An Introduction to Metagenomics
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An Introduction to Metagenomics

Outline for morning lecture:

® Microbiomes and metagenomics

® What is a microbiome?

Biological
® Why are they important? motivation
® Methods
® Experimental methods
Methods

® Analysis theory

® Analysis tools, practices

Cell structure

What are microbes?

Nucleoid Membrane
Ribosome

Wall

Plasmid

Organelle

Flagellum

What are microbes?

Some key differences from eukaryota (e.g. humans, plants)

e Haploid genome
® Single circular chromosome, sometimes plasmids

® Genetic malleability, metabolic diversity

Usually no nucleus (prokaryotes)

Relatively easy interspecies gene transfer




What are microbes? Ancestry of Life

Gram-positives
Chlamydiae

Animals Fungi
Slime molds

Green nonsulfur bacteria

Plants
Algae Actinobacteria
Planctomycetes
Protozoa Spirochaetes

Bacteria

Fusobacteria

Crenarchaeota
Cyanobacteria
Nanoarchaeota (blue-green algae)

Euryarchaeota Thermophilic

sulfate-reducers

Acidobacteria

Protoeobacteria

http://en.wikipedia.org/wiki/Tree_of_life_(biology)

What is a microbiome!?
The totality of microbes in a defined environment,

especially their genomes and interactions with each
other and surrounding environment.

® A population of a single species/strain is a culture,
extremely rare outside of lab, some infections

® A microbiome is a mixed population of different
microbial species (microbial ecosystem)

A mixed community is the norm!

Why Study Microbiomes!?

Environmental Science
- Critical elemental cycles (carbon, nitrogen, sulfur; iron, ...)
- Pollution control, cleanup
- Ecology / Evolution (chloroplasts, mitochondria, genetic evolution, ...)

Industrial Applications
- Wastewater treatment (V. cholera, algal blooms, etc.)
- Bioprospecting (novel enzymes, compounds)
- Novel biosynthesis
- Fermentations: Consortia (yogurt) / wild (kombucha, Belgian ales)

Human Health
- Protection from pathogens (e.g. Clostridium difficile)
- Absorption/Production of nutrients in the gut
- Possible Role in chronic diseases
(obesity, Crohn's/IBD, other autoimmune, UTls, periodontitis, ...)

What is a microbiome!?
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What is a microbiome!?

acid mine biofilm

Tyson, et al. (2004) Nature, 428(6978), 37-43

acid mine biofilm

What is a microbiome!?

Euglena

Water

Sediments.

SO As(lll) As(V)  Fe(lll) Fe(lll)
eg 3

solubl
Tooeleite /6 ﬁ ) cﬁn
N o)

Aacids
soluble
Amino acids

and cofators

Carbon and
nitrogen fixation

methylation

What is a microbiome!?

Eukaryotes 4% Sulfobacillus spp. 1%
Archaea 10%

Leptospirillum
ap Il 10%

Leptospirilium
op 11 75%

Tyson, et al

acid mine biofilm

~

Mosaic genome
types

Ancestral
strains

. (2004) Nature, 428(6978), 37-43
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Segata and Huttenhower
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Some provocative oversimplifications. ..

Microbes can...

|. “Kill you by acute infection”
2. “Prevent same infection”

3. “Make you fat(ter)”

4. “Give you a heart attack”

5. “Give you cancer”

6. “Rescue you from cancer”

Can you guess the condition / scenario?

C. difficile infection

Resolution of symptoms
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Development of CDI

= Severe diarrhea, abdominal pain, nausea and fever
= C. gifficile toxins induce inflammation and cell death
= CDI can cause pseudomembranous colitis

Microbes can make you fat(ter)...
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Turnbaugh, et al. (2009). A core gut microbiome in obese and lean twins. Nature




Microbes can make you fat(ter)...

T 407 T 607
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Turnbaugh, et al. (2006). An obesity-associated gut microbiome ... Nature

Gut microbes promote cardlovascular disease

( Heart attack

Stroke
/ N Death

Atherosclerosis
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* Gut flora required for production of TMAO

* Supplementing diet with choline or TMAO promotes atherosclerosis (mouse)
* Gut flora suppression (Abx) inhibits dietary choline enhanced atherosclerosis
* TMAQO is also a renal (kidney) toxin. Fogelman,A. M. (2015). Circulation Research.

ZN Wang, ..., Stanley Hazen. Nature 472, 57-63 (2011)
Fogelman, A. M. (2015). TMAO Is Both a Biomarker and a Renal Toxin. Circulation Research.

Sears, C. L., & Garrett,W.S. (2014). Microbes,
Microbiota, and Colon Cancer.
Cell Host & Microbe, 15(3), 317-328. Y Polyphenols

Colorectal Cancer (CRC)

* Microbes affect colonic bile pool
exposure, drug metabolism, and
mortality-correlated compounds ot
* Microbe-produced secondary
bile acids are among these.

« Gut microbial metabolism may il
play role in beneficial or flrovletioh
detrimental effects of certain
foods

Phase I-lll
drug metabolism

Cholesterol

Jejunum
I A

R H
~+Colon
Xenobiotics metabolism

Factors influenced by the microbiota
and their CRC risk effects

CRC Bile Acid
A Lithocolic acid
A Deoxycholic acid
Y Ursodeoxycholic acid

CRC Dietary components
A Red and Processed meat
A Saturated Fats

Groundwater: Chlorinated Solvents

Dehalocoqcoides

Electron donors

Mixed complex
organic materials

|
Hydrolysis

Organic monomers

Fermentation

Alcohols and acids

/ \
Acetate and hydrogen formation

Acetate Hy
Electron acceptors  Qxidation Oxidation End products
Sulfate Sulfide
Iron (1Il) Iron (11}

Carbon
dioxide

PCE —> TCE —>csDCE—> VC —> Ethene

McCarty, P. L. (1997). Breathing with chlorinated solvents. Science




Marine Picoplanl(ton most abundant organism on Earth?

