_{A} \pi_{A} \pi_{A} \pi_{C} \pi_{T} \pi_{G} \pi_{C} \pi_{A} \pi_{C} \pi_{A} \pi_{C} \pi_{A} \pi_{C} \pi_{T} \pi_{G} \pi_{G} \\
& =\pi_{A}{ }^{12} \pi_{C}{ }^{7} \pi_{G}{ }_{G}^{7} \pi_{T}{ }^{6} \quad \text { Note that we are assuming independence among sites here } \\
& \log L=12 \log \left(\pi_{G}\right)+6 \log \left(\pi_{T}\right)
\end{aligned}
$$

We can already see by eye-balling this that a model allowing unequal base frequencies will fit better than a model that assumes equal base frequencies because there are about twice as many As as there are Cs, Gs and Ts.

Model ranking using LRT or AIC

Likelihood Ratio Tests (LRT) and the Akaike Information Criterion (AIC) provide two ways to evaluate whether an unconstrained model fits the data significantly better than a constrained version of the same model.

Find maximum logL under the unconstrained model:

$$
\begin{aligned}
\log L_{\text {unconstained }} & =12 \log \left(\pi_{A}\right)+7 \log \left(\pi_{C}\right)+7 \log \left(\pi_{G}\right)+6 \log \left(\pi_{T}\right) \\
& =12 \log (0.375)+7 \log (0.219)+7 \log (0.219)+6 \log (0.187) \\
& =-43.1
\end{aligned}
$$

Find maximum logL under the constrained model:

$$
\begin{aligned}
\log L_{\text {constrained }} & =12 \log \left(\pi_{A}\right)+7 \log \left(\pi_{C}\right)+7 \log \left(\pi_{G}\right)+6 \log \left(\pi_{T}\right) \\
& =12 \log (0.25)+7 \log (0.25)+7 \log (0.25)+6 \log (0.25) \\
& =-44.4
\end{aligned}
$$

Likelihood Ratio Test (LRT)

Calculate the likelihood ratio test statistic:

$$
\begin{aligned}
R & =-2\left[\log \left(L_{\text {constrained }}\right)-\log \left(L_{\text {unconstrained }}\right)\right] \\
& =-2[-44.4-(-43.1)]
\end{aligned}
$$

$$
=2.6
$$

(Note that the log-likelihoods used in the test statistic have been maximized under each model separately)
"unconstrained" does fit better than "constrained" (-43.1>-44.4), but not significantly better $(\mathrm{P}=0.457$, chi-squared with 3 d.f.*)
*The number of degrees of freedom equals the difference between the two models in the number of estimated parameters. In this case, unconstrained has 3 parameters and constrained has 0 , so d.f. $=3-0=3$

Akaike Information Criterion (AIC)

Calculate AIC for each model:

$$
\begin{gathered}
A I C=2 k-2 \log (\max (L)) \\
A I C_{\text {unconstrained }}=2(3)-2(-43.1)=92.2 \\
A I C_{\text {constrained }}=2(0)-2(-44.4)=88.8
\end{gathered}
$$

The constrained model is a better choice than the unconstrained model according to AIC

Dave Swofford will give you a much more complete explanation of LRT and AIC this afternoon

Likelihood of the simplest tree

sequence 1

To keep things simple, assume that the sequences are only 2 nucleotides long:

$$
=\left[\left(\frac{1}{4}\right)\left(\frac{1}{4}+\frac{3}{4} e^{-4 \alpha t}\right)\right]\left[\left(\frac{1}{4}\right)\left(\frac{1}{4}-\frac{1}{4} e^{-4 \alpha t}\right)\right]
$$

