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What are microbes? Cell structure

Some key differences from eukaryota (e.g. humans, plants)

• Haploid genome

• Single circular chromosome, sometimes plasmids

• Genetic malleability, metabolic diversity

• Usually no nucleus (prokaryotes)

• Relatively easy interspecies gene transfer

What are microbes?



What are microbes?

http://en.wikipedia.org/wiki/Tree_of_life_(biology)

Bacteria

Archaea

Eukaryota

Ancestry of Life

• A population of a single species/strain is a culture, 
extremely rare outside of lab, some infections

• A microbiome is a mixed population of different 
microbial species (microbial ecosystem)

What is a microbiome?
The totality of microbes in a defined environment, 
especially their genomes and interactions with each 
other and surrounding environment.

A mixed community is the norm! 

Why Study Microbiomes?

Environmental Science
- Critical elemental cycles (carbon, nitrogen, sulfur, iron, …)
- Pollution control, cleanup
- Ecology / Evolution (chloroplasts, mitochondria, genetic evolution, …)

Human Health
- Protection from pathogens (e.g. Clostridium difficile)
- Absorption/Production of nutrients in the gut
- Possible Role in chronic diseases

(obesity, Crohn's/IBD, other autoimmune, UTIs, periodontitis, …)

Industrial Applications
- Wastewater treatment (V. cholera, algal blooms, etc.)
- Bioprospecting (novel enzymes, compounds)
- Novel biosynthesis
- Fermentations: Consortia (yogurt) / wild (kombucha, Belgian ales)

Cow Rumen Human Microbiomes

Oceans, soils, waterways

Wastewater Treatment

What is a microbiome?



What is a microbiome? acid mine biofilm

Tyson, et al. (2004) Nature, 428(6978), 37–43

What is a microbiome? acid mine biofilm

Tyson, et al. (2004) Nature, 428(6978), 37–43

Tyson, et al. (2004) Nature, 428(6978), 37–43

What is a microbiome? acid mine biofilm

 1-10 times more 
microbial cells than 
human cells… depends 
on timing of your last 
bowel movement

Typical human 
microbiome < 2 kg
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Microbes can…

1. “Kill you by acute infection”
2. “Prevent same infection”
3. “Make you fat(ter)”
4. “Give you a heart attack”
5. “Give you cancer”
6. “Rescue you from cancer”

Some provocative oversimplifications…

Can you guess the condition / scenario?

C. difficile infection

Borody, et al (2011)
Nature Rev Gastroenterology &
Hepatology

Microbes can make you fat(ter)…

Turnbaugh, et al. (2009). A core gut microbiome in obese and lean twins. Nature

in coverage, all analyses were performed on an equal number of
randomly selected sequences (200 full-length, 1,000 V2 and 10,000
V6). At this level of coverage, there was little overlap between the
sampled faecal communities. Moreover, the number of 16S rRNA
gene sequences belonging to each phylotype varied greatly between
faecal microbiotas (Supplementary Tables 6–8).

Because this apparent lack of overlap could reflect the level of
coverage (Supplementary Tables 1–3), we subsequently searched all
hosts for bacterial phylotypes present at high abundance using a
sampling model based on a combination of standard Poisson and
binomial sampling statistics. The analysis allowed us to conclude that
no phylotype was present at more than about 0.5% abundance in all
of the samples in this study (see Supplementary Results). Finally, we
sub-sampled our data set by randomly selecting 50–3,000 sequences
per sample; again, no phylotypes were detectable in all individuals
sampled within this range of coverage (Supplementary Fig. 3).

Samples taken from the same individual at the initial collection
point and 57 6 4 days later were consistent with respect to the specific
phylotypes found (Supplementary Figs 4 and 5), but showed varia-
tions in relative abundance of the major gut bacterial phyla
(Supplementary Fig. 6). There was no significant association between
UniFrac distance and the time between sample collections. Overall,
faecal samples from the same individual were much more similar to
one another than samples from family members or unrelated indi-
viduals (Fig. 1a), demonstrating that short-term temporal changes in
community structure within an individual are minor compared with
inter-personal differences.

Analysis of 16S rRNA data sets produced by the three PCR-based
methods, plus shotgun sequencing of community DNA (see below),
revealed a lower proportion of Bacteroidetes and a higher proportion
of Actinobacteria in obese compared with lean individuals of both
ancestries (Supplementary Table 9). Combining the individual P
values across these independent analyses using Fisher’s method dis-
closed significantly fewer Bacteroidetes (P 5 0.003), more
Actinobacteria (P 5 0.002) but no significant difference in
Firmicutes (P 5 0.09). These findings agree with previous work
showing comparable differences in both taxa in mice2 and a progress-
ive increase in the representation of Bacteroidetes when 12 unrelated,
obese humans lost weight after being placed on one of two reduced-
calorie diets6.

Across all methods, obesity was associated with a significant
decrease in the level of diversity (Fig. 1b and Supplementary Fig.
1c–f). This reduced diversity suggests an analogy: the obese gut
microbiota is not like a rainforest or reef, which are adapted to high
energy flux and are highly diverse; rather, it may be more like a
fertilizer runoff where a reduced-diversity microbial community
blooms with abnormal energy input16.

We subsequently characterized the microbial lineage and gene
content of the faecal microbiomes of 18 individuals representing
six of the families (three lean and three obese European ancestry
monozygotic twin pairs and their mothers) through shotgun pyro-
sequencing (Supplementary Tables 4 and 5) and BLASTX compar-
isons against several databases (KEGG17 (version 44) and STRING18)
plus a custom database of 44 reference human gut microbial genomes
(Supplementary Figs 7–10 and Supplementary Results). Our analysis
parameters were validated using control data sets comprising ran-
domly fragmented microbial genes with annotations in the KEGG
database17 (Supplementary Fig. 11 and Supplementary Methods).
We also tested how technical advances that produce longer reads
might improve these assignments by sequencing faecal community
samples from one twin pair using Titanium pyrosequencing methods
(average read length of 341 6 134 nucleotides (s.d.) versus 208 6 68
nucleotides for the standard FLX method). Supplementary Fig. 12
shows that the frequency and quality of sequence assignments is
improved as read length increases from 200 to 350 nucleotides.

The 18 microbiomes were searched to identify sequences matching
domains from experimentally validated carbohydrate-active
enzymes (CAZymes). Sequences matching 156 total CAZy families
were found within at least one human gut microbiome, including 77
glycoside hydrolase, 21 carbohydrate-binding module, 35 glycosyl-
transferase, 12 polysaccharide lyase and 11 carbohydrate-esterase
families (Supplementary Table 10). On average, 2.62 6 0.13% of
the sequences in the gut microbiome could be assigned to
CAZymes (a total of 217,615 sequences), a percentage that is greater
than the most abundant KEGG pathway (‘Transporters’;
1.20 6 0.06% of the filtered sequences generated from each sample)
and indicative of the abundant and diverse set of microbial genes
directed towards accessing a wide range of polysaccharides.

Category-based clustering of the functions from each microbiome
was performed using principal components analysis (PCA) and hier-
archical clustering19. Two distinct clusters of gut microbiomes were
identified based on metabolic profile, corresponding to samples with
an increased abundance of Firmicutes and Actinobacteria, and sam-
ples with a high abundance of Bacteroidetes (Fig. 2a). A linear regres-
sion of the first principal component (PC1, explaining 20% of the
functional variance) and the relative abundance of the Bacteroidetes
showed a highly significant correlation (R2 5 0.96, P , 10212;
Fig. 2b). Functional profiles stabilized within each individual’s
microbiome after 20,000 sequences had been accumulated
(Supplementary Fig. 13). Family members had more similar profiles
than unrelated individuals (Fig. 2c), suggesting that shared bacterial
community structure (‘who’s there’ based on 16S rRNA analyses)
also translates into shared community-wide relative abundance of
metabolic pathways. Accordingly, a direct comparison of functional
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Figure 1 | 16S rRNA gene surveys reveal familial similarity and reduced
diversity of the gut microbiota in obese individuals. a, Average unweighted
UniFrac distance (a measure of differences in bacterial community
structure) between individuals over time (self), twin pairs, twins and their
mother, and unrelated individuals (1,000 sequences per V2 data set;
Student’s t-test with Monte Carlo; *P , 1025; **P , 10214; ***P , 10241;
mean 6 s.e.m.). b, Phylogenetic diversity curves for the microbiota of lean
and obese individuals (based on 1–10,000 sequences per V6 data set;
mean 6 95% confidence intervals shown).
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in coverage, all analyses were performed on an equal number of
randomly selected sequences (200 full-length, 1,000 V2 and 10,000
V6). At this level of coverage, there was little overlap between the
sampled faecal communities. Moreover, the number of 16S rRNA
gene sequences belonging to each phylotype varied greatly between
faecal microbiotas (Supplementary Tables 6–8).

