Lies, damn lies, and ...
genomics

you, your data, your perceptions and
reality

/\%« (k#f SH

Christopher West Wheat 2+l

% A
/‘//7+S




Goal of this lecture

* Present a critical view of ecological genomics

* Make you uncomfortable by sharing my

nightmares

» Encourage you to critically assess findings and
your expectations in light of publication biases







How would that
affect your

expectations
and work?




If the biomedical science has the
most money and oversight, then ...

Their findings should be robust:

» Repeatable effect sizes
o The same across different labs
* The same across years




Publication replication failures

e Biomedical studies
— 0f 49 most cited clincal studies, 45 showed intervention was effective
— Most were randomized control studies (robust design)

* Mouse cocaine effect study, replicated in three cities
— Highly standardized study

loannidis 2005 JAMA; Lehrer 2010




Assessing reality using

funnel plots
Small sample sizes affect

Sex ratio in birds measurement accuracy

Pvalue = 0.05

Each dot = a study and has error

Study estimates are randomly
distributed about the real value
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Your study is just a random
estimate of some idealized value

Log Sample size (n)




Publication bias increases effect size
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What if there is no replication?
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What is most likely to publish first & where?
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Why Most Published Research Findings Are False

A research finding is less likely to be true when:
// *he studies conducted in a field have a small sample size
V' _when effect sizes are small

V" when there is a greater number of tested relationships using tests
with a priori selection

V" where there is greater flexibility in designs, definifions, outcomes,
/'md analytical modes

when there is greater financial and other interest and prejudice

“/" when more teams are involved in a scientific field, all chasing after
statistical significance by using different tests

loannidis 2005 Plos Med.




But surely, this doesn't
apply to genomics ...

Or does it?
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validity of genetic association studies. Nat Genet 29:306—3009.



There are lies, damn lies,
and ...

But wait, is that fair?

Are these really lies?




Where does this bias come from?

» Population heterogeneity
— Space and time

o Publication bias

— Large & significant effects publish fast and with high
impact

— Small & nonssignificant effects publish slow with low
impact




Where does this bias come from?
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And me .... All of us

lts arises from humans doing science

The way we think
The way our institutions work



Apophenia

I\ universul human iendency fo seek

e Similar to Type 1 error
— false positive

« Opposite from Type 2 error
— false negative




o What is the genomic architecture of phenotypes?

e What is the power of molecular tests of selection?

» What does the dissection of some classic comparative
genomics study reveal?




Non — adaptive Adaptive
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disease, agin, height, etc. salinity, color, resistance, etc.

‘ generally ... ‘

1000’s of loci, each of One or several loci of large
small effect size effect

Is this a publication bias?

Will your trait have 1000’s of small effect
genes, or a few genes of large effect?

Sear (2010) ... Is bigger always better? Rockman (2011) ... All that’s gold does not glitter




 Publications using molecular tests demonstrate we can sequence
our way fo answers

urrent paradigm:
Sequence, map, find sig. patterns, make causal story, move on
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What is the architecture of a causal variant?

Enhancer 2 TATA box Intron 1 Intron 2

and GC box
Enhancer 1 'n Start codon gég%n Polyadenylation
site

Transcription
initiation




How predictable are
adaptations?

Plants Animals

Coding’ 71 163
Cis-regulatory 26 48
Other? 16 7 0
Total 113 1983 1986 1989 1992 1995 1998 2001 2004 2007
Null® 67 32 Year of Publication

50 1 cis-regulatory

Cumulative Number of Mutations

Morphology Physiology Behavior

Coding’ 62 170
Cis-regulatory 43 29
Other* 3 20
Total

Null® 41 58

Stern & Orgogozo 2008 Evolution




How do we identity the genes that matter?

* Molecular tests of selection are popular, but ...
— What are their assumptions and power?

» What are these tests detecting?

—What is a footprint of selection?

* How are they formed?
* How large are they?

* How long do the last?




Finding the genes: [ mesese

a decision tree ey

Number of Populations | | Knowledge of substitution class
one multipls yes

- Many publications

Mode of Selection | tion rates  :

positive  balancing eaCh use > 50% Of

{ \‘ these tests, then
meeotswess | grgue which are

hard soft

Important

:  nucleotide diversity ()
: -« allele frequency spectrum
(Tajima’s D)

Hohenlohe et al. 2010 Int. J. Plant Science



What power do we
have to detect What is
evolution by statistical

. >
natural selection? POWET

Power is the probability that the test will re||']ec’r the

null hypothesis when t’{le alternative hypothesis is

TRUE

Using a t-test, you would want power > 90% af
reasonable sample size, right?




Directional selection:
an example of the
expectations of hard
selection

Population genomics has been

(
(

(C

ominated by developing methods to
etect hard sweeps for past two
ecades

— But a proper ‘null model’ continues
fo be elusive, resulting in a high
false positive rate since their
inception

Storz 2005 Mol. Ecology

ATGETAGGTCATATTGATCAGEGTGAATGTGCTAGAACATA
ATGCTAGATCAAALGTCGATCATGGTGAATGTGCTAGAACATA
ATGETAGATCAAATTGATCATGGTGCATGTGCTAGATCATA
ATGCTAGATCATATTGATGATGGTGAATGTGCTAGATCATA

ATGCTAGGTCATATTGATCATGCTGALAGTGGTAGATCATA




- Fst outlier analysis
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Lotterhos and Whitlock. 2014. Molecular Ecology 23:2178-2192.



6=10,p=0

What is our power to defect [ T
hard sweeps within
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Strength of selection (2Ns) Jensen 2014. Nature Communications 5:1-10.



What's a good way to assess
molecular tests?

» Computer simulations of evolution
— Across range of demographic scenarios

o What else?

» Testing them on real data where we know the targets of
selection = real world validation

— Which ones work and when
— We could then use this to make better tests, right? (very rare)
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von Holdt et al. 2010. Nature

Breed specific
morphologies

Test set of Schlamp et l.
2016:

e 25 breeds
e 12 causal loci
N =25 / breec

o 7 tests of selection
— iHS,nSL,H,TajD, etc.

