Statistical Inference using RevBayes
Getting Started with RevBayes

1 Overview

RevBayes has as its central idea that any statistical model, for example a phylogenetic model, is composed
of smaller parts that can be decomposed and put back together in a modular fashion. This comes from
considering (phylogenetic) models as probabilistic graphical models, which lends flexibility and enhances
the capabilities of the program. Users interact with RevBayes via an interactive shell. Users communicate
commands using a language specifically designed for RevBayes, called Rev; an R-like language (complete
with control statements, user-defined functions, and loops) that enables the user to build up (phylogenetic)
models from simple parts (random variables, variable/parameter transformations, models, and constants
of different sorts).

Here we assume that you have successfully installed RevBayes. If this isn’t the case, then please consult
our website on how to install RevBayes.

2 Getting Started

For the examples outlined in each tutorial, we will use RevBayes interactively by typing commands in the
command-line console. For the exercises you can either use RevBayes interactively or run an entire script.
Execute the RevBayes binary. If this program is in your path, then you can simply type in your Unix
terminal:

e $ rb

When you execute the program, you will see a brief program information, including the current version
number. Remember that more information can be obtained from ww.RevBayes.com. When you execute
the program with an additional filename, e.g.,

e $ rb my_analysis.Rev
then RevBayes will run all commands specified in your file.

You may want to run RevBayes in parallel using multiple processes. This can be done by starting
RevBayes with

e $ mpirun -np 4 rb-mpi

which starts 4 processes of RevBayes. You may want to change the number of processes depending on
your available hardware.

The format of the exercises uses lavender blush shaded boxes to delineate code examples that you
should type into RevBayes. For example, after opening the RevBayes program, you can load your data

file:

www.RevBayes.com

REVBAYES TUTORIAL — GETTING STARTED

data <- readDiscreteCharacterData("data/primates_cytb.nex")

The RevBayes > prompt that you see in your terminal is omitted so that the examples can be copied and
pasted wholly. This is especially useful for larger command blocks, particularly loops, which will often be
displayed in boxes

for(i in 1:12){
x[i] ~ dnExponential(1.0)
+

The various RevBayes commands and syntax within the text are specified using typewriter text.

Most tutorials also includes hyperlinks: bibliographic citations are burnt orange and link to the full citation
in the references, external URLs are cerulean, and internal references to figures and equations are purple.

The various exercises in this tutorial take you through the steps required to perform phylogenetic analyses
of the example datasets. In addition, we have provided the Rev scripts and output files for some exercise so
you can verify your results. (Note that since the MCMC runs you perform will start from different random
seeds, the output files resulting from your analyses will not be identical to the ones we provide you.)

3 Probabilistic Graphical Models

RevBayes uses probabilistic graphical models for model specification, visualization, and implementation
(Hohna et al. 2014). Graphical models are frequently used in machine learning and statistics to conceptually
represent the conditional dependence structure of complex statistical models with many parameters (Gilks
et al. 1994; Lunn et al. 2000; Jordan 2004; Koller and Friedman 2009; Lunn et al. 2009). The graphical
model framework allows for flexible model specification and implementation and reduces redundant code.
This framework provides a set of symbols for depicting a directed acyclic graph (DAG). Hohna et al. (2014)
described the use of probabilistic graphical models for phylogenetics. The different nodes and components
of a phylogenetic graphical model are shown in Figure 1 (Fig. 1 from Hohna et al. 2014).

To represent the DAG, nodes are connected with arrows indicating dependency. A simple, albeit abstract,
graphical model is shown in Figure 2. In this model, we observe a set of states for parameter z. We assume
that the values of z are samples from a lognormal distribution with a location parameter (log mean) pu
and a standard deviation o. It is more straightforward to model our uncertainty in the expectation of a
lognormal distribution, rather than p, thus we place a gamma distribution on the mean M. This gamma
hyperprior has two parameters that we specify with fixed values (constant nodes): the shape o and rate 3.
The variable M is a stochastic node with this prior density. The standard deviation, o, is also a stochastic
node with an exponential prior density with rate parameter A. For any value of M and any value of o
we can compute the deterministic variable p using the formula g = In(M) — %2 This formula is known
from using simple algebra on the equation for the mean of any lognormal distribution. With this model
structure, we can then calculate the probability of the data conditional on the model and parameter values
(the likelihood): P(x | pu,0). Next we can get the posterior probability using Bayes’ theorem:
P(x | p, o)P(M | a, B)P(0 | A)

P(M,o | x,a,B,\) = P(x))

http://en.wikipedia.org/wiki/Directed_acyclic_graph
http://en.wikipedia.org/wiki/Log-normal_distribution