Because this apparent lack of overlap could reflect the level of
coverage (Supplementary Tables 1–3), we subsequently searched all
hosts for bacterial phylotypes present at high abundance using a
sampling model based on a combination of standard Poisson and
binomial sampling statistics. The analysis allowed us to conclude that
no phylotype was present at more than about 0.5% abundance in all
of the samples in this study (see Supplementary Results). Finally, we
sub-sampled our data set by randomly selecting 50–3,000 sequences
per sample; again, no phylotypes were detectable in all individuals
sampled within this range of coverage (Supplementary Fig. 3).

Samples taken from the same individual at the initial collection
point and 57 6 4 days later were consistent with respect to the specific
phylotypes found (Supplementary Figs 4 and 5), but showed varia-
tions in relative abundance of the major gut bacterial phyla
(Supplementary Fig. 6). There was no significant association between
UniFrac distance and the time between sample collections. Overall,
faecal samples from the same individual were much more similar to
one another than samples from family members or unrelated indi-
viduals (Fig. 1a), demonstrating that short-term temporal changes in
community structure within an individual are minor compared with
inter-personal differences.

Analysis of 16S rRNA data sets produced by the three PCR-based
methods, plus shotgun sequencing of community DNA (see below),
revealed a lower proportion of Bacteroidetes and a higher proportion
of Actinobacteria in obese compared with lean individuals of both
ancestries (Supplementary Table 9). Combining the individual P
values across these independent analyses using Fisher’s method dis-
closed significantly fewer Bacteroidetes (P 5 0.003), more
Actinobacteria (P 5 0.002) but no significant difference in
Firmicutes (P 5 0.09). These findings agree with previous work
showing comparable differences in both taxa in mice2 and a progress-
ive increase in the representation of Bacteroidetes when 12 unrelated,
obese humans lost weight after being placed on one of two reduced-
calorie diets6.

Across all methods, obesity was associated with a significant
decrease in the level of diversity (Fig. 1b and Supplementary Fig.
1c–f). This reduced diversity suggests an analogy: the obese gut
microbiota is not like a rainforest or reef, which are adapted to high
energy flux and are highly diverse; rather, it may be more like a
fertilizer runoff where a reduced-diversity microbial community
blooms with abnormal energy input16.

We subsequently characterized the microbial lineage and gene
content of the faecal microbiomes of 18 individuals representing
six of the families (three lean and three obese European ancestry
monozygotic twin pairs and their mothers) through shotgun pyro-
sequencing (Supplementary Tables 4 and 5) and BLASTX compar-
isons against several databases (KEGG17 (version 44) and STRING18)
plus a custom database of 44 reference human gut microbial genomes
(Supplementary Figs 7–10 and Supplementary Results). Our analysis
parameters were validated using control data sets comprising ran-
domly fragmented microbial genes with annotations in the KEGG
database17 (Supplementary Fig. 11 and Supplementary Methods).
We also tested how technical advances that produce longer reads
might improve these assignments by sequencing faecal community
samples from one twin pair using Titanium pyrosequencing methods
(average read length of 341 6 134 nucleotides (s.d.) versus 208 6 68
nucleotides for the standard FLX method). Supplementary Fig. 12
shows that the frequency and quality of sequence assignments is
improved as read length increases from 200 to 350 nucleotides.

The 18 microbiomes were searched to identify sequences matching
domains from experimentally validated carbohydrate-active
enzymes (CAZymes). Sequences matching 156 total CAZy families
were found within at least one human gut microbiome, including 77
glycoside hydrolase, 21 carbohydrate-binding module, 35 glycosyl-
transferase, 12 polysaccharide lyase and 11 carbohydrate-esterase
families (Supplementary Table 10). On average, 2.62 6 0.13% of
the sequences in the gut microbiome could be assigned to
CAZymes (a total of 217,615 sequences), a percentage that is greater
than the most abundant KEGG pathway (‘Transporters’;
1.20 6 0.06% of the filtered sequences generated from each sample)
and indicative of the abundant and diverse set of microbial genes
directed towards accessing a wide range of polysaccharides.

Category-based clustering of the functions from each microbiome
was performed using principal components analysis (PCA) and hier-
archical clustering19. Two distinct clusters of gut microbiomes were
identified based on metabolic profile, corresponding to samples with
an increased abundance of Firmicutes and Actinobacteria, and sam-
ples with a high abundance of Bacteroidetes (Fig. 2a). A linear regres-
sion of the first principal component (PC1, explaining 20% of the
functional variance) and the relative abundance of the Bacteroidetes
showed a highly significant correlation (R2 5 0.96, P , 10212;
Fig. 2b). Functional profiles stabilized within each individual’s
microbiome after 20,000 sequences had been accumulated
(Supplementary Fig. 13). Family members had more similar profiles
than unrelated individuals (Fig. 2c), suggesting that shared bacterial
community structure (‘who’s there’ based on 16S rRNA analyses)
also translates into shared community-wide relative abundance of
metabolic pathways. Accordingly, a direct comparison of functional

b

a

*

0.66

0.68

0.70

0.72

0.74

0.76

0.78

0.80

0.82

Self

Twin–twin

Mono-
zygotic

Twin–mother

Unrelated

U
ni

Fr
ac

 d
is

ta
nc

e

Dizygotic Mono-
zygotic

Dizygotic

2

22

42

62

82

102

122

0 2,000 4,000 6,000 8,000 1,0000
Number of sequences

P
hy

lo
ge

ne
tic

 d
iv

er
si

ty

Lean
Obese

*
***

M
or

e 
si

m
ila

r
M

or
e 

di
ffe

re
nt

*

***
** **

ns

Figure 1 | 16S rRNA gene surveys reveal familial similarity and reduced
diversity of the gut microbiota in obese individuals. a, Average unweighted
UniFrac distance (a measure of differences in bacterial community
structure) between individuals over time (self), twin pairs, twins and their
mother, and unrelated individuals (1,000 sequences per V2 data set;
Student’s t-test with Monte Carlo; *P , 1025; **P , 10214; ***P , 10241;
mean 6 s.e.m.). b, Phylogenetic diversity curves for the microbiota of lean
and obese individuals (based on 1–10,000 sequences per V6 data set;
mean 6 95% confidence intervals shown).
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• Lean (n = 10) & obese donors (n=9)
• Colonization of germ-free wild-type 

mice with microbiota from obese 
donors causes significant increase in 
total body fat

• Total body fat content was measured 
before and after a 2-week colonization

• Confirm that the ob/ob microbiome has 
an increased capacity for dietary energy 
harvest

Turnbaugh, et al. (2006). An obesity-associated gut microbiome … Nature

Methanogenic archaea increase the efficiency of bacterial fermenta-
tion by removing one of its end products, H2. Our recent studies of
gnotobiotic normal mice colonized with the principal methanogenic
archaeon in the human gut, Methanobrevibacter smithii, and/or
B. thetaiotaomicron revealed that co-colonization not only increases
the efficiency, but also changes the specificity of bacterial polysac-
charide fermentation, leading to a significant increase in adiposity
compared with mice colonized with either organism alone15.

Comparative metagenomic analysis

Using reciprocal TBLASTX comparisons, we found that the
Firmicutes-enriched microbiomes from ob/ob hosts clustered
together, as did lean microbiomes with low Firmicutes to Bacter-
oidetes ratios (Fig. 2a). Likewise, Principal Component Analysis of
EGT assignments to KEGG pathways revealed a correlation between
host genotype and the gene content of the microbiome (Fig. 2b).

Reads were then assigned to COGs and KOs (KEGG orthology
terms) by BLASTX comparisons against the STRING-extended
COG database13, and the KEGG Genes database14 (version 37). We
tallied the number of EGTs assigned to each COG or KEGG category,
and used the cumulative binomial distribution3, and a bootstrap
analysis16,17, to identify functional categories with statistically signifi-
cant differences in their representation in both sets of obese and lean
littermates. As noted above, capillary sequencing requires cloned
DNA fragments; the pyrosequencer does not, but produces relatively
short read lengths. These differences are a likely cause of the shift in
relative abundance of several COG categories obtained using the two
sequencing methods for the same sample (Fig. 1b). Nonetheless, com-
parisons of the caecal microbiomes of lean versus obese littermates
sequenced with either method revealed similar differences in their
functional profiles (Fig. 1c).