What can state of the art molecular

tests of selection detect?



French Bulldog sample: low power, high type | & Il error
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BASED ON 20 YEARS OF PUBLICATIONS

* Are still chasing an elusive null model ....

—Each performs better than previous ones under
specific set of conditions, all have poor null model

» But ... under realistic biological conditions, they ll
—Have very low power
—Have high false positive rates




Hard selection case example:
ihreespine stickleback fish

Freshwater

* 9.0x coverage
O 2.3x coverage




Threespine stickleback fish

(Gasterosteus aculeatus)

* Has body armor in the ocean

e Loses almost all armor in lakes

Invaded
fresh water

Natural selection




Parallel adaptation in fresh

water lakes via hard sweeps

Marine population
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Individual genome sequencing: powerful insights

.]'(J& 1e seq
and morphology
O O Morpholegy
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Euclidean distance to freshwater centroid

2-5 X per individual, sliding 2500 bp window, 500 bp step

Jones et al. 2012 Nature




Which regions are more important? Coding or expression?
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a Classic selective swee
P Over time, the advantageous

Neutral variation An advantageous mutation arises mutation approaches fixation

() Q : . ()

®
Q

Q

Freq. in

Scheinfeldt & Tishkoff. 2013. Nat Rev Genet 14:692-702. nature




How common are hard sweeps in nature?

* “we argue that soft sweeps might be the dominant mode of
Udupiﬂﬁon in many species” Messer and Petrov 2013 TREE

The lab?

» “Signatures of selection ... [are] not associated with ‘classic’ sweeps
... More parsimonious explanations include ‘incomplete’ [or] ‘soft’
sweep models.” Burke et al. 2010 Nature

How common were hard sweeps in our history?

* “classic sweeps were not a dominant mode of human adaptation
over the past 250,000 years”

* “much local adaptation has occurred by selection acting on existing
variation rather than new mutation” 1000 Genomes PC 2010 Science

Hernandez et al. 2011 Science




Certainly not everyone agrees ....

REVIEW
Received 24 Mar 2014 | Accepted 17 Sep 2014 | Published 27 Oct 2014 DOI: 10.1038/ncomms6281

On the unfounded enthusiasm for soft
selective sweeps

Jeffrey D. Jensen'2

« This is an important read, critical of

— assumptions underlying soft sweep
— low power of molecular tests to detect hard & soft sweeps




How common are soft sweeps in your species?

Thought experiment:
What fraction of species respond to selection in the lab?
Why?
If populations have variation, how likely is selection to use it?

What's likelihood of selection on standing variation in wild?

What does this We have not been studying
mean for tests the dominant form of

ion? L .
of selection: selection in the wild &
cannot reliably detect it




Age and type of selection matters

Novel mutation, large effect, hard sweep that goes to fixation
— Probability of detection 20 - 90%, depending on demography, etc.

Old mutation and / or polygenefic that does not sweep to fixation

— Probability of detection close to

Finding the causal mechanism
— Coding > expression (but allele
— SNPs > more complex mutations (indel, TE, CNV)

— Ongoing gene flow & grouping

What is the relative frequency o
— What will be the architecture of

|

specific expression can be lightening rod for expression)

)y phenotype across replicate populations helps a lot

 these?
your phenotype?

— What does your method have the highest power to detect?




Get ready, here come the

1000 genomes

— plans to sequeg

* Many other larg §5k
An unprecedented

opportunity for
large scale errors?

AP Fationships
i — Genome evolution

— Functional insights into genes and genomic
enging OF Life features (e.g. regulation and inheritance)



Classic study: Evolution of genes and genomes
on the Drosophila phylogeny

D. melanogaster

D. sechellia
D. simulans

melanogaster group D. yakuba

D. erecta

D. ananassae
Sophophora
subgenus

obscura group D. pseudoobscura

D. persimilis

willistoni group D. willistoni

repleta group D. mojavensis

D. virilis
virilis group
Drosophila

subgenus — _ D. grimshawi
Hawaiian Drosophila

T T T T 1 Specialist species &
50 40 30 20 g
Divergence in Myr

Drosophila 12 Genomes Consortium 2007 Nature




Tempo and mode of chromosome evolution
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e > 20 My, chromosomal order completely reshuffled in Diptera

Drosophila 12 Genomes Consortium 2007 Nature




Total no. of protein- coding  Coding sequence/

genes (per cent with D. intron (Mb)
P melanogaster homologue)
G e n 0 m e evo U IIII 0 n D. melanogaster 13,733 (100%) 38.9/21.8
D. simulans 15,983 (80.0%) 458/19.6
D. sechellia 16,884 (81.2%) 479/219
. D. yakuba 16,423 (82.5%) 50.8/22.9
D. erecta 15,324 (86.4%) 49.1/22.0
Drosophila 12 Genomes
D. ananassae 15,276 (83.0%) 57.3/22.3
: D. pseudoobscura 16,363 (78.2%) 49.7/24.0
Consortium 2007 Nature D. persmils 17325 (726%) 5407219
D. willistoni 15,816 (78.8%) 65.4/23.5
D. virilis 14,680 (82.7%) 57.9/21.7
D. melanogaster —: D. mojavensis 14,849 (80.8%) 57.8/21.9
M& - grimshaw 19270 (B1.3%) 2457225
D. simulans
D. sechellia )
D. yakuba M&
D. erecta
4 4
\ (
D. ananassae P |
D. pseudoobscura M&
D. persimilis | — I
. Wi SO 7 | Y |
£
D. virilis M&
M&
D. mojavensis
D. grimshawi —:;::
0 5,000 10,000 15,000 20,000 25,000

® Single-copy orthologues @ Conserved homologues B Patchy homologues (with mel.)