Maximum likelihood estimation

First 32 nucleotides of the $\psi \eta$-globin gene of gorilla and orangutan: gorilla GAAGTCCTTGAGAAATAAACTGCACACACTGG orangutan $\operatorname{GGACTCCTTGAGAAATAAACTGCACACACTGG~}$

$$
L=\left[\left(\frac{1}{4}\right)\left(\frac{1}{4}+\frac{3}{4} e^{-4 \alpha t}\right)\right]^{30}\left[\left(\frac{1}{4}\right)\left(\frac{1}{4}-\frac{1}{4} e^{-4 \alpha t}\right)\right]^{2}
$$

number of substitutions $=$ rate \times time

This is the rate at which an existing A changes to a T

Overall substitution rate is 3α, so the expected number of substitutions (v) is

$$
v=3 \alpha t
$$

Rate and time are confounded

On Friday, Alexei Drummond will introduce models that allow separate estimation of rates and times, but without extra information/constraints, sequence data allow only estimation of the number of substitutions.

A convenient convention

Because rate and time are confounded, it is convenient to arbitrarily standardize things by setting the rate to a value such that one substitution is expected to occur in one unit of time for each site.

This results in "time" (the length of a branch) being measured in units of evolutionary distance (expected number of substitutions per site) rather than years (or some other calendar unit).
evolutionary distance $v=3 \alpha t$

$$
v=3\left(\frac{1}{3}\right) t \quad \begin{aligned}
& \text { Setting } \alpha=1 / 3 \text { results } \\
& \text { in } v \text { equalling } t
\end{aligned}
$$

Evolutionary distances for several common models

Model	Expected no. substitutions: $v=\{r\} t$
JC69	$v=\{3 \alpha\} t$
F81	$v=\left\{2 \mu\left(\pi_{R} \pi_{Y}+\pi_{A} \pi_{G}+\pi_{C} \pi_{T}\right)\right\} t$
K80	$v=\{\beta(\kappa+2)\} t$
HKY85	$v=\left\{2 \mu\left[\pi_{R} \pi_{Y}+\kappa\left(\pi_{A} \pi_{G}+\pi_{C} \pi_{T}\right)\right]\right\} t$

In the formulas above, the overall rate r (in curly brackets) is a function of all parameters in the substitution model.

One substitution model parameter is always determined from the edge length (using our convention that $v=t$); the others are usually global (i.e. same value applies to all edges).

Likelihood of an unrooted tree

(data shown for only one site)

From slide 6

Brute force approach would be to calculate L_{k} for all 16 combinations of ancestral states and sum them

Note use of the OR probability rule

Pruning algorithm (same result, less time)

Felsenstein, J. 1981. Evolutionary trees from DNA sequences: a maximum likelihood approach. Journal of Molecular Evolution 17:368-376

Substitution Models

Jukes-Cantor (JC69) model

- The four bases (A, C, G, T) are expected to be equally frequent in sequences ($\pi_{\mathrm{A}}=\pi_{\mathrm{C}}=\pi_{\mathrm{G}}=\pi_{\mathrm{T}}=0.25$)
- Assumes same rate for all types of substitution $\left(r_{\mathrm{A} \rightarrow \mathrm{C}}=r_{\mathrm{A} \rightarrow \mathrm{G}}=r_{\mathrm{A} \rightarrow \mathrm{T}}=r_{\mathrm{C} \rightarrow \mathrm{G}}=r_{\mathrm{C} \rightarrow \mathrm{T}}=r_{\mathrm{G} \rightarrow \mathrm{T}}=\alpha\right)$
- Usually described as a 1-parameter model (the parameter being the edge length)
- Remember, however, that each edge in a tree can have its own length, so there are really as many parameters in the model as there are edges in the tree!
- Assumes substitution is a Markov process...

What is a Markov process?

A substitution occurs, changing T to C

Lineage starts with base T at some site

Transition Probabilities

A substitution occurs, changing T to C

Lineage starts with base T at some site

at

The transition probability $\mathrm{P}_{\mathrm{CC}}(\mathrm{t})$ gives the probability that there is a C present at a site after time t given that there was a C present at time 0

Note: the term transition here comes from the terminology of stochastic processes and refers to any change of state (and even non-changes!).
If this kind of transition represents a change from one nucleotide state to a different nucleotide state, it could thus be either a transition-type or a transversion-type substitution.