The ob/ob microbiome is enriched for EGTs encoding many
enzymes involved in the initial steps in breaking down otherwise
indigestible dietary polysaccharides, including KEGG pathways for
starch/sucrose metabolism, galactose metabolism and butanoate
metabolism (Fig. 1d; Supplementary Fig. 3 and Supplementary
Table 6). EGTs representing these enzymes were grouped according
to their functional classifications in the Carbohydrate Active
Enzymes (CAZy) database (http://afmb.cnrs-mrs.fr/CAZY/). The
ob/ob microbiome is enriched (P , 0.05) for eight glycoside hydrolase

families capable of degrading dietary polysaccharides including
starch (CAZy families 2, 4, 27, 31, 35, 36, 42 and 68, which contain
a-glucosidases, a-galactosidases and b-galactosidases). Finished gen-
ome sequences of prominent human gut Firmicutes have not been
reported. However, our analysis of the draft genome of E. rectale has
revealed 44 glycoside hydrolases, including a significant enrichment
for glycoside hydrolases involved in the degradation of dietary
starches (CAZy families 13 and 77, which contain a-amylases and
amylomaltases; P , 0.05 on the basis of a binomial test of E. rectale
versus the finished genomes of Bacteroidetes—Bacteroides thetaiotao-
micron ATCC29148, B. fragilis NCTC9343, B. vulgatus ATCC8482
and B. distasonis ATCC8503).

EGTs encoding proteins that import the products of these glyco-
side hydrolases (ABC transporters), metabolize them (for example,
a- and b-galactosidases KO7406/7 and KO1190, respectively), and
generate the major end products of fermentation, butyrate and
acetate (pyruvate formate-lyase, KO0656, and other enzymes in the
KEGG ‘Butanoate metabolism’ pathway; and formate-tetrahydro-
folate ligase, KO1938, the second enzyme in the homoacetogenesis
pathway for converting CO2 to acetate) are also significantly enriched
in the ob/ob microbiome (binomial comparison of pyrosequencer-
derived ob1 and lean1 data sets, P , 0.05) (Fig. 1d; Supplementary
Fig. 3 and Supplementary Table 6).

As predicted from our comparative metagenomic analyses, the ob/
ob caecum has an increased concentration of the major fermentation
end-products butyrate and acetate (Fig. 3a). This observation is also
consistent with the fact that many Firmicutes are butyrate produ-
cers18–20. Moreover, bomb calorimetry revealed that ob/ob mice have
significantly less energy remaining in their faeces relative to their lean
littermates (Fig. 3b).

Microbiota transplantation

We performed microbiota transplantation experiments to test
directly the notion that the ob/ob microbiota has an increased capa-
city to harvest energy from the diet and to determine whether
increased adiposity is a transmissible trait. Adult germ-free C57BL/
6J mice were colonized (by gavage) with a microbiota harvested
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Figure 2 | Microbiomes cluster according to host genotype. a, Clustering of
caecal microbiomes of obese and lean sibling pairs based on reciprocal
TBLASTX comparisons. All possible reciprocal TBLASTX comparisons of
microbiomes (defined by capillary sequencing) were performed from both
lean and obese sibling pairs. A distance matrix was then created using the
cumulative bitscore for each comparison and the cumulative score for each
self–self comparison. Microbiomes were subsequently clustered using
NEIGHBOUR (PHYLIP version 3.64). b, Principal Component Analysis
(PCA) of KEGG pathway assignments. A matrix was constructed containing
the number of EGTs assigned to each KEGG pathway in each microbiome
(includes KEGG pathways with .0.6% relative abundance in at least two
microbiomes, and a standard deviation .0.3 across all microbiomes), PCA
was performed using Cluster3.0 (ref. 25), and the results graphed along the
first two components.
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Figure 3 | Biochemical analysis and microbiota transplantation
experiments confirm that the ob/ob microbiome has an increased capacity
for dietary energy harvest. a, Gas-chromatography mass-spectrometry
quantification of short-chain fatty acids in the caeca of lean (n 5 4) and
obese (n 5 5) conventionally raised C57BL/6J mice. b, Bomb calorimetry of
the faecal gross energy content (kcal g21) of lean (1/1, ob/1; n 5 9) and
obese (ob/ob; n 5 13) conventionally raised C57BL/6J mice. c, Colonization
of germ-free wild-type C57BL/6J mice with a caecal microbiota harvested
from obese donors (ob/ob; n 5 9 recipients) results in a significantly greater
percentage increase in total body fat than colonization with a microbiota
from lean donors (1/1; n 5 10 recipients). Total body fat content was
measured before and after a two-week colonization, using dual-energy X-ray
absorptiometry. Mean values 6 s.e.m. are plotted. Asterisks indicate
significant differences (two-tailed Student’s t-test of all datapoints,
*P , 0.05, **P # 0.01, ***P , 0.001).
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Microbes can make you fat(ter)…

ZN Wang, …, Stanley Hazen. Nature 472, 57-63 (2011) 
Fogelman, A. M. (2015). TMAO Is Both a Biomarker and a Renal Toxin. Circulation Research.

Gut microbes promote cardiovascular disease 

• Gut flora required for production of TMAO
• Supplementing diet with choline or TMAO promotes atherosclerosis (mouse)
• Gut flora suppression (Abx) inhibits dietary choline enhanced atherosclerosis
• TMAO is also a renal (kidney) toxin. Fogelman, A. M. (2015). Circulation Research.

Colorectal Cancer (CRC)
• Microbes affect colonic bile pool  

exposure, drug metabolism, and 
mortality-correlated compounds

• Microbe-produced secondary 
bile acids are among these.

• Gut microbial metabolism may 
play role in beneficial or 
detrimental effects of certain 
foods

Sears, C. L., & Garrett, W. S. (2014). Microbes, 
Microbiota, and Colon Cancer. 
Cell Host & Microbe, 15(3), 317–328. McCarty, P. L. (1997). Breathing with chlorinated solvents. Science

Dehalococcoides
Groundwater: Chlorinated Solvents



Marine picoplankton most abundant organism on Earth?

- Prochlorococcus appears to be the most abundant organism on the planet
- Huge light harvesting proteins
- its density can reach up to 100 million cells per liter
- it can be found down to a depth of 150 m in all of the intertropical belt

- picoplankton synchronize cell division at the same time every day —> biological clock

Vertical distribution of the photosynthetic picoplankton populations 
determined by flow cytometry in the tropical Pacific (OLIPAC cruise, 1994).

Octopus Spring Obsidian Pool

•75° - 95°C
•high iron (II) hydrogen sulfide
•extensive diversity (previously unknown)

•90° to 93°C
•extremely low in nutrients
•contains abundant biomass
•home to “oldest” known bacteria

Yellowstone National Park

Ward, D. M., Weller, R., & Bateson, M. M. (1990). Nature, 345(6270), 63–65.
Barns, S. M., Fundyga, R. E., Jeffries, M. W., & Pace, N. R. (1994). PNAS 91(5), 1609–1613.

Symbiosis: sea-floor vent tube worm

Riftia
pachyptila

Seafloor
hydrothermal
vent

Symbiosis: sea-floor vent tube worm

Cavanaugh, C. M. (1983). Nature, 302(5903), 58–61.
Cavanaugh, C. M., et al. (1981).  Science. 213(4505), 340–342



End: Biological Motivation

Questions before moving on?

Metagenomics Experimental Methods

Exercise: How many species are present?

Confer amongst yourselves. We’ll take a poll.

1 2

The great “plate count” anomaly
• Cultivation-based cell counts are orders 

of magnitude lower than direct 
microscopic observation. 

• This is because microbiologists are able 
to cultivate only a small minority of 
naturally occurring microbes

• Our nucleic-acid derived understanding 
of microbial diversity has rapidly 
outpaced our ability to culture new 
microbes

Staley, J. T., & Konopka, A. (1985). Measurement of in situ activities of nonphotosynthetic microorganisms in 
aquatic and terrestrial habitats. Annual Review of Microbiology, 39, 321–346.



• We have a bacterial endosymbiont in all our cells!
• Humans have always coexisted with bacteria
• We’ve known about bacteria for a few hundred years 

Why is microbiome research new?
Considering that…

• Historically prokaryotic biology has been focused on microbes 
that can be grown to large quantities/densities in the lab, especially 
pathogens; or can be distinguished under the microscope.

• An example of “searching where the light is”…

• Culture-based methods fail to detect most microbes

• Microbes are easy to miss (except pathogens)

• Most microbes are NOT pathogens (even the human-associated)

Bias for cultivable microbes, especially pathogens

• Discovery of culture-independent techniques

• PCR, fast & cheap DNA sequencing, microarrays, etc

Availability of tools limited to last 3 decades

Why is microbiome research new?

• 1977 rRNA as evolutionary marker - Woese & Fox PNAS

• 1985 Polymerase Chain Reaction (PCR) - K. Mullis Science

• 1985 “Universal” Primers for rRNA sequencing - N. Pace PNAS

• 1989 PCR amplification of 16S rRNA gene - Böttger FEMS Microbiol.