Number of gene models

O Patchy homologues (no mel.) 0 Lineage specific




Selection dynamics across functional categories

Catabolic process -

lon transport

Protein metabolic process -

Protein transport —

Carbohydrate metabolic process -

Generation of precursor metabolites and energy -
Cellular localization -

Transport -

Biosynthetic process -

Amino acid and derivative metabolic process =
Translation -

Cell—cell signalling <

Vesicle-mediated transport -

[
0.00
B -log(probability of positive selection)
D)

* 33.1% of single-copy orthologues have experienced positive
selection on at least a subset of codons.

Drosophila 12 Genomes Consortium 2007 Nature



Gene Family Evolution across 12
Drosophila Genomes

* One fixed gene gain/ loss
across the genome every

60,000 yr

« 17 genes are estimated to be
duplicated and fixed in a
genome every million years

Drosophila 12 Genomes Consortium 2007 Nature
Hahn et al. 2007 Plos Genetics




Comparative Genomics : a house of cards?

* Data scale is too large to thoroughly assess errors ...
— Perhaps the findings are just .... wrong

* All conclusions, at some stage, rest upon
— Simple bioinformatics
— Assumptions that get incorporated into seemingly unbiased methods

Lets exploring two pillars of these studies, their error and
repercussions

— Gene alignments in detecting positive selection
— Calibrations in temporal analysis




Established studies allow ...

Follow up studies to reveal limitations

Robust findings to emerge with age



Catabolic process

lon transport

Protein metabolic process

Protein transport

Carbohydrate metabolic process

Generation of precursor metabolites and energy
Cellular localization

Transport

Biosynthetic process

Amino acid and derivative metabolic process
Translation

Cell-cell signalling

Vesicle-mediated transport

0.00

B -log(probability of positive selection)
oo

33.1% of single-copy orthologues
have experienced positive selection
on at least a subset of codons.

How robust are these conclusions?




Codon based tests of selection

N . Neutral evolution
Positive selection f.ex. pseudogenes

f.ex. effector genes

Purifying selection
f.ex. housekeeping genes

1 positive sel.
1 neutral

1 purifying sel. IMPRS workshop,
Comparative Genomics




Evolution of genes and genomes on the

Drosophila phylogeny

melanogaster group

Sophophora

subgenus obscura group

willistoni group

repleta group

virilis group
Drosophila
subgenus
Hawaiian Drosophila

I I I | I I
70 60 50 40 30 20
Divergence in Myr

D. melanogaster

D. sechellia
D. simulans

D. yakuba

D. erecta

D. ananassae

D. pseudoobscura

D. persimilis
D. willistoni
D. mojavensis

D. virilis

D. grimshawi

Specialist species

Drosophila 12 Genomes Consortium 2007 Nature




dN/dS estimates 8
by aligner B8

* 6690 orthologs

e 5 alignment
methods

e Alignment
methods affect
dN/dS estimates

Markova-Raina & Petrov 2011 Genome Biology




Comparing results across methods is responsible

Since we can't look at our data, we need approaches that
allow 1+ principal assessments
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Aligner tool has a larger effect than hiology

12 genomes, 12 genomes, 12 genomes, M7/8, Melanogaster
M7/8 M1la/2a with removed gaps group, M7/8

Aligner  95% (a) 99% (b) 95% (c) 99% (d) 95% (e) 99% (f) 95%(g) 99% (h)

AMAP 817 213 256 110 558 104 973 257
MUSCLE 1043 306 379 192 764 155 1134 366
ProbCons 1013 281 346 180 801 182 1128 371
T-Coffee 1290 479 612 353 824 173 1248 (909) 463 (218)
ClustalW 902 261 244 117 666 112 1269 453
Totalin5 1902 673 799 441 1562 384 1737 (1723) 652 (620)
PRANK 468 49 49 16 258 42 581 70

Number of significant genes in

common across 1.2, 3, 4 orall ERG w-

118, 17% f 159, 9%

5 of the alignment methods

Markova-Raina & Petrov 2011 Genome Biology




Alignment results highlight importance of alignment score!
—Tcotfee finds 3 selected sites indicated by arrows

—ProbCons identifies region with low alignment score, not used

Tcoffee
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ProbCons
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Markova-Raina & Petrov 2011 Genome Biology



What about recent genomes?

Surely they are befter?
and mammals ... they have good genomes

and alignment problems rarely happen

... right?



How did |
evolve to
be so cute?




2.8%

Deficient in:
* Alignment
* Coverage
* Annotation

17.5%

23.3% '6‘-.-\

N

I

0.042

Data="~3000 orthologs 0.013
Positive Selected Genes

Revised PSG

Schneider et al. 2009. Genome Biology and Evolution.



Temporal inference:




* Direcily affects rate estimates

e Deriving unbiased dates from molecular data
— Large field of software development

» Bayesian methods, while potentially informative
and unbiased

— Can be easily, and are routinely, abused
Wheat and Wahlberg 2013 TREE




Evolution of genes and genomes on the

Drosophila phylogeny

melanogaster group

Sophophora

subgenus obscura group

willistoni group

repleta group

virilis group
Drosophila
subgenus
Hawaiian Drosophila
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D. simulans

D. yakuba

D. erecta
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D. persimilis
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D. mojavensis
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D. grimshawi

Specialist species

Drosophila 12 Genomes Consortium 2007 Nature




X \ o A simulans / mauritiana 0.93 + 0.49 ()
}? \§ LN 3,000,000 years 1 — pseudoobscura / miranda 2.0 + 0.6 (6)
® n T picticornis / 16 Hawaiian species 5.1 (4)
” melanogaster / simulans 5.4 + 1.1 (62)
AN yakuba / teissieri 6.8 + 2.1 (4) %‘!‘
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— Hawaiian Drosophila / Scaptomyza 30.5 + 6.6 (3)
Hawailan species

L— melanogaster sgr. / takahashii sgr. 35.6 + 8.7 (3)

1. NO phyloge ny — melanogaster sgr. / montium sgr. 41.3 + 9.0 (5)
— virilis / Hawanan Drosophila 42 94+8.7 (2)

p Fixed CIOCk rate L melangaster sgr. / ananassae sgr. 44.2 + 8.9 (3)
3. Between 3 — 64 genes in

pairwise comparisons
— melanogaster gr. / obscura gr. 54.9 + 11.0 (44)

Temporal patterns in fruitflies melanogaster gr. / willistoni gr. 62.2 + 12.7 (18)
2.9 +

= sg. Drosophila / sg. Sophophora 6 12.4 (64)

(Tamura et al. 2004 MBE)




Drosophila clade:

— Schizophora
constrained to
maximum of 70 Ma

— Without constraint,
goes to 115 Ma

What is reality?