Jukes-Cantor transition probabilities

Here is the probability that a site starting in state T will end up in state G after time t when the individual substitution rates are all α :

$$
P_{T G}(t)=\frac{1}{4}\left(1-e^{-4 \alpha t}\right)
$$

The JC69 model has only one unknown quantity: αt
(The symbol e represents the base of the natural logarithms: its value is $2.718281828459045 \ldots$...)

Where does a transition probability formula such as this come from?

"ACHNyons" vs. substitutions

ACHN = "Anything Can Happen Now"

If the base that appears is different from the base that was already there, then a substitution event has occurred.

When an achnyon occurs, any base can appear in a sequence.

Note: achnyon is my term for this make-believe event. You will not see this term in the literature.

The rate (α) at which any particular substitution occurs will be $1 / 4$ the achnyon rate (μ).
That is, $\alpha=\mu / 4$

$$
\text { (or } \mu=4 \alpha \text {) }
$$

Deriving a transition probability

Calculate the probability that a site currently T will change to G over time t when the rate of this particular substitution is α :
$\operatorname{Pr}($ zero achnyons $)=e^{-\mu t} \quad$ (Poisson probability of zero events)
$\operatorname{Pr}($ at least 1 achnyon $)=1-e^{-\mu t}$
$\operatorname{Pr}($ last achnyon results in base $G)=\frac{1}{4}$
$\operatorname{Pr}($ end in $\mathrm{G} \mid$ start in T$)=\frac{1}{4}\left(1-e^{-\mu t}\right)$
Remember that the rate (α) of any particular substitution is one fourth the achnyon rate (μ) :

$$
P_{G T}(t)=\frac{1}{4}\left(1-e^{-4 \alpha t}\right)
$$

Expected number of substitutions

Transition Probabilities: Remarks

$$
\begin{aligned}
P_{T A}(t) & =\frac{1}{4}\left(1-e^{-4 \alpha t}\right) \\
P_{T C}(t) & =\frac{1}{4}\left(1-e^{-4 \alpha t}\right) \\
P_{T G}(t) & =\frac{1}{4}\left(1-e^{-4 \alpha t}\right) \\
P_{T T}(t) & =\frac{1}{4}\left(1-e^{-4 \alpha t}\right)
\end{aligned} \quad \begin{gathered}
\text { These should add to } \\
1.0 \text { because T must } \\
\text { change to } \\
\text { something! }
\end{gathered}
$$

$$
1-e^{-4 \alpha t}
$$

Doh! Something must be wrong here...

Transition Probabilities: Remarks

$$
\begin{aligned}
P_{T A}(t) & =\frac{1}{4}\left(1-e^{-4 \alpha t}\right) \\
P_{T C}(t) & =\frac{1}{4}\left(1-e^{-4 \alpha t}\right) \\
P_{T G}(t) & =\frac{1}{4}\left(1-e^{-4 \alpha t}\right) \\
P_{T T}(t) & =\frac{1}{4}\left(1-e^{-4 \alpha t}\right)+e^{-4 \alpha t}
\end{aligned}
$$

Equilibrium frequencies

- The JC69 model assumes that the frequencies of the four bases $(\mathrm{A}, \mathrm{C}, \mathrm{G}, \mathrm{T})$ are equal
- The equilibrium relative frequency of each base is thus 0.25
- Why are they called equilibrium frequencies?

Equilibrium Frequencies

Imagine a bottle of perfume has been spilled in room A.

The doors to the other rooms are closed, so the perfume has, thus far, not been able to spread.

What would happen if we opened all the doors?

Equilibrium Frequencies

If the doors are suddenly opened, the perfume would begin diffusing from the area of highest concentration to lowest.

Molecules of perfume go both ways through open doors, but more pass one way than another, leading to a net flow from room A to rooms B and C.

In the instant that the doors are opened, A is losing perfume molecules at twice the rate each of the other rooms is gaining molecules. As diffusion progresses, however, the rate of loss from A drops, approaching an equilibrium.

Equilibrium Frequencies

Eventually, all 3 rooms have essentially the same concentration of perfume.