• 1996 Large, curated rRNA database (RDP) - Maidak Nuc. Acids Res

• 2001 term “microbiome” coined by Joshua Lederberg

Discovery of Culture Independent Techniques Discovery of Culture Independent Techniques
ribosomeSmall subunit “16S” rRNA 

ribosome

in action



Discovery of Culture Independent Techniques
ribosome

• rRNA has both catalytic and 
structural function.

• The small and large subunits have 
different lengths, 2nd-structure, 3D 
shape; but must work together.

• All of the catalytic activity of the 
ribosome is carried out by the RNA; 
the proteins reside on the surface 
and seem to stabilize the structure.

Discovery of Culture Independent Techniques
Small subunit “16S” rRNA 

• Ubiquitous - present in all 
known life (viruses don’t count)

• Functionally constant 
translation, 2o-structure

• Evolves slowly - mutations 
more rare than for protein-
coding genes

• Large - information for 
evolutionary inference

• No exchange - Limited 
examples of rRNA gene-sharing 
between organisms

Discovery of Culture Independent Techniques

Pace, N. R. (1997). A molecular view of microbial diversity and the biosphere. Science, 276(5313), 734–740.

0.1

0.1

1987 1997

Archaea

Eukarya 

Archaea

Eukarya 

Evolutionary Tree, Known Bacteria • Single microbiome:

1. Break all cells, extract all DNA (gDNA)

2. PCR-amplify a universal gene from gDNA

3. DNA sequencing from pool of amplified genes

4. Cluster sequences according to species

5. Count each species and make a tree

Tringe, S. G., & Rubin, E. M. (2005). Metagenomics: DNA sequencing of 
environmental samples. Nature Reviews Genetics, 6(11), 805–814.

Metagenomics: Nucleic acid sequencing as a tool 
for microbial community analysis



• Many microbiomes in parallel:

1. Break all cells, extract all DNA (gDNA)

2. PCR-amplify a universal gene from gDNA

3. DNA sequencing from pool of amplified genes

4. Cluster sequences according to species

5. Count each species and make a tree

using bar-coded primers, diff code for each sample

bar-coded
4a. “De-multiplex” barcode, ID source sample

Metagenomics: Nucleic acid sequencing as a tool 
for microbial community analysis

• Universal Gene census

• Shotgun Metagenome Sequencing

• Transcriptomics (shotgun mRNA)

• Proteomics (protein fragments)

• Metabolomics (excreted chemicals)

Number of 
Species Counted

Culture Independent Techniques:

Metagenomics

• Universal Gene census

• Shotgun Metagenome Sequencing

• Transcriptomics (shotgun mRNA)

• Proteomics (protein fragments)

• Metabolomics (excreted chemicals)

Number of 
Species CountedMetagenomics

$

Culture Independent Techniques:
Nucleic acid sequencing as a tool for 

microbial community analysis

Amplicons Shotgun

Lyse cells 
Extract DNA (and/or RNA)

PCR to amplify a single marker 
gene, e.g. 16S rRNA

George Rice, Montana State University

cluster 
microbial 

sequences

Samples

M
ic

ro
be

s

Relative  
abundances

Relative abundances, 
Genomes, 

Genes, 
Metabolic profiling, 

Assembly, 
Genetic variants...

DNA  
sequencer

Slide graciously provided by Curtis Huttenhower, not necessarily with permission O:-)



Sequencing as a tool for 
microbial community analysis

47

Amplicons Meta’omic

Lyse cells 
Extract DNA (and/or RNA)

PCR to amplify a single marker 
gene, e.g. 16S rRNA

George Rice, Montana State University

Classify sequence 
➔ microbe

Samples

M
ic

ro
be

s

Relative  
abundances

Relative abundances, 
Genomes, 

Genes, 
Metabolic profiling, 

Assembly, 
Genetic variants...

Who’s there? 
(Taxonomic profiling) 

What are they doing? 
(Functional profiling) 

What does it all mean? 
(Statistical analysis)

Slide graciously provided by Curtis Huttenhower, not necessarily with permission O:-)

A Summary of Meta’omics

• Piles of short DNA/RNA reads from >1 organism 

• You can... 
– Ecologically profile them 
– Taxonomically or phylogenetically profile them 
– Functionally profile them – gene/pathway catalogs 
– Assemble them 

• Prior knowledge is helpful 
• Caution: Correlation ≠ Causation 

• Most ‘omics results require lab confirmation

Slide graciously provided by Curtis Huttenhower, not necessarily with permission O:-)

Working toward high-impact outcomes from 
meta’omic microbial community profiling

Human  
translation

Microbiology

Microbial 
ecology

Host 
bio/immunology

Basic biology and 
molecular mechanism 

Microbial experiments 
• Quantitative methods 
• Integration/meta-analysis of 

genomes and metagenomes 
Host-microbe-microbiome interactions 

• Immunity in specific host tissues 
• Non-immune mechanisms (metabolites, 

peptides) 
• Model system perturbations, 

“knock ins” and “knock outs”

Translation 
Phenotype association for diagnostics 

• Human disease risk: lifetime, activity, outcome 
• Longitudinal analysis and study design 
• Dense longitudinal measures, 

multiple nested outcomes 
Systems analysis for intervention 

• More and simpler model systems 
• Systematic understanding of current models 
• Ecological models for ecosystem restoration

Host 
ecology

Epidemiology 
Privacy and ethics 
 Disease risk/pathogen exposure 
 Tracking 
Health policy 
 Early life exposures 
 Pharma. best practices

Slide graciously provided by Curtis Huttenhower, not necessarily with permission O:-)

An Introduction to Metagenomics

Biological
motivation

Methods

• Microbiomes and metagenomics

• What is a microbiome?

• Why are they important?

• Methods

• Experimental methods

• Analysis theory

• Analysis tools, practices

Outline for morning lecture:

}
}



End Metagenomics 
Lecture 1

Questions?

Introduction to Microbiome / 
Metagenome Analysis Concepts

•Sequence Processing (OTUs)  
•Denoising 
•Chimera detection 
•Construction of sequence clusters (OTUs) 

•Comparing microbiomes 
•Distances, Diversity 
•Exploratory Data Analysis 
•Ordination Methods 
•hierarchical dendrogram 
•extract patterns from a plot 
•clusters - gap statistic 
•gradient - regression, modeling, etc. 

• Identifying important microbes/taxa 
•projected points, coinertia (plots) 
•inferential testing 
•modeling

•Sequence Processing (OTUs)  
•Denoising 
•Chimera detection 
•Construction of sequence clusters (OTUs) 

•Comparing microbiomes 
•Distances, Diversity 
•Exploratory Data Analysis 
•Ordination Methods 
•hierarchical dendrogram 
•extract patterns from a plot 
•clusters - gap statistic 
•gradient - regression, modeling, etc. 

• Identifying important microbes/taxa 
•projected points, coinertia (plots) 
•inferential testing 
•modeling



OTUs - Operational Taxonomic Unit

Amplicons

PCR to amplify a single marker 
gene, e.g. 16S rRNA

George Rice, Montana State University

cluster 
microbial 

sequences

Samples
M
ic
ro
be
s

Relative  
abundances

“OTU Clustering”

Lyse cells 
Extract DNA

DNA  
sequencing

Slide adapted from slide by Curtis Huttenhower, not necessarily with permission O:-)

Sample Inference from Noisy Reads

	 sample 
sequences

amplicon reads

	 Errors

Slide graciously provided by Benjamin Callahan, not necessarily with permission O:-)

Sample Inference from Noisy Reads

	 sample 
sequences

amplicon reads OTUs

Make OTUs
	 Errors 

Slide graciously provided by Benjamin Callahan, not necessarily with permission O:-)

Sample Inference from Noisy Reads

	 sample 
sequences

amplicon reads OTUs

Make OTUs
	 Errors 

DADA2

Slide graciously provided by Benjamin Callahan, not necessarily with permission O:-)



Sample Inference from Noisy Reads

	 sample 
sequences

amplicon reads OTUs

Make OTUs
	 Errors 

DADA2

OTUs: Lump similar sequences together 
DADA2: Statistically infer the sample sequences

(OTUs are not strains)

Slide graciously provided by Benjamin Callahan, not necessarily with permission O:-)

counts, 
unique 
sequence

The true shape of an error cloud 
	 	

DADA2: Error Model

1 2 3 4 5 6 7
0 
	 0

5

10

15

20

25

Effective Hamming Distance 
(number of substitutions 
from presumed parent)

NOT AN ERROR
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Initial guess: one real sequence + errors

100

	 5

50

Slide graciously provided by Benjamin Callahan, not necessarily with permission O:-)

Infer initial error model under this assumption.

100

	 5 

50

A 
C 
G 
T

		 A 
0.97 
	10-2 

	10-2 

	10-2

		 C 
	10-2 

0.97 
	10-2 

	10-2

		 G 
	10-2 

	10-2 

0.97 
	10-2

		 T 
	10-2 

	10-2 

	10-2 

0.97

Pr(i → j) =

Slide graciously provided by Benjamin Callahan, not necessarily with permission O:-)



	 	 	 5

	 	 50 
	 100 
	 	 	 	 not an error 

Reject unlikely error under model. Recruit errors.