Tephritoidea

Schizophora other
| families

Calyptratae

Cyclorrhapha

Ephydroidea

Eremoneura \ Pipunculidae
Syrphidae

\ Platypezoidea

Apystomyiidae

Brachyc<a Empidoidea

Asiloidea

| Stratiomyomorpha
| Hulanmor hldae

Acrocen

Tabanomorpha

Xylophagidae

Nemestrinidae

Bibionomorpha

Perissommatidae

Culicomorpha

Psychodomorpha

Ptychopteridae
_<Tlpmomorpha
Nymphomyiidae

Deuleroph ebiidae
Million years ago

Episodic radiations in the fly tree of life
(Wiegmann et al. 2011 PNAS)




D. hemipeza
(O'ahu)

D. differens

Determining

objective priors
is challenging

(Maui) Kaua'i
. 502424 O'ahu
D. silvestris é 432354
i'i Moloka'i
i) ‘ 2.581.80

D. heteroneura ==
° ‘
a

Maui
2.15-1.37

(Hawai'i) 100km

— D. biseriata
(O'ahu)

Hard prior

—
Y
S

D. mitchelli

(Moloka'i)
‘ D. hystricosa

(Hawai'i)

R

L N

Posterior density
000 002 004 006 008 010 012 014
'

- -

\4

IIIIIIIIIIIIIII

| ! | |
50 100 150 200

Drosophila-Sophophora /| Mya

Priors in Bayesian rel. clock analysis:

Mu = lab observed mutation rate

A1,2 = geological calibration, small Ne
(1,2 = geological calibration, large Ne

Obbard et al. 2012 Mol. Biol. Evol.



Priors directly influence posteriors

Dwil
~40.70 [ Dvir ’ 0.57
=Dmoj ’ !
— Dgri ‘¥edn
|Dpse ‘ l
IDper ’ |
0.99 o
— Dana 0.99
Dmel ,
Dsec ¥
Dsim
Dere .
(v 3
Dysk g€ =11 11ttt i
40 20 0 0 20 40 60 80 100 120 140 160
Mutation-rate calibration Millions of years Hawaiian calibration (Model A1)

Obbard et al. 2012 Mol. Biol. Evol.



Thus, the age of this clade is fiction

melanogaster group

Sophophora

subgenus obscura group

willistoni group

repleta group

virilis group
Drosophila
subgenus
Hawaiian Drosophila

50 40 30 20
Divergence in Myr

D. melanogaster

D. sechellia

D. simulans

D. yakuba

D. erecta

D. ananassae

D. pseudoobscura

D. persimilis
D. willistoni
D. mojavensis

D. virilis

D. grimshawi

Specialist species

Drosophila 12 Genomes Consortium 2007 Nature




(8) (€) (D) (E)

Prior
distributions |
matter “ §

Prior
distribution

(A) ' (G) (F)

* Integrative science is

challenging g

(1)

* Discuss or
collaborate with
experts fo evaluate
your approach.

Posterior
distribution

Relati
probability
O
O

Wheat and Wahlberg 2013 Trends Ecology & Evolution



How do we gain dating confidence
when we are in the dark?

* Fossils and DNA are likely to rarely agree

* How can we assess the temporal signal in the DNA
in a robust manner?

— Reducing prior biases and using lots of DNA data, while
modeling likely violations of analysis models

E i Wheat and Wahlberg 2013

Trends Ecology & Evolution




Post-genomics challenge

“What we can measure is by definition uninteresting and what we are
interested in is by definition unmeasureable”

- Lewontin 1974

“What we understand of the genome is by definition uninteresting
and what we are interested in is by definition very damn difficult fo
sequence and assemble and annotate and analyze at genomic
scale”
-Wheat 2015
For example:

- indels & inversions

- gene family dynamics

- evolutionary dynamics




What does a
good
P-value
really tell
you?

Are you
chasing a

s method
mismatched
to
mechanism?

What does a
bad
P-value
really tell
you?




Significant Pvalues

Genomic

analyses
Transcriptome

_ analyses
Hypothesis

generators that

interact
synergistically

Tests of Robust understanding requires validation:

selection . . .
* Genetic manipulation

* Field study manipulations




Goal of this lecture

» Present a non-ypical view of ecological genomics

— So you have a more complete view of the field
* Make you uncomfortable

— Provide a context for understanding your results

» Encourage you to rethink the reality presented by
nublication biases

— Overcoming this bias is a continual challenge










Quiline

* Type | errors in studies

e How | try and avoid this

* RNA-Seq gone wrong ....