Molecules still move through doors, but now the rates are the same in all directions.

Back to sequence evolution: assume a sequence began with only A nucleotides (a poly-A sequence). Over time, substitution would begin converting some of these As to Cs, Gs, and Ts, just as the perfume diffused into adjacent rooms.

$\operatorname{Pr}(\mathrm{A} \mid \mathrm{A})$ and $\operatorname{Pr}(\mathrm{A} \mid \mathrm{T})$ as a function of time

Upper curve assumes we started with A at time 0. Over time, the probability of still seeing an A at this site drops because rate of changing to one of the other three bases is 3α (so rate of staying the same is -3α).

Lower curve assumes we started with some state other than A (T is used here). Over time, the probability of seeing an A at this site grows because the rate at which the current base will change into an A is α.

JC69 rate matrix

1 parameter:
α

Jukes, T. H., and C. R. Cantor. 1969. Evolution of protein molecules. Pages 21-132 in H. N. Munro (ed.), Mammalian Protein Metabolism. Academic Press, New York.

K80 (or K2P) rate matrix

2 parameters:

Kimura, M. 1980. A simple method for estimating evolutionary rate of base substitutions through comparative studies of nucleotide sequences. Journal of Molecular Evolution 16:111-120.

K80 rate matrix

(looks different, but actually the same)

2 parameters:
 κ
 β

Note: the K80 model is identical to the JC69 model if $\kappa=1(\alpha=\beta)$

Transition/transversion ratio (tratio) versus

Transition/transversion rate ratio (kappa)

Cobbler analogy:

- 4 cobblers in a factory make loafers
- 8 cobblers in the factory make work boots
- all cobblers produce the same number of shoes per unit time, regardless of shoe type
- what is the loafer/boot rate ratio and how does that compare to the loafer/boot ratio?

The loafer/boot rate ratio is 1.0 because each cobbler cranks out shoes at the same rate.

The loafer/boot ratio, however, is 0.5 because there are twice as many cobblers making boots as there are cobblers making loafers.

There are 8 possible transversion-type substitutions and only 4 possible transitiontype substitutions: the transition/transversion ratio is thus 0.5 when the transition/ transversion rate ratio is 1 .

F81 rate matrix

4 parameters:

Note: the F81 model is identical to the JC69 model if all base frequencies are equal

Felsenstein, J. 1981. Evolutionary trees from DNA sequences: a maximum

HKY85 rate matrix

	A	C	G	T
A	-	$\pi_{C} \beta$	$\pi_{G} \beta \kappa$	$\pi_{T} \beta$
C	$\pi_{A} \beta$	-	$\pi_{G} \beta$	$\pi_{T} \beta \kappa$
G	$\pi_{A} \beta \kappa$	$\pi_{C} \beta$	-	$\pi_{T} \beta$
T	$\pi_{A} \beta$	$\pi_{C} \beta \kappa$	$\pi_{G} \beta$	

5 parameters:

A dash means equal to negative sum of other elements on the same row

Note: the HKY85 model is identical to the F81 model if $\kappa=1$. If, in addition, all base frequencies are equal, it is identical to JC69.

F84 vs. HKY85

F84 model:

$\mu \quad$ rate of process generating all types of substitutions $k \mu \quad$ rate of process generating only transitions Becomes F81 model if $k=0$

HKY85 model:

$\beta \quad$ rate of process generating only transversions
$\kappa \beta \quad$ rate of process generating only transitions
Becomes F81 model if $\kappa=1$

F84 first used in Felsenstein's PHYLIP package in 1984, first published by: Kishino, H., and M. Hasegawa. 1989.
Evaluation of the maximum likelihood estimate of the evolutionary tree topologies from DNA sequence data, and the branching order in hominoidea. Journal of Molecular Evolution 29: 170-179.