A 
C 
G 
T

		 A 
0.97 
	10-2 

	10-2 

	10-2

		 C 
	10-2 

0.97 
	10-2 

	10-2

		 G 
	10-2 

	10-2 

0.97 
	10-2

		 T 
	10-2 

	10-2 

	10-2 

0.97

Slide graciously provided by Benjamin Callahan, not necessarily with permission O:-)

Update the model.

100

	 5

50

	 A 
A   0.997

	 C 
10-3

	 G 
10-3

	 T 
10-3

C 
G 
T

10-3 

10-3 

10-3

0.997 
	 10-3 

	 10-3

	 10-3 

0.997 
	 10-3

	 10-3 

	 10-3 

0.997

Slide graciously provided by Benjamin Callahan, not necessarily with permission O:-)

Reject more sequences under new model

100

	 5

50

not an error
not an error

	 A 
A   0.997

	 C 
10-3

	 G 
10-3

	 T 
10-3

C 
G 
	T

10-3 

10-3 

10-3

0.997 
	 10-3 

	 10-3

	 10-3 

0.997 
	 10-3

	 10-3 

	 10-3 

0.997

Slide graciously provided by Benjamin Callahan, not necessarily with permission O:-)

Update model again
A C G T

A   0.998    1x10-4    2x10-3  2x10-4 

C  6x10-5    0.999    3x10-6  1x10-3 

G  1x10-3    3x10-6    0.999   6x10-5 

	T   2x10-4    2x10-3    1x10-4   0.998

100

	 5

50

Slide graciously provided by Benjamin Callahan, not necessarily with permission O:-)



Convergence: all errors are plausible

100

	 5

50

A C G T

A   0.998    1x10-4    2x10-3  2x10-4 

C  6x10-5    0.999    3x10-6  1x10-3 

G  1x10-3    3x10-6    0.999   6x10-5 

	T   2x10-4    2x10-3    1x10-4   0.998

Slide graciously provided by Benjamin Callahan, not necessarily with permission O:-)

Abundance 

	 Sequence 
Differences 

	 	 Quality 

	 	 	 	Error 
	 	 	Model

DADA2 

	 ✓
	 ✓
	 ✓
	 ✓

		OTUs 

Ranks 
			 only 

	Count 
			 only 

			 	 No 

			 	 No

DADA2: Why is this possible?
Uses more of the information than traditional OTU clustering

Slide graciously provided by Benjamin Callahan, not necessarily with permission O:-)

DADA2 Advantages: Real Data

Lactobacillus crispatus sampled from 
vaginal microbiome 42 pregnant women

DADA2 Advantages: Real Data

0.00

0.25

0.50

0.75

1.00

Sample

Fr
eq

ue
nc

y

OTU
OTU1

OTU Method

Sample

Strain
L1
L2
L3
L4
L5
L6

DADA2

Lactobacillus crispatus sampled from 42 pregnant women

Slide graciously provided by Benjamin Callahan, not necessarily with permission O:-)

DADA2 Advantages

Single nucleotide resolution 
	 - genotypes/strains instead of 97% OTUs 
Lower false positive rate 
	 - Better error model, easier to ID chimeras 
Linear scaling of computational costs 
	 - Exact sequences are inherently comparable,	
	 	 so samples can be processed independently.

Analytical

Computational

Slide graciously provided by Benjamin Callahan, not necessarily with permission O:-)



DADA2

http://benjjneb.github.io/dada2/

DADA1: Rosen MJ, Callahan BJ, Fisher DS, Holmes SP 
(2012) Denoising PCR-amplified metagenome data. BMC bioinformatics, 13(1), 283.

Divisive Amplicon Denoising Algorithm - ver.2

DADA2: High resolution sample inference from amplicon data

Benjamin J Callahan1,*, Paul J McMurdie2, Michael J Rosen3, Andrew W Han2,
Amy Jo Johnson2 and Susan P Holmes1

1Department of Statistics, Stanford University
2Second Genome, South San Francisco, CA

3Department of Applied Physics, Stanford University
*Corresponding Author: benjamin.j.callahan@gmail.com

. CC-BY-NC-ND 4.0 International licensethis preprint is the author/funder. It is made available under a 
The copyright holder for; http://dx.doi.org/10.1101/024034doi: bioRxiv preprint first posted online August 6, 2015; 

Basic R package available on GitHub

Manuscript draft on bioRxiv 
(Revisions in review)

http://dx.doi.org/10.1101/024034

That said, we are going to use OTUs!

	 sample 
sequences

amplicon sequences OTUs

Make OTUs
	 Errors 

Diversity Diversity of diversity 
(diversity	of	greek	letters	used	in	ecology)

• α	–	diversity	within	a	community,	#	of	species	
• β	–	diversity	between	communities	(differentiation),		
	 	 species	identity	is	taken	into	account	

• γ	–	(global)	diversity	of	the	site,	γ	=	α	×	β,	but	only	this	
simple	if	α	and	β	are	independent	

• Probably	others,	but	α	and	β	are	most	common



Anderson,	M.	J.,	et	al.	(2011).	Navigating	the	multiple	meanings	of	β	diversity:	a	roadmap	for	the	
practicing	ecologist.	Ecology	Letters,	14(1),	19–28.

community structure!, we mean a change in the identity, relative abundance, biomass
and ⁄ or cover of individual species. Questions associated with turnover include: How
many new species are encountered along a gradient and how many that were initially
present are now lost? What proportion of the species encountered is not shared when
we move from one unit to the next along this gradient? Turnover can be expressed as a
rate, as in a distance–decay plot (e.g. Nekola & White 1999; Qian & Ricklefs 2007).
Turnover, by its very nature, requires one to define a specific gradient of interest with
directionality. For example, the rate of turnover in an east–west direction might differ
from that in a north–south direction (e.g. Harrison et al. 1992).

The second type of b diversity is the notion of variation in community structure
among a set of sample units (Fig. 2b) within a given spatial or temporal extent, or
within a given category of a factor (such as a habitat type or experimental treatment).

This is captured by Whittaker!s original measures of b diversity as variation in the
identities of species among units (see bW below) or the mean Jaccard dissimilarity
among communities (see !d below). Here, the essential questions are: Do we see the
same species over and over again among different units? By how much does the
number of species in the region exceed the average number of species per sampling
unit? What is the expected proportion of unshared species among all sampling units?
Variation is measured among all possible pairs of units, without reference to any
particular gradient or direction, and has a direct correspondence with multivariate
dispersion or variance in community structure (Legendre et al. 2005; Anderson et al.
2006).

MEASURES OF b DIVERSITY

The two most commonly used classes of measures of b diversity used in studies of
either turnover or variation are: (1) the classical metrics, calculated directly from
measures of c (regional) and a (local) diversity and (2) multivariate measures, based on
pairwise resemblances (similarity, dissimilarity or distance) among sample units.

Classical metrics

Let ai be the number of species (richness) in sample unit i, let !a ¼
PN

i¼1 ai=N be the
average number of species per unit obtained from a sample of N units within a larger
area or region, and let c be the total number of species for this region. One of the
original measures described as b diversity by Whittaker (1960) was bW ¼ c=!a.
It focuses on species! identities alone and is the number of times by which the richness
in a region is greater than the average richness in the smaller-scale units. It thus
provides a multiplicative model which, being additive on a log scale (Jost 2007), can also
be used to calculate additive partitions of b diversity at multiple scales (Crist et al. 2003).

An additive rather than multiplicative model is given by bAdd ¼ c" !a (Lande 1996;
Crist & Veech 2006). bAdd, like bW, can be partitioned across multiple scales (Veech &
Crist 2009). bAdd is in the same units as !a and c, so is easy to communicate in applied
contexts (Gering et al. 2003) and can be compared across multiple studies, when !a and
bAdd are expressed as proportions of c (Veech et al. 2003; Tuomisto 2010a).

More recently, Jost (2007) has defined a measure that also includes relative
abundance information: bShannon = Hc ⁄ Ha, where Hc ¼ expðH 0pooledÞ is an expon-
entiated Shannon–Wiener index (i.e. effective diversity) for the c-level sample unit
(obtained by pooling abundances for each species across all a-level units) and
Ha ¼

PN
i¼1 expðH 0i Þ=N is the average of the exponentiated indices calculated for each

a-level sample unit. bShannon shares the property with bW of being multiplicative, and
thus additive on a log scale, H 0b ¼ H 0c "H 0a (MacArthur et al. 1966). It can also be
partitioned for a hierarchy of spatial scales (Ricotta 2005; Jost 2007).