LETTER228 NATURE | VOL 502 | 10 OCTOBER 2013

doi:10.1038/naturel2511

Genome-wide signatures of convergent evolution in
echolocating mammals

Hypothesis H, (species tree)

Armadillo
Elephant

Chimpanzee
Human

Atlantogenata

Mouse
Pika
Rabbit
Hedgehog
Shrew

Euarchontoglires

Cat
Dog
Horse

Vicuna
Bottlenose dolphin %
Cow

Little brown bat ¢
Pamell’s moustached bat Y
Large flying fox
Straw-coloured fruit bat
Greater horseshoe bat ¢
Greater false vampire bat ¢

Laurasiatheria

Chiroptera; Yangochiroptera
(all echolocating)

Chiroptera; Yinpterochiroptera
(echolocating and non-echolocating)

Hypothesis H, (‘bat-bat convergence’)

All other mammal lineages

Large flying fox
L Straw-coloured fruit bat
Little brown bat ¢

Parnell’'s moustached bat Y
Greater horseshoe bat M
Greater false vampire bat M

Non-echolocating bats

Echolocating bats

Hypothesis H, (‘bat-dolphin convergence’)

All other mammal lineages

Large flying fox
L Straw-coloured fruit bat
Little brown bat Y¢
Pamell’s moustached bat ¢
| Greater horseshoe bat Y
—— Greater false vampire bat Y
—— Bottlenose dolphin %

Non-echolocating bats

Echolocating bats and
dolphin

Parker et al. 2013. Nature 502:228-231.




“Strong and significant support ~ * 2326 0I’Th0|OQOUS genes

for convergence among bats o citow Tibal:
and the bortlonose dolghin was © Se-wise log-likelihood support (SSLS)

seen in numerous genes linked — Negu’rive values support convergence H],HZ

to hearing or deafness, « 824 mean support for H1
consistent with an involvement

in echolocation.”

* 329 mean support for H2

1,500 . 500
n=2326loci {1,000 [Rired n =2,326 loci |40
1500 - 4300
Y Six6* s
| Pedh15* I 1100
| | AL 1.
Hearing | THat=in® l
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Palmer failed to conduct orthogonal ‘test’ of
findings or estimate proper ‘'null’ expectation

Convergent substitutions

2000 4000 6000 8000 10000 12000

Divergent substitutions

Thomas and Hahn 2015. Mol Biol Evol 32:1232-1236.




Synder mouse controversy Human — Mouse TMRCA

“the expression for many sets of genes was “[after accoa'n% MYlAbatch effect,

found to be more similar in different tissues B}”ﬁl?‘l‘ ﬂ]mﬁévnpm Rleﬁr;by

within the same species than between tissue, not by species” Gilad and

species” Lin et al. 2014 PNAS Mizrahi-Man 2015. F1000 Research
Correlation
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Batch effect: confounding sequencing grouping
with biological grouping

D87PMIN1
(run 253,
flow cell
D2GUAACXX,
lane 7)

heart
Kidney

liver

small bowel
spleen

testis

Solution =

D87PMIN1 D4LHBFN1 MONK HWI-ST373

(run 253, (run 276, (run 312, (run 375,

flow cell flow cell flow cell flow cell

D2GUAACXX, C2HKJACXX, C2GR3ACXX, C3172ACXX,

lane 8) lane 4) lane 6) lane 7)

adipose adipose heart brain

adrenal adrenal kidney pancreas

sigmoid colon sigmoid colon liver brain

lung lung small bowel spleen

ovary ovary testis ® Human
pancreas ® Mouse

Keep technical effects orthogonal to biological
* Mouse & Human in same lane, same tissues in same lane

«  Will your Core facility know to do this for you?



Evolutionary Inference = House of Cards?

The quality of our evolutionary inference

Is proportional to assumptions of orthology




Orthologous genes ... can their phenotypic effects
drift over evolutionary time?

« RNAi phenotypes assessed for1,300 genes in two nematodes

— TMRA ~24 MYA
— 7% had divergent phenotypic effects (in lab, etc.)
— Likely higher in nature

Caenorhabditis change in expression pattern change in genetic context

C. elegans

M briggsee M M
Verster et al. 2014. PLoS Genet




If I'm talking about all these errors ...

How do | work to minimize making type | errors?
e | try and avoid over stating my work
e | ‘triangulate’




Triangulation for building evidence

» Use more than one independent set of evidence
— Derived from independent biological replicates
e (hallenge is maintaining genomic scale

— Genome wide SNP scan for outliers, QTL mapping, RNA-Seq,
knockouts, manipulations, etc.

Tree Height = Tan @ X Distance

Distance



Triangulation for building evidence

» Use more than one independent set of evidence
— Derived from independent biological replicates

e (hallenge is maintaining genomic scale
— Genome wide SNP scan for outliers, QTL mapping, RNA-Seq,

knockouts, manipulations, etc.

Move onto Triangulation
quickly rather than justifying
your P-value based on one
dataset

W
ﬁ AR
O\'(a.\,&\(\
Outlier Fst

Knockout affects phenotype

What was ancestral
state?

Is there any clinal
variation?

Phenotype respond to
chemical manipulation?

Response to selection
experiment?

.
-
O
B
(O
i’
O
(qV)
O
(qV)
-
(qV)
=
v



Speckled Wood
(Pararge aegeria)

15 months ago, only :
*  miDNA and microsat loci
« Extensive ecological studies > 10

years
55 (Mjﬁr@
7 /|\ L2
Vi & o®
Stockholm

University

Genomic signal of Diapause adaptation

[
|

Sverige "]_“

Suomi
Finland ~ /

Eesti{")

Estonia,
Latvija
. Latvia

Peter Pruisscher



Generations | % in diapause at

per year 18 hours light

ey 1 100 %
Speckled Wood
(Pararge aegeria) 2 0 %

What is the genetic basis

of adaptation to day
length?