GTR rate matrix

	A	C	G	T
A	-	$\pi_{C} a \mu$	$\pi_{G} b \mu$	$\pi_{T} c \mu$
C	$\pi_{A} a \mu$	-	$\pi_{G} d \mu$	$\pi_{T} e \mu$
G	$\pi_{A} b \mu$	$\pi_{C} d \mu$	-	$\pi_{T} f \mu$
T	$\pi_{A} c \mu$	$\pi_{C} e \mu$	$\pi_{G} f \mu$	-

Identical to the F81 model if $a=b=c=d=e=f=1$. If, in addition, all the base frequencies are equal, GTR is identical to JC69. If $a=c=d=f=\beta$ and $b=e=\kappa \beta$, GTR becomes the HKY85 model.

Lanave, C., G. Preparata, C. Saccone, and G. Serio. 1984. A new method for calculating evolutionary substitution rates. Journal of Molecular Evolution 20:86-93.

Rate Heterogeneity

Green Plant rbc L

First 88 amino acids (translation is for Zea mays)

Site-specific rates

Each defined subset (e.g. gene, codon position) has its own relative rate

Subset 1

Subset 2

r_{1} applies to subset 1 (e.g. sites 1-1000)
r_{2} applies to subset 2
(e.g. sites 1001-2000)

Relative rates have mean 1:

$$
\frac{r_{1}+r_{2}}{2}=1
$$

$$
r_{1} p\left(r_{1}\right)+r_{2} p\left(r_{2}\right)=1
$$

Site-specific rates

$$
L=\operatorname{Pr}\left(D_{1} \mid r_{1}\right) \cdots \operatorname{Pr}\left(D_{1000} \mid r_{1}\right) \operatorname{Pr}\left(D_{1001} \mid r_{2}\right) \cdots \operatorname{Pr}\left(D_{2000} \mid r_{2}\right)
$$

Gene 1

Gene 2

Site-specific rates

JC69 transition probabilities that would be used for every site if rate homogeneity were assumed:

$$
\begin{aligned}
P_{i i}(t) & =\frac{1}{4}+\frac{3}{4} e^{-4 \alpha t} \\
P_{i j}(t) & =\frac{1}{4}-\frac{1}{4} e^{-4 \alpha t}
\end{aligned}
$$

Site specific rates

JC69 transition probabilities that would be used for sites in gene 1:

$$
\begin{aligned}
P_{i i}(t) & =\frac{1}{4}+\frac{3}{4} e^{-4 r_{1} \alpha t} \\
P_{i j}(t) & =\frac{1}{4}-\frac{1}{4} e^{-4 r_{1} \alpha t}
\end{aligned}
$$

JC69 transition probabilities that would be used for sites in gene 2:

$$
\begin{aligned}
P_{i i}(t) & =\frac{1}{4}+\frac{3}{4} e^{-4 r_{2} \alpha t} \\
P_{i j}(t) & =\frac{1}{4}-\frac{1}{4} e^{-4 r_{2} \alpha t}
\end{aligned}
$$

Site-specific Approach

Good: costs less: need to buy just one coat for every person Bad: every person in a group has to wear the same size coat, so the fit will be poor for some people if they are much bigger or smaller than the average size for the group in which they have been placed

Mixture Models

All relative rates applied to every site

$$
L_{i}=\operatorname{Pr}\left(D_{i} \mid r_{1}\right) \operatorname{Pr}\left(r_{1}\right)+\operatorname{Pr}\left(D_{i} \mid r_{2}\right) \operatorname{Pr}\left(r_{2}\right)
$$

Common examples $\left\{\begin{array}{l}\text { Invariable sites (I) model } \\ \text { Discrete Gamma (G) model }\end{array}\right.$

Mixture Model Approach

Good: every person experiences better fit because they can choose the size coat that fits best Bad: costs more because two coats much be provided for each person

Invariable Sites Model

A fraction $p_{\text {invar }}$ of sites are assumed to be invariable (i.e. rate $=0.0$)

$$
L_{i}=\operatorname{Pr}\left(D_{i} \mid r_{1}\right) p_{\text {invar }}+\operatorname{Pr}\left(D_{i} \mid r_{2}\right)\left(1-p_{\text {invar }}\right)
$$

$$
\begin{aligned}
r_{1} & =0.0 \\
r_{2} & =\frac{1}{1-p_{\text {invar }}}
\end{aligned}
$$

Allows for the possibility that any given site could be variable or invariable

Reeves, J. H. 1992. Heterogeneity in the substitution process of amino acid sites of proteins coded for by mitochondrial DNA. Journal of Molecular Evolution 35:17-31.