Multivariate measures

We first define a sampled community as a row vector y of length p containing values for
each of p species within a given sample unit (a plot, core, quadrat, transect, tow, etc.).
The values in the vector may be presence ⁄ absence data, counts of species! abundances
or some other quantitative or ordinal values (biomass, cover, etc.). A set of N such
vectors (sampled communities) generates a matrix Y, with N rows and p columns.
We shall use Dy (or dij) to denote a change in community structure from one unit
ði ¼ 1; . . . ;N Þ to another ð j ¼ 1; . . . ;N Þ, as would be measured by a given pairwise
dissimilarity measure [Jaccard (dJ), Bray–Curtis (dBC), etc.]. Multivariate measures of
b diversity begin from a matrix D containing all pairwise dissimilarities (dij or Dy)
among the sample units. For N units, there will be m = N(N ) 1) ⁄ 2 pairwise
dissimilarity values.

b diversity as turnover can be estimated as the rate of change in community structure
along a given gradient x, which we shall denote as ¶y ⁄ ¶x. For example, the similarity
between pairs of samples [denoted here as (1 ) Dy) for measures like Jaccard, where
0 £ Dy £ 1] is expected to decrease with increasing geographical distance. Given a
series of sample units along a spatial gradient (as in Fig. 2a), we can fit, for example, an
exponential decay model as: (1 ) Dyk) = exp(l + bDxk + ek), where (1 ) Dyk) is the
similarity between the kth pair of sample units and Dxk is the geographic distance (the
difference in latitude, say) between the kth pair, for all unique pairs k ¼ 1; . . . ;m.
This is visualized by a distance–decay plot of (1 ) Dyk) vs. Dx. The estimated slope, in
absolute value, is a direct measure (on a log scale) of turnover (¶y ⁄ ¶x; Fig. 2a; Nekola
& White 1999; Vellend 2001; Qian et al. 2005; Qian & Ricklefs 2007): the steeper the
slope (larger negative values in the exponential decay), the more rapid the turnover.
Note that Dx might also denote environmental change along a gradient, such as
altitude, soil moisture, temperature or depth; it need not necessarily be a spatial
distance.

b diversity as variation in community structure among N sample units shall be
denoted by r̂2. This idea is captured by the notion of the dispersion of sample units in
multivariate space (Anderson et al. 2006) and can be measured directly using the sum of
squared interpoint dissimilarities: r̂2 ¼ 1

N ðN"1Þ
P

i; j<i d 2
ij (e.g. Legendre & Anderson

1999; Anderson 2001; McArdle & Anderson 2001), the average interpoint dissimilarities
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Figure 1 Plot showing the number of peer-reviewed articles published in the primary

literature having "beta diversity! in their title for each year from 1974 to 2009, based on ISIs

Web of Science database (note: this also includes titles that have used the greek letter

representation "b diversity!).

(a) Directional turnover in community structure

Sample unit

Transect

Spatial, temporal or environmental gradient

(b) Variation in community structure (non-directional)

Sample unit

Spatial extent
of sampling area

Figure 2 Schematic diagram of two conceptual types of b diversity for ecology: (a) turnover

in community structure along a gradient and (b) variation in community structure among

sample units within a given area.

20 M. J. Anderson et al. Idea and Perspective

! 2010 Blackwell Publishing Ltd/CNRS

Beta-Diversity
Peer-reviewed articles having “beta diversity” in title  

http://en.wikipedia.org/wiki/Beta_diversity

• Microbial	ecologists	typically	use	beta	diversity	as	a	
broad	umbrella	term	that	can	refer	to	any	of	several	
indices	related	to	compositional	differences	
(Differences	in	species	content	between	samples)	

• For	some	reason	this	is	contentious,	and	there	appears	
to	be	ongoing	(and	pointless?)	argument	over	the	
possible	definitions	

• For	our	purposes,	and	microbiome	research,	when	you	
hear	“beta-diversity”,	you	can	probably	think:	

“Diversity	of	species	composition”

Beta-Diversity

Distances between 
microbiomes

Community Distance

Communities are a vector of abundances: 
x = {x1, x2, x3, …}

E. coli:  
P. fluorescens: 

B. subtilis: 
P. acnes: 

D. radiodurans: 
H. pylori: 

L. crispatus:

x = {3,1,1,0,0,7,0}

Slide graciously provided by Benjamin Callahan, not necessarily with permission O:-)



Community Distance Properties

• Range from 0 to 1
• Distance to self is 0
• If no shared taxa, distance is 1
• Triangle inequality (metric)
• Joint absences do not affect distance (biology)
• Independent of absolute counts (metagenomics)

Slide graciously provided by Benjamin Callahan, not necessarily with permission O:-)

The Distance Spectrum

Jaccard Unifrac

Bray-Curtis Weighted
Unifrac

Presence/
Absence

Quantitative
Abundance

Categorical Phylogenetic

Slide graciously provided by Benjamin Callahan, not necessarily with permission O:-)

Jaccard

Dist(A, B) = 1 - (A ∩ B)/(A ⋃ B) 
= ((xA>0) & (xB>0))/((xA>0) | (xB>0))

Slide graciously provided by Benjamin Callahan, not necessarily with permission O:-)

Jaccard

Dist(A, B) = 1 - (A ∩ B)/(A ⋃ B) 
= ((xA>0) & (xB>0))/((xA>0) | (xB>0))

Intuition: Fraction of shared types unique to 
one of the communities

Slide graciously provided by Benjamin Callahan, not necessarily with permission O:-)



Bray-Curtis

∑ |xi - yi|
∑xi +∑yi

Dist(x, y) =

x1     x2     x3     x4     x5     x6 

= +

Slide graciously provided by Benjamin Callahan, not necessarily with permission O:-)

Bray-Curtis

Intuition: City block distance. Sum of 
absolute differences over total abundance.

∑ |xi - yi|
∑xi +∑yi

Dist(x, y) =

x1     x2     x3     x4     x5     x6 

= +

Slide graciously provided by Benjamin Callahan, not necessarily with permission O:-)

Unifrac

Lozupone and Knight (2008)

+
+

+Dist(x, y) =

Slide graciously provided by Benjamin Callahan, not necessarily with permission O:-)

Unifrac

Intuition: Fraction of shared tree unique to 
one of the communities

Lozupone and Knight (2008)

+
+

+Dist(x, y) =

Slide graciously provided by Benjamin Callahan, not necessarily with permission O:-)



Weighted Unifrac

Lozupone et al. (2007)
Slide graciously provided by Benjamin Callahan, not necessarily with permission O:-)

Weighted Unifrac

Intuition: The cost of turning one distribution into the 
other; where the cost is the amount of “dirt” moved 

times the distance by which it is moved.

Lozupone et al. (2007)Slide graciously provided by Benjamin Callahan, not necessarily with permission O:-)

Jaccard:
Bray:

Unifrac:
W-Unifrac:

Jaccard:
Bray:

Unifrac:
W-Unifrac:

Jaccard:
Bray:

Unifrac:
W-Unifrac:

Slide graciously provided by Benjamin Callahan, not necessarily with permission O:-)

Jaccard:
Bray:

Unifrac:
W-Unifrac:

d=0 Jaccard:
Bray:

Unifrac:
W-Unifrac:

Distant Jaccard:
Bray:

Unifrac:
W-Unifrac:

Distant 

Slide graciously provided by Benjamin Callahan, not necessarily with permission O:-)



Jaccard:
Bray:

Unifrac:
W-Unifrac:

d=0 
Distant 

Jaccard:
Bray:

Unifrac:
W-Unifrac:

Distant 
Similar 

Jaccard:
Bray:

Unifrac:
W-Unifrac:

Distant 
Distant 
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Jaccard:
Bray:

Unifrac:
W-Unifrac:

d=0 
Distant 
d=0 

Jaccard:
Bray:

Unifrac:
W-Unifrac:

Distant 
Similar 
Similar 

Jaccard:
Bray:

Unifrac:
W-Unifrac:

Distant 
Distant 
Distant 
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Jaccard:
Bray:

Unifrac:
W-Unifrac:

d=0 
Distant 
d=0 
Distant

Jaccard:
Bray:

Unifrac:
W-Unifrac:

Distant 
Similar 
Similar 
Similar

Jaccard:
Bray:

Unifrac:
W-Unifrac:

Distant 
Distant 
Distant 
Similar
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The Distance Spectrum

Jaccard Unifrac

Bray-Curtis Weighted
Unifrac

Presence/
Absence

Quantitative
Abundance

Categorical Phylogenetic
phyloseq distances
manhattan 
euclidean 
canberra 
bray 
kulczynski 
jaccard 
gower 
altGower 
morisita-horn 
mountford 
raup 
binomial 
chao 
cao 
jensen-shannon 
unifrac 
weighted-unifrac 
...Slide graciously provided by Benjamin Callahan, not necessarily with permission O:-)



Ordination Methods
Project high-dimensional data onto lower dimensions

0,1,5,1,0,1,2,1,0,0,9,… 
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0,0,0,0,0,1,2,1,8,0,0,… 
0,0,0,0,9,4,0,0,0,0,1,… 
. 
.