Northern

GS-MESPA

De novo genome
assembly

Map reads to Map reads to
genome genome

A___ A___ T,
7 TEE AT AL
A AT TTA :
What genes are in those
What regions are different? T A T BENes 5
regions:
Call SNPs
T Scaffold contigs, find exons

Fst /l

contig

T
-.AI- Fst
- A

T _

-

Gene features

> = > —




Fst outlier analysis for candidates

EXON1 EXON2 EXON3

Hi—

2t

o

11,000 gene models & ~7 million SNPs

l Quality Filtering

~ 114,000 SNPs of which 68,000 SNPs: FST >0.9

A/C
7 million SNPs 2000000 ~114.000 SNPs

50000

L 1500000 40000

: 30000 3

1000000 ©
20000

500000
10000

~ Filtering

LN L LN LA LA LA LA LA L BN B
o o1 02 03 04 05 06 07 08 09 1

FST distribution

o o1 02 03 04 05 06 07 08 09 1
FST



Fixed variation in genes

1. Intergenic regions contain+/- 67,604 Fixed
SNPs o

20

2. 67 gene models contain 209 fixed SNPs

—_—— |

0 5 1]0 I 1IE: ‘ 210 ‘ 215 30
SNPs per gene model

3. Filter for SNPs in exons and introns

UniRef90_proteinnames exongeneintergenicTotal D.plex scaffold Bmori_chr
Timeless 2 0 0 2 | DPSC300014 chra
Carnitine O-acetyltransferase 3 25 1 29 | DPSC300014 chr4
Trypsin-like protein 2 14 14 30 DPSC300041 chr5
Vasa-like protein 1 2 0 3 DPSC300379 chrl9
Period 2 2 1 5 DPSC30005 chrl

Is there a foot-print of selection around these SNPs?



Timeless; Carnitine O-acetyltransferase

S

B

Region around timeless

14
0,954
0.9
0,85
0.8
0,75
0.7
0,65
1,55
0.5
1,45
0.4
0,35
0,3
0,254

Fst

04

zziﬂlaml

\— 

r
|

Coloured by P. aegeria scaffold
Ordered using synteny with Monarch

|
bk

T T
200000 400000

9,02
019
018
0174
016
0154
0144
013
012
0114
),01]
009
008
0074
006
005
004
003

Nucleotide diversity

<001
0

002"

Are these outliers real?
Do the affect the diapause
phenotype?

JMJM
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Corvus c.
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.

Carrion vs. Hooded

[ |
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Islands of speciation or background selection?

Fst:
An absolute | A relative measure
measure of of differentiation,
differentiation, | increases due to
increase due to | freq. change
mutations

The absence of high Dxy in regions of high Fst suggest a role of
background selection driving these patterns rather than
genomic ‘islands’ driving speciation.

Cruickshank and Hahn. 2014. Molecular Ecology.




Region around timeless

Timeless; Carnitine O-acetyltransferase
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0.9
0,85
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S
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r
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Coloured by P. aegeria scaffold
Ordered using synteny with Monarch
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Rather than argue about the KT
significance of this high Fst, lets
move quickly onto friangulation | sundsvan
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Laral development time

SNP genotyping in F2 cross

n=70

Triangulating Timeless
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1001 ways for your pipeline
to break

An overview of genomic pipeline
challenges

/\%« (k#f SH

Christopher West Wheat 2«




Informatics and Biology

» We need to make sure we put the ‘bio’ info the bioinformatics
— Do results pass 1% principals tests
— Always double check data from your core facility or service company

— Use independent analyses as ‘controls’ on accuracy
e What are your + and - controls?
* Do independent methods converge?

» Need to re-ussess our common mefrics for potential bias in the
genomic age
— Bootstraps on genomic scale data
— P-values, outlier analyses, demographic null models




» Transcriptome analyses in non-model species

—Walk through pipeline and highlight issues of
concern

—What is validation?

* Insights from candidate genes
—Can Second Gen methods get us there?



Pipeline Overview

Gene
expression
Sequencing : analysis
Tissue collection - Computer At De novo Mapping reads
Library preparation setup e R assembly to a reference
BLAST de:t:on
comparison & & analysis
annotation




Pipeline Overview




How can | study

my data using
open source?

Are 16 cores
enough?

What
software &

how do |
get it?

How much
HD space
is needed?



— e ——,
|

i
= e

Computer Infrastructure

RNAseq dataset:
4 conditions X 2 tissues X 3 families X 3 replicates = 72 X 10" reads

Raw files *gz ~3 hours / file

¥ Get ready for your data by
Raw files downloading similar sized
expanded dataset from the Short

TA assembl . . weeks
' Read Archive. Do not wait |

Mapping till it arrives nours / file

(BAM) ‘

Annotation ~6 — 12 days

Analysis <20 Mb ~< 1 hour

Visualization BAM files >4 >8




Pipeline Overview




Statements from core facilities that are not true:

» Here is your data

* You can't do RNA-Seq without a genome

o We'll have your data back in < 1 month




Pipeline Overview

. Sequencing :
Computer 1alit

nnnnnnnnnnn




Gene Ontology: order in the chaos

» Addresses the need for consistent descriptions of gene products
in different databases in a species-independent manner

* GO project has developed three structured controlled

vocabularies (ontologies) that describe gene products in terms
of their associated

— biological processes
— cellular components
— molecular functions

the Gene Ontology

http://www.geneontology.org/




Comparisons among
annotation tools

Molecular Function

Radivojac et al.: A large-scale evaluation of computational protein function prediction. Nat

Meth 2013, 10:221-227.
Falda et al. Argot2: a large scale function prediction tool relying on semantic similarity of

weighted Gene Ontology terms. BMC Bioinformatics 2012, 13:514.




RGOT"

//7/\:-‘ i/ / / IN/ J Functional annotation of proteins using the semantic similarity in the Gene Ontology

Site Homepage
Insert sequences
Batch processing
Consensus analysis
DB releases

View SGE jobs
View SGE queues

Argot? help

About

X

a.r. t 2 News:
: Databases
We present a novel method called Argot? (Annotation Retrieval of Genel Ontology Terms), that is able to Check

quickly process thousands of sequences for functional inference. The tool exploits a combined approach
based on the clustering process of GO terms dependent on their semantic similarities and a weighting
scheme which assesses retrieved hits sharing a certain degree of biological features with the sequence to
annotate. These hits may be obtained by different methods as BLAST, HMMER and so on. In the present web

server we allow users to interact with Argot? in different ways according to specific needs and expertise.