= Prochlorococcus appears to be the most abundant organism on the planet

= Huge light harvesting proteins

- its density can reach up to 100 million cells per liter

- it can be found down to a depth of 150 m in all of the intertropical belt

- picoplankton synchronize cell division at the same time every day —> biological clock

OLIPAC cruise
Pacific Ocean 1934 Oligotrophic 16°S
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Vertical distribution of the photosynthetic picoplankton populations
determined by flow cytometry in the tropical Pacific (OLIPAC cruise, 1994).

Yellowstone National Park

Obsidian Pool

Octopus Spring
@ 90° to 93°C
e extremely low in nutrients
@ contains abundant biomass
® home to “oldest” known bacteria

® 75° -95°C
o high iron (ll) hydrogen sulfide
@ extensive diversity (previously unknown)

Ward, D. M,,Weller, R., & Bateson, M. M. (1990). Nature, 345(6270), 63—65.
Barns, S. M., Fundyga, R. E., Jeffries, M.W., & Pace, N. R. (1994). PNAS 91(5), 1609-1613.

Symbiosis: sea-floor vent tube worm

Se.af‘l‘-oo?’r‘
hydrothermal

Symbiosis: sea-floor vent tube worm

SEAWATER

Host Blood

40 T

pH~ <6
Oxygen and sulfur
both present

Mixed Water = ideal
for Tube Worm and
symbiont bacteria

Vent Fluid
300-400 ©
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Anoxic
High [HsS]

Sedimentation

I
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ﬁ Hydrothermal Fluid r\
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Basalt (sulfur-containing rock)

Cavanaugh, C. M. (1983). Nature, 302(5903), 58-61.
Cavanaugh, C. M., et al. (1981). Science. 213(4505), 340-342




End: Biological Motivation

Questions before moving on!?

Metagenomics Experimental Methods

Exercise: How many species are present?

Confer amongst yourselves.We’'ll take a poll.

The great “plate count” anomaly

® Cultivation-based cell counts are orders
of magnitude lower than direct
microscopic observation.

® This is because microbiologists are able
to cultivate only a small minority of
naturally occurring microbes

® Our nucleic-acid derived understanding
of microbial diversity has rapidly
outpaced our ability to culture new
microbes

//T /

Cuture sampie on agar Mcroscopic cell counting.

Staley, ). T., & Konopka, A. (1985). Measurement of in situ activities of nonphotosynthetic microorganisms in
aquatic and terrestrial habitats. Annual Review of Microbiology, 39, 32 1-346.




Why is microbiome research new?
Considering that...

® Ve have a bacterial endosymbiont in all our cells!
® Humans have always coexisted with bacteria
® We've known about bacteria for a few hundred years

* Historically prokaryotic biology has been focused on microbes
that can be grown to large quantities/densities in the lab, especially
pathogens; or can be distinguished under the microscope.

* An example of “searching where the light is”...

Why is microbiome research new?

Bias for cultivable microbes, especially pathogens

® Culture-based methods fail to detect most microbes
® Microbes are easy to miss (except pathogens)

® Most microbes are NOT pathogens (even the human-associated)

Availability of tools limited to last 3 decades

® Discovery of culture-independent techniques

® PCR, fast & cheap DNA sequencing, microarrays, etc

Discovery of Culture Independent Techniques

® |977 rRNA as evolutionary marker - Woese & Fox PNAS

® | 985 Polymerase Chain Reaction (PCR) - K. Mullis Science

® [985 “Universal” Primers for rRNA sequencing - N. Pace PNAS

® 1989 PCR amplification of 16S rRNA gene - Bottger FEMS Microbiol.
® |996 Large, curated rRNA database (RDP) - Maidak Nuc.Acids Res

® 200! term “microbiome” coined by Joshua Lederberg

Discovery of Culture Independent Techniques

Small subunit "16S” rRNA ribosome

//\ u\

in action

Peptide Synthesis




Discovery of Culture Independent Techniques

® rRNA has both catalytic and
structural function.

® The small and large subunits have
different lengths, 2nd-structure, 3D
shape; but must work together.

® All of the catalytic activity of the
ribosome is carried out by the RNA;
the proteins reside on the surface
and seem to stabilize the structure.

-
Q Growing peptide chain

1 O

e\

7\ | Incoming tRNA
\aath) bound to Amino Aciq

Outgoing \
empty RNA \ ¢ O\
s

ATV TATRVRVATAVATRT

MessengerRNA

Peptide Synthesis

Discovery of Culture Independent Techniques

Small subunit “16S” rRNA

Ubiquitous - present in all
known life (viruses don’t count)

Functionally constant
translation, 2°-structure

Evolves slowly - mutations
more rare than for protein-
coding genes

Large - information for
evolutionary inference

No exchange - Limited
examples of rRNA gene-sharing
between organisms

Discovery of Culture Independent Techniques

Evolutionary Tree, Known Bacteria
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Pace, N. R. (1997). A molecular view of microbial diversity and the biosphere. Science, 276(5313), 734-740.