P taxa

N 
sa

m
pl

es

P-dimensions 2-dimensions
Slide graciously provided by Benjamin Callahan, not necessarily with permission O:-)

Ordination Methods
Project high-dimensional data onto lower dimensions

0,1,5,1,0,1,2,1,0,0,9,… 
7,2,0,0,0,0,0,0,1,0,0,… 
0,0,0,0,0,0,8,0,0,0,1,… 
0,0,0,1,0,1,2,0,0,0,5,… 
0,1,0,2,0,0,0,1,0,0,4,… 
0,0,0,1,9,1,2,5,2,0,1,… 
0,0,0,0,0,1,2,1,8,0,0,… 
0,0,0,0,9,4,0,0,0,0,1,… 
. 
.

P taxa
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P-dimensions 2-dimensions

Intuition:	
Each	PC	axis	is	projection	that	maximizes	the	area	of	the	shadow		
Equivalently	-	max(sum	of	square	of	distances	between	points)	
Goal:	“See”	as	much	variation	as	possible

Slide graciously provided by Susan Holmes, not necessarily with permission O:-)

Multi-dimensional Scaling

Why MDS? It works with any distance!

Input distance matrix can by Bray-Curtis, Unifrac, …

Slide graciously provided by Benjamin Callahan, not necessarily with permission O:-)

MDS Details

• Algorithm starts from D inter-point distances: 
- Center the rows and columns of the distance matrix:  

 S = -1/2 H D(2) H
- Compute SVD by diagonalizing S: S = U Λ UT 

- Extract Euclidean representations: X = U Λ1/2 
• The relative values of diagonal elements of Λ gives the 

proportion of variability explained by each of the axes. 
• The valued of Λ should always be looked at in deciding how 

many dimensions to retain

Given distances between each observation (sample), MDS finds the 
closest approximation of that in lower dimensional Euclidean space.

NMDS is similar, but minimizes a different function 
(difference in distance ranks) 

Slide graciously provided by Benjamin Callahan, not necessarily with permission O:-)



MDS Scree Plot

1 3 5 7 9 11

MDS Dimension
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Slide graciously provided by Benjamin Callahan, not necessarily with permission O:-)

• Looking for patterns (the “I-test”) 
• Always look at scree plot 
• Biplot (if legible) 
• Use multiple distances 

• For which D is pattern strongest? 
• phyloseq (and R/Rmd) make this easy!

“Unsupervised Learning”

Best	Practices

Exploratory	Data	Analysis
“Ordination Methods”

Choice
Slide graciously provided by Susan Holmes, not necessarily with permission O:-)

What	we	“learn”	depends	on	the	data.

• How	many	axes	are	probably	useful?	
• Are	their	clusters?	How	many?	
• Are	their	gradients?	
• Are	the	patterns	consistent	with	covariates	
• 	 (e.g.	sample	observations)	
• How	might	we	test	this?

“Unsupervised Learning”
Exploratory	Data	Analysis

“Ordination Methods”

• Are	their	clusters?	How	many?	

Technique:	
Gap	Statistic

“Unsupervised Learning”
Exploratory	Data	Analysis

“Ordination Methods”



• Are	their	gradients?	
• Are	they	explained	by	one	or	
more	sample	covariates?	

Technique:	
PC	regression	(statistics’	PCR)

“Unsupervised Learning”
Exploratory	Data	Analysis

“Ordination Methods”

• Are	the	patterns	consistent	with	covariates?	

Technique:	
Permutational	Multivariate	ANOVA	
vegan::adonis(	)

“Unsupervised Learning”
Exploratory	Data	Analysis

“Ordination Methods”

End:
Introduction to Microbiome / 

Metagenome Analysis Concepts

Questions?

Introduction to 
Microbiome / Metagenome 
Analysis Tools and Practices



1. Probably-not-comprehensive summary of metagenomic tools
2. Short sermon on the virtues of reproducible analysis
3. Introduction to phyloseq & send-off this afternoon’s lab

Introduction to 
Microbiome / Metagenome 
Analysis Tools and Practices

Figure 1. Timeline of microbial community studies using high-throughput sequencing.

Gevers D, Knight R, Petrosino JF, Huang K, et al. (2012) The Human Microbiome Project: A Community Resource for the Healthy Human 
Microbiome. PLoS Biol 10(8): e1001377. doi:10.1371/journal.pbio.1001377 
http://www.plosbiology.org/article/info:doi/10.1371/journal.pbio.1001377

Slide graciously provided by Dirk Gevers, not necessarily with permission O:-)

contigs

pathways

~100M	reads  
per	sample

Assembly

Annotation

Map	  
on	  ~50%

~90M	proteins

          16S WGS 

Filtering/	

trimming

Chimera	  
removal

>3k	reads  
per	sample

BLAST 
against	  

functional  
DBs

Organismal	census  
at	different	taxonomic	levels

          ref

Taxonomic  
classification

Clustering  
into	OTUs

census  
...

~36%

~57%

genes

Slide graciously provided by Dirk Gevers, not necessarily with permission O:-)

16S rRNA Databases
• GreenGenes - http://greengenes.secondgenome.com
• Silva - www.arb-silva.de
• Ribosomal Database Project (RDP) - https://rdp.cme.msu.edu

•~100Ks - millions of unique 16S rRNA genes 
•Curated taxonomy 
•Classification tools (e.g. RDP classifier, ARB, etc.)



(16S rRNA) Amplicon Sequence 
Processing Tools:

• QIIME (Soon ‘Qiita’) - http://qiime.org/
• mothur - www.mothur.org/
• usearch - www.drive5.com/usearch
• DADA2 - https://github.com/benjjneb/dada2

Afternoon will be spent using QIIME 
Daniel has much more to say about it…

How to find biology in your meta’ome

• Looking for ecology? 
– Diversity metrics, k-mer analysis, curve fitting 

• Looking for specific bugs? 
– Assembly:  +novelty, -difficulty 
– Mapping:  +speed/ease, -novelty 

• Looking for specific processes? 
– Intrinsic annotation: +novelty, -difficulty 
– Extrinsic annotation: +sensitivity, -novelty 

• Looking for variants? 
– Clustering:  +specificity, -difficulty 
– Mapping:  +sensitivity, -novelty 

• What else?

Slide graciously provided by Curtis Huttenhower, not necessarily with permission O:-)

Goal:	expose	strain	level	features

Escherichia/Salmonella/Shigella

Staphylococcus

Streptococcus
Escherichia	
coli

Salmonella	
enterica

Shigella	
dysenteriae

Staphylococcus	aureus

S.	mitis

Strain	A

BC

Escherichia	
coli

The	picture	using	16S	rRNA	

sequencing

The	picture	using	shotgun	metagenomics	

and	MetaPhlAn

Next	step:	strain-level	profiling

(i) Identify	

(ii) Track	(e.g.	across	samples)	

(iii) Characterize	(genomically)

Slide graciously provided by Curtis Huttenhower, not necessarily with permission O:-)

MetaPhlAn: Taxonomic profiling using 
unique marker genes

9

Gene X

X is a core gene for clade Y X is a unique marker gene for clade Y

• ~1M most representative markers used for identification 
• 184±45 markers per species (target 200) 

• ~7,100 species (excludes incomplete annotations, spp., etc.) 
• False positive/False negative rates of ~1 in 106 
• Profiles all domains of life: bacteria, viruses, euks, archaea 
• Strain level profiling using marker barcodes and SNPs 
• Quasi-markers used to resolve ambiguity in postprocessing

http://huttenhower.sph.harvard.edu/metaphlanSlide graciously provided by Curtis Huttenhower, not necessarily with permission O:-)



Typical shotgun metagenome and 
metatranscriptome analyses

Samples

M
ic

ro
be

s

Relative  
abundances

Samples

G
en

es
 o

r 
Pa

th
w

ay
s

Relative  
abundances

Taxonomic 
Profiling Assembly

Functional 
Profiling

Gene content inference 
(e.g. PICRUSt, etc.)