If you use our service, please cite:

Fontana P, Cestaro A, Velasco R, Formentin E, Toppo S.

Rapid annotation of anonymous sequences from genome projects using semantic similarities and a
weighting scheme in gene ontology.

PLoS One. 2009;4(2):e4619. Epub 2009 Feb 27. PubMed PMID: 19247487; PubMed Central PMCID:
PMC2645684.

Falda M., Toppo S., Pescarolo A., Lavezzo E., Di Camillo B., Facchinetti A., Cilia E., Velasco R., Fontana
P.

ArgotZ: a large scale function prediction tool relying on semantic similarity of weighted Gene Ontology
terms.

BMC bioinformatics, 13(4). 2012.




Batch processing for GO terms

Site Homepage

Please select the zipped tabular BLAST and HMMer files, see
Insert sequences for details, to upload (< 1GB).
Please do not upload more than 5000 sequences at once, otherwise the service
will be overloaded.
BLAST: Choose File | No file chosen O

Batch processing

Consensus analysis

HMMer: Choose File | No file chosen O

DB releases

submit example data @)
View SGE jobs

Email: 0

View SGE queues

Argot? help CUT-OFF ( ) (2

Total Score (2 5): 5
About

Resetl SEND REQUEST]




Pipeline Overview

' Sequencing

Tissue collection - Computer
Library preparation setup

‘ De novo ’
assembly (
@

BLAST
comparison &
annotation




Template

mismatch effects:

De novo assembly analysis
de Brujin graph
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Does alignment software matter?

Array Array | Gsnap Gsnap | Stampy | Stampy |[TopHat | TopHat
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Nookaew et al. A comprehensive comparison of RNA-Seq-based transcriptome analysis from reads to differential gene expression and cross-comparison with
microarrays: a case study in Saccharomyces cerevisiae. Nucleic Acids Research 2012, 40:10084—10097.




Mappers don’t appear to matter

Wrong

» Genomic scale data can hide widespread biases that unless
you specifically look, are hard to find

* Mapping programs differ in their settings and design
— DNA to DNA vs. RNA to DNA

— Are usually compared using species without much genetic
variation

— Indels, splicing, SNPs all affect mapper performance




SNP effects can be large

B 5 £ 3 - B Named gene A
YHR215W (PHO1G PHO12)

*B 1 H Chemostat Coverage from Gsnap (xyplot)
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2
= 100.5
1o atlite.. =~ _ I i =S S
t 4= r E Chemostat Coverage from Stampy (xyplot)
>
g 201
© 100.5
o)
v
* B - El Chemostat Coverage from Tophat (xyplot)
® 170
=
o
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* B ~ E Affy probe position
probe:Yeast_2:1777286_s_at :52:65; probe :Ye

": probe Yeast _2:1777286_s_at :271:481;

225; Il probe:Yeast_2:1777286_s_at :341:93;
19:327; Ml probe iYeast_2:1777286_
13_at :1381:303; Il

48:43;

3293 _at :165:83;

Nookaew et al. A comprehensive comparison of RNA-Seq-based transcriptome analysis from reads to differential gene expression and cross-comparison with

microarrays: a case study in Saccharomyces cerevisiae. Nucleic Acids Research 2012, 40:10084—10097.




Insertions & deletions (indels) have large effects

* E 55 & H B Named gene B
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- = H Chemostat Coverage from Gsnap (xyplot)
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'k B EE B H 3 indel

T/TTGGCATAA O1355:T/TT 01356 : TCCTCCT/T 01359 :GA/G 01362 :CTC/C 01368 :CCGTGAGCCTALC 0
' ) 01357 :T/TATCCCTCACAARATGT I01360:C/"CGQCGTCTCC Ilel:L363:[':‘/‘GCF3l .01369:T.—"TTGQGCCCTTC '
;)1358:CRCGTRCGCGKC ' 01361:C./CTHF\CTTCG}CTTTTHTQTCTT.CCTCHC 01370:G/GGTC
" ' 01364 :ATARAGT /A '01371 TTTCGAT
.01365 A/ARAGTTA )
I 01366 :A/ATGAT
Indels

Nookaew et al. A comprehensive comparison of RNA-Seq-based transcriptome analysis from reads to differential gene expression and cross-comparison with
microarrays: a case study in Saccharomyces cerevisiae. Nucleic Acids Research 2012, 40:10084—10097.




15 mapping results

Dramatic differences in ability to
handle a 2 bp insertion in
reference compared to reads

TopHat, SpliceMap, Bowtie and
Soap
— do not identify indels

— they fail o accurately align
reads to these regions

Grant GR, Farkas MH, Pizarro A, Lahens N, Schug J, Brunk B, Stoeckert CJ, Hogenesch JB, Pierce EA: Comparative Analysis of RNA-Seq Alighment
Algorithms and the RNA-Seq Unified Mapper (RUM). Bioinformatics 2011, doi:10.1093/bioinformatics/btr427.




Allelic bias in read mapping

O
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» Essentially identical to allele specific PCR bias ... but on a scale
you can’t defect unless you care to look

* Do your genes of interest have more than 3 SNPs / 100 bp?