Metagenomics: Nucleic acid sequencing as a tool

for microbial community analysis

Single microbiome:

. Break all cells, extract all DNA (gDNA)

2. PCR-amplify a universal gene from gDNA

3. DNA sequencing from pool of amplified genes
4.  Cluster sequences according to species

5. Count each species and make a tree

Tringe, S. G., & Rubin, E. M. (2005). Metagenomics: DNA sequencing of
environmental samples. Nature Reviews Genetics, 6(11), 805-814.

Environmental samples
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Metagenomics: Nucleic acid sequencing
for microbial community analysis

-

Many microbiomes in parallel: ‘)-\\:_l Lo
S va)
\ =
. /
. Break all cells, extract all DNA (gDNA)
=
2. PCR-amplify a universal gene from gDNA
using bar-coded primers, diff code for each sample Y S
3.  DNA sequencing from pool of amplified genes ’:-":,i», i
y > oy,
4a.“De-multiplex” barcode, ID source sample { Tu ;')3 %
" 4\ v
4.  Cluster sequences according to species “rass” N

5. Count each species and make a tree

as a tool

Environmental samples

DNA extraction

Genomic DNA

bar{coded
PCR and sequencing

16S rRNA sequencing

Sequence comparison

acteria - =
'7\vd'u§ Phylogenetic trees

Culture Independent Techniques:

Number of

Metagenomics  Species Counted

Universal Gene census e
Shotgun Metagenome Sequencing
Transcriptomics (shotgun mRNA)

Proteomics (protein fragments)

Metabolomics (excreted chemicals)

Culture Independent Techniques:

Metagenomics
Universal Gene census e

Shotgun Metagenome Sequencing

Transcriptomics (shotgun mRNA)

Proteomics (protein fragments)

Metabolomics (excreted chemicals)

Number of
Species Counted

Nucleic acid sequencing as a tool for
microbial community analysis

Lyse cells
Extract DNA (and/or RNA)

Shotgun

sequencer

Relative abundances,
Genomes,
Genes,

Metabolic profiling,
Assembly,
Genetic variants...
Slide graciously provided by?@tirtis FHigttenhower, not necessarily with permission O:-)




Sequencing as a tool for
microbial community analysis
. .

Who’'s there?

(Taxonomic profiling)

What are they doing?

(Functional profiling)

What does it all mean? .
(Statistical analysis)

MASSCIHT IUIy,
Genetic variants...

Slide graciously provided by?CUrtis'Hiittenhower, not necessarily with permission O:-)

meta’omic microbial community profiling
Epidemiology

Privacy and ethics

Disease risk/pathogen exposure
Tracking

Health policy (D
Early life exposures '-“a* ‘ f@
Pharma. best practices ‘@ﬂ

sz Working toward high-impact outcomes from

ranslation

henotype association for diagnostics
* Human disease risk: lifetime, activity, outcome

» Longitudinal analysis and study design =
* Dense longitudinal measures, I ﬁ

Basic biology and
molecular mechanism

Microbial experiments
* Quantitative methods e
* Integration/meta-analysis of ‘\‘jf i
genomes and metagenomes v
Host microbe-microbiome interacfions
Immunity in specific host tissues
* Non-immune mechanisms (metabolites,

multiple nested outcomes
Bystems analysis for intervention
* More and simpler model systems
+ Systematic understanding of current models
» Ecological models for ecosystem restoration

peptides)
* Model system perturbations,
“knock ins” and “knock outs”

Slide graciously provided by Curtis Huttenhowel, not necessarily with permission O:-)

A Summary of Meta’omics

Piles of short DNA/RNA reads from >1 organism

You can...

— Ecologically profile them

— Taxonomically or phylogenetically profile them

— Functionally profile them — gene/pathway catalogs
— Assemble them

Prior knowledge is helpful

Caution: Correlation # Causation
* Most ‘omics results require lab confirmation

Slide graciously provided by Curtis Huttenhower, not necessarily with permission O:-)

An Introduction to Metagenomics

Outline for morning lecture:

® Microbiomes and metagenomics

o . . : ? . .
What is a microbiome? Biological

® Why are they important? motivation

® Methods
® Experimental methods
Methods
® Analysis theory

® Analysis tools, practices




End Metagenomics
Lecture |

Questions?

Introduction to Microbiome /
Metagenome Analysis Concepts

. Gastrointestinal

R
PC1 (13%)

eSequence Processing (OTUs)
eDenoising
eChimera detection
eConstruction of sequence clusters (OTUSs)
eComparing microbiomes
eDistances, Diversity
eExploratory Data Analysis
eOrdination Methods
ehierarchical dendrogram
ecxtract patterns from a plot
eclusters - gap statistic
egradient - regression, modeling, etc.
¢ Identifying important microbes/taxa
eprojected points, coinertia (plots)
einferential testing
emodeling

eSequence Processing (OTUs)
eDenoising
*Chimera detection @
eConstruction of sequence clusters (OTUSs) .
eComparing microbiomes
eDistances, Diversity @
eExploratory Data Analysis ‘
*Ordination Methods @
ehierarchical dendrogram
eextract patterns from a plot @
eclusters - gap statistic
egradient - regression, modeling, etc.
¢ Identifying important microbes/taxa
eprojected points, coinertia (plots)
einferential testing
emodeling