Invariable sites model

If site i is a constant site, both terms will contribute to the site likelihood:

$$
L_{i}=\operatorname{Pr}\left(D_{i} \mid 0.0\right) p_{\text {invar }}+\operatorname{Pr}\left(D_{i} \mid r_{2}\right)\left(1-p_{\text {invar }}\right)
$$

If site i is a variable site, there is no way to explain the data with a zero rate, so the first term is zero:

$$
L_{i}=\operatorname{Pr}\left(D_{i} \mid \theta .0\right) \overline{p_{\text {invar }}}+\operatorname{Pr}\left(D_{i} \mid r_{2}\right)\left(1-p_{\text {invar }}\right)
$$

Discrete Gamma Model

No relative rate is exactly 0.0 , and all are equally probable

$$
L=\left(\frac{1}{4}\right) \operatorname{Pr}\left(D_{i} \mid r_{1}\right)+\left(\frac{1}{4}\right) \operatorname{Pr}\left(D_{i} \mid r_{2}\right)+\left(\frac{1}{4}\right) \operatorname{Pr}\left(D_{i} \mid r_{3}\right)+\left(\frac{1}{4}\right) \operatorname{Pr}\left(D_{i} \mid r_{4}\right)
$$

Relative rates are constrained to a discrete gamma distribution Number of rate categories can vary (4 used here)

Yang, Z. 1993. Maximum-likelihood estimation of phylogeny from DNA sequences when substitution rates differ over sites. Molecular Biology and Evolution 10:1396-1401.

Yang, Z. 1994. Maximum likelihood phylogenetic estimation from DNA sequences with variable rates over sites: approximate methods. Journal of Molecular Evolution 39:306-314.

Relative rates in 4-category case

Gamma distributions

Codon models

Joe Bielawski will discuss codon models in much greater detail tomorrow.

The Genetic Code

First 12 nucleotides at the 5^{\prime} end of the $r b c \mathrm{~L}$ gene in corn:

N-Met|Ser|Pro|Gln-C polypeptide

Codon models treat codons as the independent units, not individual nucleotide sites.

	U	C	A	G	
U	UUU Phe UUC Phe UUA Leu UUG Leu	UCU Ser UCC Ser UCA Ser UCG Ser	UAU Tyr UAC Tyr UAAStop UAGStop	UGU Cys UGC Cys UGA Stop UGG Trp	C
C	CUU Leu CUC Leu CUALeu CUGLeu	CCU Pro CCC Pro CCA Pro CCG Pro	CAU His CAC His CAA GIn CAG GIn	CGU Arg CGC Arg CGA Arg CGG Arg	C
A	AUU Ile AUC Ile AUA Ile AUG Met	ACU Thr ACC Thr ACA Thr ACG Thr	AAU Asn AAC Asn AAA Lys AAG Lys	AGU Ser AGC Ser AGA Arg AGG Arg	C
G	GUC Val GUA Val GUG Val	GCU Ala GCC Ala GCA Ala GCG Ala	GAU Asp GAC Asp GAA Glu GAG Glu	GGU Gly GGC Gly GGA Gly GGG Gly	U C A G

First codon models

- Muse and Gaut model (MG94) is simplest $\alpha=$ synonymous substitution rate $\beta=$ nonsynonymous substitution rate $\pi_{\mathrm{A}}, \pi_{\mathrm{C}}, \pi_{\mathrm{G}}, \pi_{\mathrm{T}}=$ base frequencies
- Goldman and Yang model (GY94) similar
- accounts for synon./nonsynon. and trs/trv bias and amino acid properties (later simplified, see Yang et al. 1998)