Slide graciously provided by Curtis Huttenhower, not necessarily with permission O:-)

Microbiome meta’omic analyses: 
assembly

khmer (Pell 2012)

MetaAMOS (Treangen 2013)

MetaVelvet (Namiki 2012)

Meta-IDBA (Peng 2011) Genovo (Laserson 2011)

IDBA-UD (Peng 2012)
Ray (Boisvert 2012)

SPAdes (Bankevich 2012)
MEGAHIT (Li 2015)Slide graciously provided by Curtis Huttenhower, not necessarily with permission O:-)

Microbiome meta’omic analyses: 
assembly

Slide graciously provided by Curtis Huttenhower, not necessarily with permission O:-)

MetaPhlAn2: Trans-kingdom profiling

13

http://huttenhower.sph.harvard.edu/metaphlan2

Slide graciously provided by Curtis Huttenhower, not necessarily with permission O:-)



Reproducible analysis of
microbiome / metagenome data

• Why make the effort? 
• What if I don’t want someone else reproducing 

my analysis? 
• What if I don’t know how? 
• Isn’t it enough to provide a cursory description 

in the methods section with a light sprinkling of 
literature citations?

illustrative example favoring reproducible analysis:
“Enterotypes of the human genome”
MDS on supported distance metrics: enterotype data

illustrative example favoring reproducible analysis:
“Enterotypes of the human genome”
MDS on supported distance metrics: enterotype data

Four!

Gap statistic

http://joey711.github.io/phyloseq/gap-statistic.html
markdown 

(code + console) + 
figures

phyloseq + 
ggplot2 + 
etc.

# Main title

This is an [R Markdown](my.link.com) 
document of my recent analysis.

## Subsection: some code
Here is some import code, etc.
```{r}
library("phyloseq")
library("ggplot2")
physeq = import_biom(“datafile.biom”)
plot_richness(physeq)
```

source.Rmd

Complete HTML5

knitr::knit2html()

microbiome data Reproducible analysis workflow 
with R-markdown



joey711.github.io/phyloseq-demo/Restroom-Biogeography

Reproducible analysis 
workflow with R-markdown

Text

Key Packages:
vegan 
ape
distory
phangorn 
picante
metagenomeSeq

phyloseq

ape
package

OTU Abundance
otu_table

Sample Variables
sample_data 

Taxonomy Table
taxonomyTable 

Phylogenetic Tree
phylo

otu_table sample_data tax_table phy_tree

otu_table sample_data tax_table

read.tree
read.nexus
read_tree

as as as

import

phyloseq
constructor:

Biostrings
package

Reference Seq.
XStringSet

DNAStringSet
 RNAStringSet

AAStringSet

phyloseq

Experiment Data

otu_table,
sam_data,
tax_table,
phy_tree
refseq

Accessors:
get_taxa
get_samples
get_variable
nsamples
ntaxa
rank_names
sample_names
sample_sums
sample_variables
taxa_names
taxa_sums

Processors:
filter_taxa
merge_phyloseq
merge_samples
merge_taxa
prune_samples
prune_taxa
subset_taxa
subset_samples
tip_glom
tax_glom

matrix matrixdata.frame

optional

refseq

data

data structure & APIphyloseq

phyloseq

Preprocessing

Import

Direct Plots

plot_network plot_heatmap plot_ordination

distance ordinate

Summary / Exploratory
Graphics

filter_taxa

filterfun_sample

genefilter_sample

prune_taxa

prune_samples

subset_taxa

subset_samples

transform_sample_counts

import_biom

import_mothur

import_pyrotagger

import_qiime

import_RDP

plot_tree

plot_richness

plot_bar

bootstrap
permutation tests
regression
discriminant analysis
multiple testing
gap statistic
clustering
procrustes

Inference, Testing

sample data

OTU cluster output

Input

raw

phyloseq
processed

work flowphyloseq
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phyloseq graphics

ordu	=	ordinate(GP1,	"PCoA",	"unifrac",	weighted	=	TRUE)	
plot_ordination(GP1,	ordu,	color	=	"SampleType",	shape	=	"human")

supported 
ordination 

methods

plot_ordination()
samples-only

joey711.github.io/phyloseq/plot_ordination-examples.html

Ordination on bray-curtis dist: Global Patterns data

joey711.github.io/phyloseq/distance

phyloseq



graphics

●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●
●

●
●

●
● ●

●●

●

●

●

●

●

●

●●

●

●
●

●

●
●
●●

−0.3

−0.2

−0.1

0.0

0.1

0.2

0.3

−0.4 −0.2 0.0 0.2 0.4
NMDS1

NM
DS

2

SampleType
●●
●●
●●
●●
●●
●●
●●
●●
●●

Feces
Freshwater
Freshwater (creek)
Mock
Ocean
Sediment (estuary)
Skin
Soil
Tongue

plot_ordination, NMDS, wUF

Freshwater
Freshwater (creek)
Freshwater
Freshwater (creek)
Freshwater (creek)
Soil
Soil
Soil
Skin
Skin
Skin
M

ock
M

ock
M

ock
Feces
Feces
Feces
Feces
Sedim

ent (estuary)
Tongue
Tongue
O

cean
O

cean
O

cean
Sedim

ent (estuary)
Sedim

ent (estuary)

SampleType

O
TU

1

100

10000

Abundance

plot_heatmap; bray−curtis, NMDS

●

●

●

●
●

●

●
●

●●
●
●

●

●

●
●
●
●●

●

●

●

●

●

●

●
●

●
●●
●●
●

●

●

●

●

●

●
●●

●

●
●

●●
●●
●
●
●

●

●

●●

●

●

●

●
●

●

●

●
●●

●

●
● ●●

●

●

●

●
●●

●

●

●

●

●

●

●
●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

● ●

●●

●

●

●

●

●

●

●

●

●

●

●
● ●

●●

●

SeqTech
●

●

●

Illumina
Pyro454
Sanger

Enterotype
● 1

2
3

plot_network; Enterotype data, bray−curtis, max.dist=0.25

●
●

●

●

●

● ●
●

●
●

●

●

●●●●
●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●
●

●●
●

●

●
●

●

●

●

●

●
●

●
●

●

●

●
●

●

●

●
●

●
●

●
●

●

●

●

●
●

●

●
●

●
●

●

●

●
●

●
●

●

●

●
●

●
●

●
●

●
●

●

●

●
●

●
●

●

●

●
●

●
●

●

●
●

●

●

●
●

● ●
● ●

●
●

●
●

●

●

●

●

●

●

●
●

●
●

●

●
●

●
●

●

●

●

●

●

●
●

● ●● ●

●

●
●

●
●

●

Cytophaga
Emticicia

Sphingobacterium

Segetibacter

Haliscomenobacter

Pedobacter

Bacteroides

Alistipes

Bacteroides

Cytophaga

Porphyromonas

Prevotella

Parabacteroides

Algoriphagus

Odoribacter

CandidatusAquirestis

Capnocytophaga

Porphyromonas

Spirosoma

Prevotella

Balneola

Prevotella

Hymenobacter

Prevotella

●

●

●

●
●

●
●

●
●

●

●

●

●

●
●

●
●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●
●

76

73

75

75

79

67

81

84

84

82

75

Abundance
●

●

●

●

1
25
625
15625

SampleType
●

●

●

●

●

●

●

●

●

Feces
Freshwater
Freshwater (creek)
Mock
Ocean
Sediment (estuary)
Skin
Soil
Tongue

Order
● Bacteroidales

Flavobacteriales
Sphingobacteriales

plot_tree; Bacteroidetes−only. Merged samples, tip_glom=0.1
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plot_ordination()

plot_network()

plot_bar()

plot_heatmap()

plot_tree()

plot_richness()

phyloseq

gpt	<-	subset_taxa(GlobalPatterns,	Kingdom	==	"Bacteria")	
gpt	<-	prune_taxa(names(sort(taxa_sums(gpt),	TRUE)[1:300]),	gpt)	
plot_heatmap(gpt,	sample.label	=	"SampleType")

joey711.github.io/phyloseq/plot_heatmap-examples.html

ig	<-	make_network(enterotype,	dist.fun	=	"bray",	max.dist	=	0.3)	
plot_network(ig,	enterotype,	color	=	"SeqTech",	shape	=	"Enterotype",		
line_weight	=	0.4,	label	=	NULL)

joey711.github.io/phyloseq/plot_network-examples.html

plot_network()

joey711.github.io/phyloseq/plot_tree-examples.html

plot_tree(physeq,	nodelabf=nodeplotboot(80,	0,	3),	color="SampleType",	
											label.tips="taxa_names",	ladderize="left")

plot_tree()



plot_bar()

joey711.github.io/phyloseq-demo/Restroom-Biogeography.html

plot_bar(restroomRm19,	"SURFACE",	fill	=	"family19",	title	=	title)	+	coord_flip()	
+	ylab("Percentage	of	Sequences")	+	ylim(0,	100)

Restroom	Biogeography,	Top	19	OTUs plot_richness()

joey711.github.io/phyloseq/plot_richness-examples.html

GPst	=	merge_samples(GP,	"SampleType")	
p	=	plot_richness(GPst,	x="human",	color="SampleType",	measures=c("Chao1",	"Shannon"))	
p	+	geom_point(size	=	5,	alpha	=	0.7)

Schedule for today