OTUs - Operational Taxonomic Unit

p 400

L 2

Lyse cells
Extract DNA

PCR to amplify a single marker
gene, e.g. 16S rRNA

Amplicons [
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Sample Inference from Noisy Reads
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Sample Inference from Noisy Reads
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Sample Inference from Noisy Reads

sample amplicon reads OTUs
sequences y -
e ° I \]
° \ L
.. .“" \ vy z N
: . - | ‘
o @ - 1 ]
L ] \ I
N ad
Errors -
——- Make OTUs
DADA2

(OTUs are not strains)

OTUs: Lump similar sequences together
DADAZ2: Statistically infer the sample sequences

The true shape of an error cloud
DADAZ2: Error Model

counts,
unique
sequence 20
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Initial guess: one real sequence + errors
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Infer initial error model under this assumption.
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not an error
Reject unlikely error under model. Recruit errors. Update the model.
A C G T A C G T
A| 097 10-2 102 102 A0.997 103 103 103
C| 102 0.97 10-2 10-2 C| 103 0.997 103 103
G| 102 102 0.97 102 G| 103 103 0.997 103
T| 102 102 102 0.97 T| 103 103 103 [0.997
not an error
not an error

N~
° e °
O )

Reject more sequences under new model Update model again

A C G T A C G T
0.997 103 103 103 0.998 [1x104  2x105 24104

103 103 0.997 103 1x103 3x106  0.999 6x10-5

A

C| 103 0.997 103 103 6x10-s 0.999 3x10-6 1x[10-3
G

T

103 103 103 0.997 2x10-4 | 2x103  [Ix104 0.998




A
0.998

C

Convergence: all errors are plausible

G

1x10-4 2x10-3 2:

T
104

6x10-5

0.999 3

106 1x

03

3x10-6

.999 6.

10-s

A
C
G |1x103
T| 2x104

2x103

1x10-4

Slide graciously provided by Benjamin Callahan, not necessarily with permission O:-)

DADAZ2: Why is this possible?

Uses more of the information than traditional OTU clustering

DADA2 OTUs

Abundance J R;ﬁl;s
Sequence J Count
Differences only
Quality v No
Error
Model v W

Slide graciously provided by Benjamin Callahan, not necessarily with permission O:-)

DADA2 Advantages: Real Data

Lactobacillus crispatus sampled from
vaginal microbiome 42 pregnant women

OTU Method DADA2
1.00 1
0.75- J
)
S 050 oTU
®0.50-
g Mo
I
0.25- 1
0.00- - - J
Sample Sample

Slide graciously provided by Benjamin Callahan, not necessarily with permission O:-)

Strain
i
e

L3
N
s
| e

DADA2 Advantages

Analytical Single nucleotide resolution
- genotypes/strains instead of 97% OTUs

Lower false positive rate
- Better error model, easier to ID chimeras

Computational  Linear scaling of computational costs
- Exact sequences are inherently comparable,
so samples can be processed independently.

Slide graciously provided by Benjamin Callahan, not necessarily with permission O:-)




DADA2

Divisive Amplicon Denoising Algorithm - ver.2

DADAZ2: High resolution sample inference from amplicon data

Benjamin J Callahan®”, Paul J McMurdie?, Michael J Rosen®, Andrew W Han?,
Amy Jo Johnson? and Susan P Holmes!

!Department of Statistics, Stanford University
2Second Genome, South San Francisco, CA
3Department of Applied Physics, Stanford University
“Corresponding Author: benjamin.j.callahan@gmail.com

http://dx.doi.org/10.1101/024034  Manuscript draft on bioRxiv
(Revisions in review)

http://benjjneb.github.io/dada2/ Basic R package available on GitHub

DADA1: Rosen MJ, Callahan BJ, Fisher DS, Holmes SP
(2012) Denoising PCR-amplified metagenome data. BMC bioinformatics, 13(1), 283.

That said, we are going to use OTUs!

sample amplicon sequences OTUs
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Errors
— Make OTUs

Diversity

Diversity of diversity
(diversity of greek letters used in ecology)

o — diversity within a community, # of species
B — diversity between communities (differentiation),
species identity is taken into account

Y — (global) diversity of the site, y = a x 3, but only this
simple if o and B are independent

Probably others, but a and B are most common




Beta-Diversity

Peer-reviewed articles having “beta diversity” in title
307

No. of papers

Anderson, M. J., et al. (2011). Navigating the multiple meanings of B diversity: a roadmap for the
practicing ecologist. Ecology Letters, 14(1), 19-28.

Beta-Diversity

* Microbial ecologists typically use beta diversity as a
broad umbrella term that can refer to any of several
indices related to compositional differences

(Differences in species content between samples)

* For some reason this is contentious, and there appears
to be ongoing (and pointless?) argument over the
possible definitions

* For our purposes, and microbiome research, when you
hear “beta-diversity”, you can probably think:

“Diversity of species composition”

http://en.wikipedia.org/wiki/Beta_diversity

Distances between
microbiomes

Community Distance

Communities are a vector of abundances:
X ={X1, X2, X3, }

E.coli:eee
P fluorescens: ®
B. subtilis: ®
P acnes:
D. radiodurans:
H. pylori: eeeeeee
L. crispatus:

x ={3,1,1,0,0,7,0}




Community Distance Properties

- Range from 0 to 1

The Distance Spectrum

Categorical Phylogenetic

- Distance to selfis 0

- If no shared taxa, distance is 1 Presence/ | ccard Unifrac
Absence

- Triangle inequality (metric)

- Joint absences do not affect distance (biology)

- Independent of absolute counts (metagenomics) Quantitative Brav-Curti Weighted
Abundance ray-Lurtis Unifrac