Sedlazeck et al. 2013 Bioinformatics



100 bp window with 4 — 5 SNPs differing

from reference
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Mapping reads in outbred species

Average genome polymorphism levels (ignores indels)

Drosophila
melanogaster
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Homo sapiens

Species grouped by phylum

Leffler et al. 2012 Plos Biol



Sig. expression differences by method

A: Stampy mapping
B: Cuffdiff analysis
C: Likely error source




Real world example

2 factor analysis with family effects



Save
energy,
live long

Bicyclus anynana

long lifespan
delayed reproduction
inactive behaviour

high fat reserves

] wing pattern

fast
active
low

conspicuous




Bicyclus anynana

AR
I

Marjo

Saastamoinen w

N J
Y

sensitive period

environmental alternate
conditions phenotypes




7 full-sib families

seasonal temperature n +20° C

Experimental design

F1J E2

food stress n

use 2 body parts

No food limitation _

+27° C

No food limitation _

2 seasonal x 2 food stress x 2 body parts = 8 conditions
7 families with n = 2 - 3 per condition = 144 RNA libraries
10 million reads / library



Vicencio Oostra

body part # libraries # cIeaT\ reads (per # nuclfeotldes (per GC content
library) library)
abdomen 72 15,261,019 3,052,203,767 45%
thorax 72 15,633,416 3,126,683,150 46%
total 144 2,224,399,290 444,879,858,000 45%
4, 14 samples: one from each family, thorax and
abdomen 69,075 contigs

edgeR Bioconductor

# reads ~ season + stress + family +
season*stress + season*family + stress*family
season*stress*family




What should | be
looking at first?
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Dimension 2
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Effect of filtering the mapping to Trinity contigs

71 zero-read samples

allowed
v
ool tm&:«
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o
’ wet Conmeol
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season x treatment
x family

116

GLM results

» Plastic responses:

— Effects without any

inferaction with Family a3

115

seasonal
x family

stress
x family

® Genetic response:
o Eftects that have an interaction with family
o Potential targets of natural selection

season + stress + family + season*stress +

reads ~ . . :
season*family + stress*family + season*stress*family



320 My

Bombyx mori Drosophila melanogaster D IIIE/UIIO,q(le er
Whole Ome sequence, Extensive genomic & | k h I
Ctedgefleset functional resources acks an ortho 0gous

Assembly 2.0 anuﬂﬁ_tepﬂlfm
Contig_57178 BGIBMGA002704 CG33126 d :
Contig_6821 BGIBMGA003247 CG6519 repl'O uctive
Contig_1004 Blastx BGIBMGA003248 Blastp CG6519 .
Contig_20226 BGIBMGA003248 CG6519 h S|0|0
Contig_27720 BGIBMGA003248 CG6519 p Y gY
Contig_5260 BGIBMGA003249 CG6519
Contig_27110 BGIBMGA004806 CG33126
Contig_27390 BGIBMGA004806 CG33126
Contig_26901 BGIBMGA004865 CG33126
Contig_4713 BGIBMGA004866 CG33126
Contig_20081 BGIBMGA005329 CG3149
Contig_9982 BGIBMGA006733 CG6783
Contig_15387 BGIBMGA008859 CG4178
Contig_25362 BGIBMGA008859 CG4178
Contig_36071 BGIBMGA008859 CG4178

Gene Set Enrichment analysis
using Gene Ontology database

Fatiscan Analysis

over-represented N
UNDER-represented B |

% of annetated genes
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cofactor binding [NRNERNRNRNENEGEGEE
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Most studies are
annotation limited

e What is the biological
meaning of the top P-value
genes?

e Low P-value or expression
genes are certainly important

* Gene set enrichments are key
fo insights

— Thus, annotation is very
important

Description

Uniprot

-log10P

Oxidoreductase.
Hypothetical protein.
SD27140p.

SD01790p.
Electron-transfer-flavoprotein |
Pseudouridylate synthase.
Hypothetical protein.
CG14686-PA (RE68889p).
Chromosome 11 SCAF14973, wt

, complete genome. (EC 1.6.5.5
RNA-binding protein.
Hypothetical protein.
Peptidoglycan recognition-like
Angiotensin-converting-relatec
Lachesin, putative.

Secretory component.
Putative adenosine deaminase

7 of 20 (35%) no Uniprot ID

Q9VMHS

Q8SXX2
Q95TI3
QOKHZ6
Q9wW282
Q9VGX0
Q9VGX0
Q8T058

QsvVPL4

Q85XX2
QSI7H7

Q9VVKS
Q9VVKS

7.087008
£6.993626
6.315473
6.300667
5.316371

5.1425
4.784378
4.750469
4.650051
4.506043
4.470413
4.445501
4.374033
4.369727
4.206247
4.172776
4.056174
3.981175
3.980728
3.95787




Sources of error

Transcriptome assembly can

e huge source of bias:

» Fragmentation creates multiple contigs of same gene
* SNPs and alternative splicing generates more contigs

* 1 locus = frag. X SNPs X alt. splicing = many contigs

We can observe effects in expression analyses:
— Family effect mapping bias
— Pseudo-inflation in Gene Set Enrichment Analyses




Put the BIQ in your informafics!!

Use independent analyses as ‘controls’ on accuracy
— What are your + and - controls?

Analysis#1 Analysis#2  Analysis # 3
Mapper TopHat2 STAR ?
Normalization none TMM TMM
Analysis PCA RSEM EDGER

Should independent methods converge?




Interrogate your results

* “you need fo be in charge of the analysis” - B. Cresko

This will give you confidence
— Bring freedom to your findings (no waterboarding)

* Graph your results - visualize the patterns
— PCA or MDS plot
— P-value distributions

« Assess gene copy number in gene set enrichment analyses (GSEA)
— Do these levels fit to 1 principals expectations?
— Do you have extra copies due fo your Transcriptome assembly?



A major challenge for Ecological Genomics

 What causes natural selection in the wild?

— How does genefic variation af one region of the genome interact with
its environment (genomic, abiotic, and biotic)

* DNA alone can't tell us about selection dynamics in the wild

— Molecular tests are very weak and uninformative about selection
dynamics

* Research community is demanding actual demonstration of
natural selection when making claims of adaptive role
— Triangulate!!!!




¥/ Genomics is full of adaptive stories :
\ "" J,

. . gy \&7 =
Functional and field validation of <3 3
SNPs effects are needed to discern Y
facts from fiction

\\. ! 4

Storz & Wheat 2010 Evolution Barrett & Hoekstra 2011 Nat Rev Genet




Ongoing work

e Currently trying to write commentary on biases in field

» Please send along other examples | might have missed
— Feedback / critique is greatly appreciated
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