REVBAYES TUTORIAL — GETTING STARTED

a) Constant node
b) Stochastic node

c¢) Deterministic node

O d) Clamped node

(observed)

e) Plate

Figure 1: The symbols for a visual representation of a graphical model. a) Solid squares represent constant nodes,
which specify fixed-valued variables. b) Stochastic nodes are represented by solid circles. These variables correspond
to random variables and may depend on other variables. c¢) Deterministic nodes (dotted circles) indicate variables that
are determined by a specific function applied to another variable. They can be thought of as variable transformations.
d) Observed states are placed in clamped stochastic nodes, represented by gray-shaded circles. e) Replication over
a set of variables is indicated by enclosing the replicated nodes in a plate (dashed rectangle). [Partially reproduced

from Fig. 1 in Hohna et al. (2014).]
Gamma distribution

l= F Exponential distribution

Figure 2: Graphical model representation of a simple lognormal model. A total of N observations of variable x
are observed and occupy a clamped node. This parameter is log-normally distributed with parameters p and o (log
mean and standard deviation, respectively). The parameter p is a deterministic node that is calculated from the
stochastic nodes M (the mean of the distribution) and o. Dotted arrows indicate deterministic functions and are
used to connect deterministic nodes to their parent variables. A gamma distribution is applied as a hyper prior on
M with constant nodes for the shape a and rate 5. The stochastic variable o is exponentially distributed with fixed
value for the rate \.

4 Rev: The RevBayes Language

In RevBayes models and analyses are specified using an interpreted language called Rev. Rev bears simi-
larities to the compiled language in WinBUGS and the interpreted R language. Setting up and executing
a statistical analysis in RevBayes requires the user to specify all of the parameters of their model and the
type of analysis (e.g., an MCMC run). By using an interpreted language, RevBayes enables the practitioner
to build complex, hierarchical models and to check the current states of variables while building the model.
This will be very useful in the beginning. Later on you, when you run very complex analyses, you may
want to write Rev-scripts.

REVBAYES TUTORIAL — GETTING STARTED

Differently to R and BUGS, Rev is a strongly but implicitly typed language. It is implicitly typed, and thus
similar to Python, because you do not need to provide the type of a variable (which you need to in languages
such as C++ and Java). We do implicit typing to help users who do not know about the actual types of
the variables. However, strongly typed means that every variable has a type and arguments of functions
need to match the required types. The strong type requirements ensures that you build meaningful model
graphs. For example, the variance parameter of a normal distribution needs to be a positive number, and
thus you can only use variables that are positive real numbers. RevBayes does automatic type conversion.

4.1 Specifying Models

Table 1: Rev assignment operators, clamp function, and plate/loop syntax.

Operator Variable
<- constant variable
~ stochastic variable
= deterministic variable
node.clamp(data) clamped variable
= inference (i.e., non-model) variable
for(i in 1:NM){...} plate

The variables/parameters of a statistical model are created using different operators in Rev (Table 1). In
Figure 3, the Rev syntax for creating the model in Figure 2 is provided. Because Rev is an interpreted
language, it is important to consider the order in which you specify your variables (cf. BUGS where the
order is not important). Thus, typically the first variables that are instantiated are constant variables.
Constant variables require you to assign a fixed value using the <- operator. Stochastic variables are
initialized using the ~ operator followed by the constructor function for a distribution. In Rev, the naming
convention for distributions is dn*, where * is a wildcard representing the name of the distribution. Each
distribution function requires hyper-parameters passed in as arguments. This is effectively linking nodes
using arrows in the graphical model. The following code snippet creates a stochastic variable called M
which is assigned a gamma-distributed hyperprior, with shape alpha and rate beta:

alpha <- 2.0
beta <- 4.0
M ~ dnGamma(alpha, beta)

The flexibility gained from the graphical model framework and the interpreted language allows you to easily
change a model by swapping components. For example, if you decide that a bimodal lognormal distribution
is a better representation of your uncertainty in M, then you can simply change the distribution associated
with M (after initializing the bimodal lognormal hyperparameters):

mean_1 <- 0.5

mean 2 <- 2.0

sd_ 1 <-1.0

sd 2 <- 1.0

weight <- 0.5

M ~ dnBimodallnorm(mean_1, mean_2, sd_1, sd_2, weight)

REVBAYES TUTORIAL — GETTING STARTED

Rev does allow you to specify constant-variable values in the distribution constructor function, therefore
this also works:

M ~ dnBimodallLnorm(0.5, 2.0, 1.0, 1.0, 0.5)

Both ways to specify priors are equivalent. The only difference is that one code may be more readable
than the other.