Jaccard Jaccard

Dist(A, B) = 1-(AnB)/(A U B)
= ((xa>0) & (x8>0))/((xa>0) | (x8>0))

Dist(A, B) = 1-(AnB)/(A U B)
= ((xa>0) & (x8>0))/((xa>0) | (x8>0))

Intuition: Fraction of shared types unigue to
one of the communities




Bray-Curtis

Ix; - il —
Dist(x, y) = éxix+£;i =

s - ——
X1 X2 X3 X4 Xs Xe6

Slide graciously provided by Benjamin Callahan, not necessarily with permission O:-)

Bray-Curtis

Ix; - il —
Dist(x, y) = éxix+£;i =

s - ——

X1 X2 X3 X4 X5 X6

Intuition: City block distance. Sum of
absolute differences over total abundance.

Slide graciously provided by Benjamin Callahan, not necessarily with permission O:-)

Unifrac

- —

Dist(x, y) =

s - e | -

D=1 D=~05

Nl o]

Slide graciously provided by Benjamin Callahan, not necessarily with permission O:-)

Lozupone and Knight (2008

Unifrac

- —

Dist(x, y) =

s - e | -

D=1 D=~05

Nl o]

Intuition: Fraction of shared tree unique to
one of the communities

Slide graciously provided by Benjamin Callahan, not necessarily with permission O:-)

Lozupone and Knight (2008




Weighted Unifrac

Weighted UniFrac

branchlengths weighted by difference in red and blue

Lozupone et al. (2007)

Weighted Unifrac

Weighted UniFrac
branchlengths weighted by difference in red and blue

Intuition: The cost of turning one distribution into the
other; where the cost is the amount of “dirt” moved
times the distance by which it is moved.

Lozupone et al. (2007)
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N samples

Ordination Methods

Project high-dimensional data onto lower dimensions

P taxa

0,1,5,1,0,1,2,1,0,0,9,...
7,2,0,0,0,0,0,0,1,0,0,...
0,0,0,0,0,0,8,0,0,0,1,...
0,0,0,1,0,1,2,0,0,0,5,... »
0,1,0,2,0,0,0,1,0,0,4,...
0,0,0,1,91,2,52,0,1,...
0,0,0,0,0,1,2,1,8,0,0,... 04
0,0,0,0,9,4,0,0,0,0,1,... 02

o
=)

diet
BK
Western

Axis.2 [14.4%]
o
R

0.0 0.2
Axis.1 [39.5%]

P-dimensions 2-dimensions

Ordination Methods

Intuition: ,

Each PC axis is projection that maximizes the area of the shadow
Equivalently - max(sum of square of distances between points)
Goal: “See” as much variation as possible

6«

Multi-dimensional Scaling

Why MDS? It works with any distance!

Two
Many dimensions

dimensions

Sl

Input distance matrix can by Bray-Curtis, Unifrac, ...

MDS Details

Given distances between each observation (sample), MDS finds the
closest approximation of that in lower dimensional Euclidean space.

» Algorithm starts from D inter-point distances:
- Center the rows and columns of the distance matrix:
S=-1/2HD@H
- Compute SVD by diagonalizing S: S = U A U7
- Extract Euclidean representations: X = U A2
» The relative values of diagonal elements of A gives the
proportion of variability explained by each of the axes.
» The valued of A should always be looked at in deciding how
many dimensions to retain

NMDS is similar, but minimizes a different function
(difference in distance ranks)




MDS Scree Plot

Lambda

1 3 5 7 9 11

MDS Dimension

Exploratory Data Analysis

‘Unsupervised Learning”

“Ordination I\/Iethods”/

DATA

(means) \I\(variances)

Best Practices

Looking for patterns (the “I-test”) hang
Always look at scree plot of
Biplot (if legible) Data

Use multiple distances
» For which D is pattern strongest?
phyloseq (and R/Rmd) make this easy!

Exploratory Data Analysis

“‘Unsupervised Learning”
“Ordination Methods”

What we “learn” depends on the data.

e How many axes are probably useful?

e Are their clusters? How many?

e Are their gradients?

¢ Are the patterns consistent with covariates
* (e.g.sample observations)

¢ How might we test this?

Exploratory Data Analysis

‘Unsupervised Learning”
“Ordination Methods”

e Are their clusters? How many?

Technique:
Gap Statistic




Exploratory Data Analysis

“‘Unsupervised Learning”
“Ordination Methods”

e Are their gradients?
e Are they explained by one or
more sample covariates?

Technique:
PC regression (statistics’ PCR)

Exploratory Data Analysis

‘Unsupervised Learning”
“Ordination Methods”

e Are the patterns consistent with covariates?

Technique:
Permutational Multivariate ANOVA

vegan::adonis( )

End:
Introduction to Microbiome /
Metagenome Analysis Concepts

Questions!

Introduction to
Microbiome / Metagenome
Analysis Tools and Practices

. Gastrointestinal

R
PC1 (13%)




Introduction to
Microbiome / Metagenome
Analysis Tools and Practices

|. Probably-not-comprehensive summary of metagenomic tools

2. Short sermon on the virtues of reproducible analysis
3. Introduction to phyloseq & send-off this afternoon’s lab

Figure 1. Timeline of microbial community studies using high-throughput sequencing.