[^0]Table I. Part of Muse and Gaut's $\mathbf{6 1 \times 6 1}$ instantaneous rate matrix ${ }^{\text {a }}$

Codon before substitution (the 'from' state)	Codon after substitution (the 'to' state)							
	TTT (Phe)	TTC (Phe)	$\begin{aligned} & \text { TA } \\ & \text { (Leu) } \\ & \hline \end{aligned}$	TTG (Leu)	$\begin{aligned} & \text { CTT } \\ & \text { (Leu) } \end{aligned}$	$\begin{aligned} & \text { CTC } \\ & \text { (Leu) } \end{aligned}$...	$\begin{aligned} & \text { GGG } \\ & \text { (GIy) } \end{aligned}$
TTT (Phe)	---	$\alpha \pi_{C}$	$\beta \pi_{\text {A }}$	$\beta \pi_{\text {G }}$	$\beta \pi_{c}$	0	...	0
TTC (Phe)	$\alpha \pi_{\text {T }}$	---	$\beta \pi_{\text {A }}$	$\beta \pi_{\text {G }}$	0	$\beta \pi_{\mathrm{c}}$...	0
TTA (Leu)	$\beta \pi_{\text {T }}$	$\beta \pi_{c}$	---	$\alpha \pi_{\text {G }}$	0	0	\ldots	0
TTG (Leu)	$\beta \pi_{\text {T }}$	$\beta \pi_{c}$	$\alpha \pi_{\text {A }}$	---	0	0	...	0
CTT (Leu)	$\beta \pi_{\text {T }}$	0		0	---	$\alpha \pi_{c}$...	0
CTC (Leu)	0	$\beta \pi_{\text {T }}$			$\alpha \pi_{\text {T }}$	---	\ldots	0
!	!		:			!	\because	!
GGG (Gly)	0	0	0		0	0	...	---
Note that it is still easy for the change CTT \rightarrow TTA to occur, it just requires more than one instant of time				Instantaneous rate is 0.0 if two or more nucleotides must change during the codon transition				

Table 1 from: Lewis, P. O. 2001. Phylogenetic systematics turns over a new leaf.

Interpreting codon model results

$\omega=\beta / \alpha$ is the nonsynonymous/synonymous rate ratio

omega	mode of selection	example(s)
$\omega<1$	stabilizing selection (nucleotide substitutions rarely change the amino acid)	functional protein coding genes
$\omega=1$	$\underset{\substack{\text { (synonymous and nonsynonymuous substitutions } \\ \text { occur at athe same rate) }}}{\text { neutral eeolution }}$ occur at the same rate)	pseudogenes
$\omega>1$	positive selection (nucleotide substitutions often change the amino acid)	envelope proteins in viruses under active positive selection

Amino acid models

JC69 Flashback

A	C	G	T	$\leftarrow \underset{\text { (insanananous srates) }}{\mathrm{Q} \text { matix }}$
-3α			α	
C α	-3α	α	α	
G ${ }^{\text {c }}$			α	$\begin{gathered} \text { P matrix } \\ \begin{array}{c} \text { (ransition poobabilitises } \end{array} \\ \downarrow \end{gathered}$
T α			-3 α	
$\frac{3}{4} e^{-4 t a t}$				
$\frac{1}{4}\left(1-e^{-4 a t}\right)$			$\frac{1}{4}\left(1-e^{-4 \alpha t}\right)$	$\frac{1}{1}$
$\frac{1}{4}\left(1-e^{-40 t}\right)$	$\frac{1}{1}(1-$		$\frac{1}{4}+\frac{3}{4} e^{-40 t}$	$\left.1-e^{-4 a t}\right)$

A different path from Q to P

For many interesting models, it is not possible to obtain a formula for the transition probability.

We can, however, obtain transition probabilities numerically (i.e. obtain the value of the transition probability without plugging values into a formula)

$$
\mathbf{P}(t)=e^{\mathbf{Q} t}
$$

$\lambda_{1}, \lambda_{2}, \lambda_{3}$, and λ_{4} are the eigenvalues of \mathbf{Q}

Once freed from having to derive formulas for transition probabilities, we can use a great variety of Q matrices.