Q
=™

observations <- [<your data go here>]

alpha <- 3.0
beta <- 1.0
M ~ dnGamma(alpha, beta)

lambda <- 1.0
‘ sigma ~ dnExponential (lambda)

- \
>

mu := 1ln(M) - (power(sigma, 2.0) / 2.0)

N <- observations.size()

for(i in 1:N){
x[i] ~ dnlnorm(mu, sigma)
x[i].clamp(observations[i])

}

Figure 3: Specifying a model with Rev. The graphical model of the observed parameter x is shown on the left.
In this example, x is log-normally distributed with a location parameter of u and a standard deviation of o, thus
x ~ Lognormal(u,). The expected value of x (or mean) is equal to M: E(x) = M. In this model, M and o are
random variables and each are assigned hyperpriors. We assume that the mean is drawn from a gamma distribution
with shape parameter « and rate parameter 3: M ~ Gamma(a,3). The standard deviation of the lognormal
distribution is assigned an exponential hyperprior with rate A\: ¢ ~ Exponential(\). Since we are conditioning our
model on the ezpectation, we must compute the location parameter (1) to calculate the probability of our model.

Thus, p is a deterministic node that is the result of the function* executed on M and o: p = In(M) — "—22 Since we
observe values of =, we clamp this node.

Deterministic variables are parameter transformations and initialized using the := operator followed by
the function or formula for calculating the value. Previously we created a variable for the expectation of
the lognormal distribution. Now, if you have an exponentially distributed stochastic variable o, you can
create a deterministic variable for the mean pu:

lambda <- 1.0
sigma ~ dnExponential(lambda)
mu := 1n(M) - (sigma”2)/2.0

Replication over lists of variables as a plate object is specified using for loops. A for-loop is an iterator
statement that performs a function a given number of times. In Rev you can use this syntax to create a
vector of 7 stochastic variables, each drawn from a lognormal distribution:

REVBAYES TUTORIAL — GETTING STARTED

for(i in 1:7) {
x[i] ~ dnLognormal (mu, sigma)

}

The for loop executes the statement x[i] ~ dnLognormal (mu, sigma) for different values of i repeatedly,
where i takes the values 1 to 7. Thus, we created a vector x of seven variables, each being independent
and identically distributed (i.i.d.).

A clamped node/variable has observed data attached to it. Thus, you must first read in or input the
data, then clamp it to a stochastic variable. In Figure 3 the observations are assigned and clamped to the
stochastic variables. If we observed 7 values for x we would create 7 clamped variables:

observations <- [0.20, 0.21, 0.03, 0.40, 0.65, 0.87, 0.22]
N <- observations.size()
for(i in 1:N){

x[i] .clamp(observations[i])

}

You may notice that the value of x has now changed and is equal to the observations.

5 Getting help in RevBayes

RevBayes provides an elaborate help system. Most of the help is found online on our website
http://www.RevBayes.com. Within RevBayes you can display the help for a function, distribution or any
other type using the ? symbol followed by the command you want help for:

?dnNorm
’mcmc
?mcmc . run

Additionally, RevBayes will print the correct usage of a function if you only type in its name and hit return:

mcmc
MCMC function (Model model, Monitor[] monitors, Move[] moves, String moveschedule =
sequential" | "random" | "single", Natural nruns)

If you typed in ?dnNorm and you didn’t see the help but got instead an error message then you have most
likely an incorrect path variable to the help directory. You can check the current path to help directory by

getOption("helpdir")
"/Users/hoehna/Software-Development/revbayes-development/help"

REVBAYES TUTORIAL — GETTING STARTED

Check where the help files on your system are and then set the correct path

setOption("helpdir", "/Users/hoehna/Software-Development/revbayes-development/help")

5.1 RevBayes Users’ Forum

An email list has been created for users of RevBayes to discuss RevBayes-related topics, including:
RevBayes installation and use, scripting and programming, phylogenetics, population genetics, models
of evolution, graphical models, etc. The forum is hosted by Google Groups:

. r(‘,\»'baycs—usors

References

Gilks, W., A. Thomas, and D. Spiegelhalter. 1994. A language and program for complex Bayesian modelling.
The Statistician 43:169-177.

Hohna, S., T. A. Heath, B. Boussau, M. J. Landis, F. Ronquist, and J. P. Huelsenbeck. 2014. Probabilistic
Graphical Model Representation in Phylogenetics. Systematic Biology 63:753-771.

Jordan, M. 2004. Graphical models. Statistical Science 19:140-155.

Koller, D. and N. Friedman. 2009. Probabilistic Graphical Models: Principles and Techniques. The MIT
Press, Cambridge.

Lunn, D., D. Spiegelhalter, A. Thomas, and N. Best. 2009. The bugs project: Evolution, critique and
future directions. Statistics in medicine 28:3049-3067.

Lunn, D. J., A. Thomas, N. Best, and D. Spiegelhalter. 2000. Winbugs-a bayesian modelling framework:
concepts, structure, and extensibility. Statistics and computing 10:325-337.

Version dated: February 1, 2015

http://bit.ly/107aW2R

	Overview
	Getting Started
	Probabilistic Graphical Models
	Rev: The RevBayes Language
	Specifying Models

	Getting help in RevBayes
	RevBayes Users' Forum