.
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Gevers D, Knight R, Petrosino JF, Huang K, et al. (2012) The Human Microbiome Project: A Community Resource for the Healthy Human
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Slide graciously provided by Dirk Gevers, not necessarily with permission O:-)

_>3k reads -
Zper sample

=="_"~100M reads
__ persample ~

Tax
cla

“census _

~90M proteins

o 4
nil

-Organismal census

— “at different taxonomic levels

Slide graciously provided by Dirk Gevers, not necessarily with permission O:-)

| 6S rRNA Databases
GreenGenes - http://greengenes.secondgenome.com

Silva - www.arb-silva.de
Ribosomal Database Project (RDP) - hitps://rdp.cme.msu.edu

¢~100Ks - millions of unique 16S rRNA genes
eCurated taxonomy
e(Classification tools (e.g. RDP classifier, ARB, etc.)




(16S rRNA) Amplicon Sequence
Processing Tools:

QIIME (Soon ‘Qiita’) - http://qgiime.org/

mothur - www.mothur.org/
usearch - www.drive5.com/usearch

DADA2 - https://github.com/benjjneb/dada2

Afternoon will be spent using QIIME
Daniel has much more to say about it...

Goal: expose strain level features

The picture using 16S rRNA
sequencing

The picture using shotgun metagenomics
and MetaPhlAn

Staphylococcus aureus Staphylococcus

£ AP
\ /

Next step: strain-level profiling

(i) Identify
Snain A (ii) Track (e.g. across samples)
‘15 (iii) Characterize (genomically)

Slide graciously provided by Curtis Huttenhower, not necessarily with permission O:-)

How to find biology in your meta’'ome

Looking for ecology?
— Diversity metrics, k-mer analysis, curve fitting

Looking for specific bugs?
— Assembly: +novelty, -difficulty
— Mapping: +speed/ease, -novelty

Looking for specific processes?
— Intrinsic annotation: +novelty, -difficulty
— Extrinsic annotation: +sensitivity, -novelty

Looking for variants?
— Clustering: +specificity, -difficulty
— Mapping: +sensitivity, -novelty

What else?

Slide graciously provided by Curtis Huttenhower, not necessarily with permission O:-)

MetaPhlAn: Taxonomic profiling using
unigue marker genes

for clade Y Xis a for clade Y

~1M most representative markers used for identification
* 18445 markers per species (target 200)

~7,100 species (excludes incomplete annotations, spp., etc.)
False positive/False negative rates of ~1 in 106

Profiles all domains of life: bacteria, viruses, euks, archaea
Strain level profiling using marker barcodes and SNPs
Quasi-markers used to resolve ambiguity in postprocessing

Slide ‘graciodsly prévided by 'Curtis Huttenhower, not necessarily with permission O:-)




» Typical shotgun metagenome and

Taxonomic : Do
Profiling

Functional

Samples Gene content inference Samples
(e.g. PICRUSY, etc.)

»

Microbes
Genes or
Pathways

Relative
Slide graciously provided by Curtis ﬁwmﬁwot necessarily with permission O:-)

||
Relative
abundances

Microbiome meta’omic analyses:
assembly

"  tool f bl Evaluation of viral genome assembly and
s e cs v Rl iversity estimation in deep metagenomes
W v

ALE: a generic assembly likelihood evaluation framework for

Novel

individual genome assembly from complex

[community short-read metagenomic datasets Assessment of Metagenomic Assembly Using Simula

aluating the Fidelity of De Novo Short Read
Next Generation Sequencing Data

stagenomic Assembly Using Simulated Data ort read metagenomic assembly

100 genomes
LC Metagenomic
MC Metagenomic
HC Metagenomic
LC Isolated
MC Isolated
HC Isolated

NS0 length (kbp)

20000 40000 60000 80000 100000 Reference genome coverage

ide graciously provided by Curtis Huttenhower, not necessarily with permission O:-)

Microbiome meta’omic analyses:

P25
MetAMOS:

:aling metagenome sequence assembly
ith probabilistic de Bruijn graphs

assembly

MetaVelvet: an extension of Velvet assembler to
de novo metagenome assembly from short
sequence reads

Toshiaki Namiki"%, Tsuyoshi Hachiya', Hideaki Tanaka’ and Yasubumi Sakakibara’

MetaVelvet (Namiki 2012)

etagenomic assembly and analysis pipeline for AMOS

MetaAMOS (Treangen 2013)

Meta-IDBA (Peng 2011)

ORIGINAL PAPER

: a de novo assembler for single-cell a
sequencing data with highly uneven depth
L crn

IDBA-UD (Peng 2012)

SPAdes: A New Genome Assembly Algorithm
and Its Applications to Single-Cell Sequencing

. SIROTKIN, ' NIKOL
YEV,' and PAVEL A. PE

SPAdes (Bankevich 2012)

Genovo: De Novo Assembly for Metagenomes

*JONATHAN LASERSON, *VLADIMIR JOJIC, and DAPHNE KOLLER

Genovo (Laserson 2011)

Ray Meta: scalable de novo metagenome
assembly and profllng

Ray (Boisvert 2012)

MEGAMHIT: an ultra-fast single-node solution for
large and complex metagenomics assembly
via succinct de Bruijn graph

-Man Liu*", Ruibang Luo®’, Kunihiko Sadakane® and

Slide graciously provided by Curtis Huttenhower, not necessarily w'\M%@M&Toﬂ-b?-m 5)
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I l - - | Body site
Gender
| Dataset

Nnl

Il | IFI

Visit number

Staphylococcus caprae/capitis

Propionibacterium sp KPL1844

Merkel cell polyomavirus

Finegoldia magna

| || Campylobacter ureolyticus

Peptoniphilus rhinitidis

Propionibacterium granulosum

[ | Staphylococcus epidermidis
Propionibacterium avidum

| Malassezia globosa

Corynebacterium tuberculostearicum

Corynebacterium kroppenstedtii

Micrococcus luteus

Enhydrobacter aerosaccus

Polyomavirus HPyV7

Corynebacterium pseudogenitalium

Rothia dentocariosa

Haemophilus parainfluenzae

Corynebacterium matruchotii

Streptococcus mitis/oralis/pneumoniae

Corynebacterium accolens

Corynebacterium durum

Propionibacterium phage P101A

Propionibacterium phage P100D

18P W&@s@ﬁﬁ)ﬂ%%@ﬁﬁssion O:)




Reproducible analysis of
microbiome / metagenome data

* Why make the effort?