Dayhoff, Schwartz and Orcutt (1978; DSO78) identified 1572 accepted point mutations using closely-related sequences ($<15 \%$ pairwise divergence), producing this matrix.

Figure 80. Numbers of accepted point mutations (X 10) accumulated from closely related sequences. Fifteen hundred and seventy-
two exchanges are shown. Fractional exchanges result when ancestral sequences are ambiguous.

Dayhoff, M.O., Schwartz, R.M. and Orcutt, B.C. 1978. A model of evolutionary change in proteins. Chapter 22 in Atlas of protein sequence and structure, vol. 5, suppl. 3. M.O. Dayhoff (ed.), pp. 345-352, Natl. Biomed. Res. Found., Washington, DC
Kosiol C., and Goldman N. 2005. Different versions of the Dayhoff rate matrix. Molecular Biology and Evolution. 22:193-199.

The elements of Q

Once the elements of the Q matrix are estimated, the Q matrix can be separated into a symmetric matrix R of exchangeabilities and a set of state frequencies.

GTR Flashback

	A	C	G	T
A	-	$\pi_{C} a \mu$	$\pi_{G} b \mu$	$\pi_{T} c \mu$
C	$\pi_{A} a \mu$		$\pi_{G} d \mu$	$\pi_{T} e \mu$
G	$\pi_{A} b \mu$	$\pi_{C} d \mu$		$\pi_{T} f \mu$
T	$\pi_{A} c \mu$	$\pi_{C} e \mu$	$\pi_{G} f \mu$	

Similarly, the GTR matrix can be separated into a symmetric R matrix and a diagonal matrix of frequencies.
$\left(\begin{array}{cccc}- & a & b & c \\ a & - & d & e \\ b & d & - & f \\ c & e & f & -\end{array}\right)\left(\begin{array}{cccc}\pi_{A} & 0 & 0 & 0 \\ 0 & \pi_{C} & 0 & 0 \\ 0 & 0 & \pi_{G} & 0 \\ 0 & 0 & 0 & \pi_{T}\end{array}\right)$

What does all this accomplish?

- Empirical Q matrix derived from many closelyrelated pairwise comparisons
- Fixed Q matrix can be extrapolated using diagonalization to generate a P matrix for any desired value of t
- This model has 0 parameters!
- Models generic features of protein evolution; does not necessarily reflect your particular sequences
- Fixed frequencies can be swapped with more appropriate set (locally estimated)

Ways to improve

- Base everything on a much larger protein database (JTT model)
- Avoid need to use closely-related sequence pairs by obtaining ML estimate of Q matrix (WAG model)
- Add rate heterogeneity to ML estimation of Q matrix (LG model)

[^1]

[^0]: Muse, S. V., and B. S. Gaut. 1994. A likelihood approach for comparing synonymous and nonsynonymous substitution rates, with application to the chloroplast genome. Molecular Biology and Evolution 11:715-724.

 Goldman, N., and Z. Yang. 1994. A codon-based model of nucleotide substitution for protein-coding DNA sequences. Molecular Biology and Evolution 11:725-736.

 Yang, Z., Nielsen, R., and Hasegawa, M. 1998. Models of amino acid substitution and applications to mitochondrial protein evolution. Molecular Biology and Evolution 15:1600-1611.

[^1]: JTT: Jones, D.T., Taylor, W.R., and Thornton, J.M. 1992. The rapid generation of mutation data matrices from protein sequences. Comput. Appl. Biosci. 8:275-282.

 WAG: Whelan, S., and Goldman, N. 2001. A general empirical model of protein evolution derived from multiple protein families using a maximum-likelihood approach. Molecular Biology and Evolution. 18:691-699.

 LG: Le, S.Q., and Gascuel, O. 2008. An improved general amino acid replacement matrix. Molecular Biology and Evolution. 25:1307-1320.