* What if | don’t want someone else reproducing
my analysis?

* What if | don’t know how?

* Isn’t it enough to provide a cursory description
in the methods section with a light sprinkling of
literature citations?

illustrative example favoring reproducible analysis:
“Enterotypes of the human genome”

MDS on supported distance metrics: enterotype data

/ A Y ) ey i /
o o 78
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' vr‘v-;‘m ; " ‘ ‘ uuuuu
‘ 5& s '."( -
iy o ) e » 9 ’
f & / /|

illustrative example favoring reproducible analysis:

“Enterotypes of the human genome”

MDS on supported distance metrics: enterotype data

I ‘Q . S 2 ’
’ Gap statistic
&
$ [-%
g e
o 3‘} 02+ http://joey711.github.io/phyloseq/gap-statistic.html
4

Reproducible analysis workflow
with R-markdown

l source.Rmd

# Main title

phyloseq +
This is an [R Markdown](my.link.com)
document of my recent analysis. ggp|ot2 +
etc.

## Subsection: some code

ﬂ?f?{r;s some import code, etc. knitr::knichtmI()
library("phyloseq")
library("ggplot2")

physeq = import_biom(“datafile.biom”)
plot_richness(physeq)




Reproducible analysis
workflow with R-markdown

phyloseq

@PLOS | o~

DPEN a ACCESS Freely available online

phyloseq: An R Package for Reproducible Interactive
Analysis and Graphics of Microbiome Census Data

?aul J. McMurdie, Susan Holmes*

department of Statistics, Stanford University, Stanford, California, United States of America

Tex
oey/ | |.github.io/phyloseq-demo/Restroom-Biogeography

Pa—

Key Packages:
vegan

ape

distory

phangorn

picante
metagenomeSeq

phyloseq

data structure & API

phyloseq

work flow

Input Import
i i ape i i lsample data import_biom "
matrix data.frame matrix pa cEa ge Blgts:tkr;n%s import_mothur phyloseq Direct Plots
P g OTU cluster output import_pyrotagger raw
read.tree import_giime plot_richness
otu_table as read.nexus import RDP / —
Preprocessing
OTU Abundance filter taxa plot_tree
otu_table filterfun_sample

genefilter_ sample
prune_taxa phyloseq

Accessors:
get_taxa
get_samples
get_variable

refseq

Processors:
filter_ taxa
merge_phyloseq
merge_samples

prune_samples
subset_taxa

subset_samples
transform_sample_counts

processed

~

Inference, Testing

. nsamples merge_taxa
Experiment Data ntaxa prune_samples b
. phyloseq rank_names prune_taxa K K ootstrap
k gk?;lsot:gstor' otu_table, sample_names subset_taxa permutation tests
i sam_data, sample_sums subset_samples regression
] _—m tax_table, -3 | sample_variables tip_glom Mg .
import phy_ tree taxa_names tax_glom dlscrlmmantlanalyss

B refseq taxa_sums Summary / Exploratory multiple testing

Graphics

plot_network

plot_heatmap plot_ordination

gap statistic
clustering

procrustes (Z é)




phyloseq

plot_ordination()

plot_bar() ;I
| ,,I,-,— ,'l-!

7
fpied

St

graphics

|- plot_heatmap()

" plot_tree()

_plot_richness()

phyloseq

graphics

Samples Only: typo="samplos" Biplot; type="biplot”

biplot
plot_ordination()

o

samples-only

Taxa Only; ypo="taxa’

» B %

/

taxa-only

Splt Plot; typo="spit"

o> split 2

o

MDS/PCoA on weighted-UniFrac distance, GlobalPatterns

>
@

Axis.2 [16.2%)]

02+ A

04~

A A

human

@ Fase

A e

SampleType

‘ Feces
@ Freshwater
@ Freshwater (creek)
® mock
&) Ocean

Sediment (estuary)
@® sin

Soil

® Tongue

supported

phyloseq

0.00
Axis. 1 [28.8%

= ordinate(GP1, "PCoA", "unifrac", weighted = TRUE)

)lot_ordination(GP1, ordu, color = “SampleType", shape = "human")

ordination
S - methods
Ordination on bray-curtis dist: Global Patterns data
5 | CccA | 50 DCA | | DPCoA |
?  °Ta A
\ 0.2+ B
14 [ * o &
0TAA 0.2+
’ 0.0+ A A A o L
44 a4
“ ! human
' | k;‘ 25 ! ! o 0EAR, ! ' | @ FALSE
-1 0 1 -2.5 0.0 25 5.0 -0.4 0.0 0.4 0.8
MDS ] [ NMDS | | PCoA ] A[TRue
o ® SampleType
0254 s 054 A 0.25- é Feces
N A A Freshwater
-$I 000 A z 0.0 -f‘ —g o004 Aa : Freshwater (creek)
= -0.25+ AP oo Mock
054 “ Ocean
.0.50 A 050 Sediment (estuary)
-O.ISU -U.I25 0.'00 0.‘25 -1‘.0 -0'.5 UTU 0‘5 1?0 -0.'50 »0.‘25 O.Z)U 0.‘25 .Skin
o RDA Soil
1 ’ [ rongue
‘ 3 8
w004 | plot_ordination()
| -
ol . samples-only
o-em * joey71 1 github.io/phyloseg/plot_ordination-examples.html

400—! T T T
-800 600 400 -200

joey71 1 github.io/phyloseq/distance
Axis_1




graphics

phyloseq

plot_ordination() Y ] plot_heatmap()

plot_network() plot_tree()

aag

plot_richness()

oTuU

(¥9210) 3

mSampleType

Abundance
262144

4096

64

ipt <- subset_taxa(GlobalPatterns, Kingdom == "Bacteria")
ipt <- prune_taxa(names(sort(taxa_sums(gpt), TRUE)[1:300]), gpt)
)lot_heatmap(gpt, sample.label = "SampleType")

joey71 | github.io/phyloseq/plot_heatmap-examples.html

o o o plot_network()
® e o [ ] -
® 9o o
°
° o, 0 o oo
n . e o0©
® ° ( & J
u L ] °
[ ]
= s ® (]
n
I °
°
[ J 2 Y
° SeqTech
® [ ] [ ]
b llumina
e ® Pyrodss
n [ Y - ® Sanger
[ ’
A . n . Enterotype
o L 28
AA - A
- LK)
" A
n 'S
[
[ ] ot
[~ A
L4 =
o A
°
°
- i
[ ]

.8 <- make_network(enterotype, dist.fun = "bray", max.dist = 0.3)
)lot_network(ig, enterotype, color = "SeqTech", shape = "Enterotype",
line_weight = 0.4, label = NULL)

joey71 | github.io/phyloseq/plot_network-examples.html

oo 341551
* 330416

94

eiienianias 175045
*+ 552540
* 1029 m
fab— + 155495 Sa pIeType
s * 155789
* 153762 Feces
** 549041
seee 321018 e |F hw
e 185612 reshwater
* 568829
sy e * Freshwater (creek)
e 511243
* 550229 o Y
S— « 210741 Mock
* o 554594
512519 * Ocean
105798
++ 46043 ¢ Sediment (estuary)
1126
3 * 30405 ® Sklr‘
* 138353
30678 H
31759 SGI]
215972
— +oe 548602 * Tongue

oo eee 546313
141782
144887

oo 255340

* 244960

* 143239

** 246140

** 586076

** 244423

** 522457

o eee 549322

* 951

plot_tree()

)lot_tree(physeq, nodelabf=nodeplotboot(86, ©, 3), color="SampleType",
label.tips="taxa_names", ladderize="left")

joey71 1 github.io/phyloseq/plot_tree-examples.html|




Restroom Biogeography, Top 19 OTUs plot_bar()

Water -
Toilet seat -

Toilet flush handle -

family19
Bacteroidaceae
Toiet Floor - Bradyrhizobiaceae
Brevibacteriaceae
Stall out = Caulobacteraceae
o] Corynebacteriaceas
; Stallin< Lactobacillaceas
a Micrococcaceae
Soap dispenser Moraxellaceas

Propionibacteriaceae
Sphingomonadaceas
Sink floor =
Staphylococcaceae

Streptococcaceae
Faucet handles =

Door out =

Doorin =

0.
z

o
o

Percentage of Sequences

S
SL.
3

1lot_bar(restroomRm19, "SURFACE", fill = "family19", title = title) + coord_flip()

- ylab("Percentage of Sequences") + ylim(e, 100)

joey71 |.github.io/phyloseq-demo/Restroom-Biogeography.html

Chao1 Shi 1
! 2 - * plot_richness()
12000 - —
4
74
(]
6-
SampleType
e 100007 # Feces
ﬁ @ Freshwater
g @ Freshwater (creek)
> # Mock
f 5+ . S
5] . Ocean
[a} 1 § Sediment (estuary)
£ ® @ skin
% 80009 ® & Soil
§ 4- ® & Tongue
L]
6000 - 4 37
X .
v v T 0
3 :
E m » m

human

iPst = merge_samples(GP, "SampleType")

y = plot_richness(GPst, x="human", color="SampleType", measures=c("Chaol"”, "Shannon"))

) + geom_point(size = 5, alpha = 0.7)

joey7 1 |.github.io/phylose

lot_richness-examples.html

Schedule for today

Sec |Day | Start |End Topic

Lead Instr.

1 Mon | 09:00 | 10:00 | Introduction to Metagenomics. Culture independent

techniques, 16S rRNA, etc. \/

Joey

2 Mon | 10:00 | 11:00 | Introduction to microbiome analysis concepts -- Joey
Exploratory data analysis, Distances, PCoA, Ordination,
taxa & sample-level inferences

3 Mon | 11:00 | 11:59 | Introduction to microbiome analysis practices: Joey
QIIME, phyloseq, reproducible research

- Mon 12:00 | 14:00 | Lunch -

4 Mon | 14:00 | 17:00 | QIIME Lab Daniel

- Mon 17:00 | 19:00 | Dinner -

5 Mon | 19:00 |22:00 | phyloseq Lab Joey




