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Considerations before starting a

sequencing experiment

* What is the question you want to answer?
* How do you decide how much data to generate
to answer your question?
— Sensitivity (e.g. number of False Negatives)
— Specificity (e.g. number of False Positives)
— Cost

* Which factors influence the amount of data you
generate?



What is the question you want

to answer?

* What scientific result do you want?

* |s there an hypothesis you want to test?

— Early sequencing was “hypothesis free” (i.e. the
genome was the goal)

— Now, it is affordable to sequence for a specific aim
(i.e. What sequence do you need for that aim?)

* Understanding this shapes many decisions in
designing the experiment



How do | decide how much

data to generate?

* |s your sequencing result the final answer, or just a
survey to generate preliminary data for follow up

studies?

 What are the costs of false positives and false
negatives, relative to the cost of the sequence?

* Four case studies highlight how projects involving
SNP discovery might require different amounts of
data based on these factors



Case 1: Tumor/normal sequencing

* Difficult problem, requires very low false positives
and false negatives

* Trying to find somatic events (~1-2 / Mbp)
* FP rate approaching 1 / Mbp swamps signals
* FN runs the risk of missing real tumor variants

* Every sample is unique, so the cost of following up
(orthogonal resequencing, custom genotyping) is
high

High coverage, high variant calling stringency



Case 2: Microbial evolution

 Example: Sequencing a drug resistant microbe to
find functional changes

* Low tolerance for false negatives, because you
want to find a variant in a small genome

* Relatively high tolerance for false positives
because the functional mutation is most likely a
coding change, so triage of calls for follow up is
effective

High coverage, low variant calling stringency



Case 3: Vertebrate evolution

 Example: Sequencing to find signatures of
selection

* Relatively high tolerance for false negatives,
because specific sites of variation are not
Important

* Low tolerance for false positives because
background noise from sequencing errors can
obscure the signature of selective sweeps

Low coverage, high variant calling stringency



Case 4: Population SNP discovery

 Example: Sequencing multiple strains or
individuals from one species to design a SNP array

* High tolerance for both FN and FP because the
experiment is just a first pass

* Only need sufficient SNPs to design the array

* Array design and testing will identify FPs (Rate of
SNPs failing to work on the array will likely exceed
the false positives from discovery)

Low coverage, low variant calling stringency



Which factors influence the

amount of data | generate?

* Number of samples

* Type of read

* Type of library

* Number of reads

* Read length

 Complexity of library

* Which sequencing machine to use



Consideration: Number of samples

 How many different samples do you need for your
experiment?

* Do you need biological replicates?
* Do you need technical replicates?

* Do you need controls, such as:

— Resequencing your reference genome to control for
alignability
— Generating unenriched controls for ChiP-Seq




What is a read? What is a library?

* Definition of “read”: A single sequence from one
fragment in the sequencing library (one cluster, bead,
etc.)

* |f generating paired reads, then 2 reads derived from
each fragment in the library

* Definition of “library”: A collection of DNA fragments
that have been prepared to be sequenced

* Definition of “coverage”: The number of reads spanning
a particular base in the genome



Consideration: Type of read

* Fragment reads (come from fragment libraries)
— Single read in one direction from a fragment

* Paired end reads (come from fragment libraries)
— Two reads from opposite ends of the same fragment
— Reads point towards each other




Consideration: Type of read

 Mate Pair Reads (come from Jumping Libraries)
— Long fragment of DNA is circularized
— Junction is captured (e.g., by biotinylated adapter)
— Remainder is cleaved (many methods)
— Ends are sequenced
— Read orientations depend on the exact method
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Consideration: Why choose

one type of read?

* Fragments
— Fastest runs (one read per fragment), least cost
— Some technologies only make one read

* Paired reads
— More data per fragment
— Help with assembly and alignment

— Same library steps as fragments, but yields more
data



Consideration: Why choose

one type of read?

* Mate Pairs (Jumping Libraries)

— Advantages over paired ends:
* Paired end separation limited by fragment size
e Some platforms can’t read second strand of fragment

— Only way to make long links, which are very useful for:
* Assembly and alignment across repeats and duplication
* |dentification of large structural variants
* Phasing of small variants

— Drawback: Requires much more input DNA than paired
ends



Consideration: Number of reads

* How much data do you need to generate to answer your
guestion?

* This depends on the level of completeness & accuracy
you want

* You have to decide before beginning the experiment

what level of completeness & accuracy you want, and
this determines how much data to generate

* Analogy: Trying a protocol in the lab that requires 1ug of
DNA with 0.1ug may end up working, but it may not



Consideration: Read length

* For most experiments, the longer the reads are
the better

* Exception: longer poor-quality reads are not as
useful as shorter high-quality reads

* Some experiment types have more stringent
requirements for minimum read length



Consideration: Complexity of library

* Definition of “complexity”: the number of
distinct fragments in the library

* After amplification, you may have many copies
of the same initial fragment (which does not
increase complexity)

* For most experiments, sequencing the same

fragment multiple times is not useful and may
be detrimental to your analysis



Consideration: Which sequencing

machine to use

* Type of read/library:
— lllumina & lon: all
— 454: fragment, mate pair
— PacBio: fragment

* Read length:

— lllumina: short (€150 bp) on HiSeq, medium (<400 bp) on
MiSeq

— 454: long (450-750 bp)

— lon: medium (200-400 bp, 100-200 for paired end)

— PacBio: very long (thousands of bp)
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Steps of generating sequencing data

e Steps of library construction and sequencing

 Making Fragment libraries (to generate
fragment or paired end reads)

 Making Jumping libraries (to generate mate
pair reads)

* Pooling with or without barcoding

* Possible artifacts of library construction
— PCR-based artifacts
— Sequencing of primers, adapters, and tags



Steps of Library Construction

* Add adapters containing:
— Barcodes (for multiplexing)
— Sequencing primers
— Amplification primers
— Sequence for substrate attachment

 Amplify fragments by universal PCR
e Optionally pool barcoded libraries



Steps of Fragment Library

Construction

Extract DNA

Fragment and
possibly size select
(300-600 bp)

Add adapters
Amplify

Select single
molecules

Amplify in clusters/
beads



Steps of Jumping Library

Construction

e Extract DNA, fragment
and size select (2-40
kb)

v
O Q O e Circularize with
labeled adapters
y

* Fragment and size
select (300-600 bp)

— — e Select fragments
containing labeled
! adapters

* Proceed as for
- - - fragment library



Pooling with barcoding

* Unique DNA tags identify samples
* Allows multiple distinct samples on one run

* Advantages:
— Reduced cost of sequencing for small samples

— Analysis is identical to unpooled data

e Disadvantages:
— Some small throughput loss due to barcode fails

— Data mis-assignment from bad barcode reads
— Increased per sample cost for library construction



Pooling without barcoding

* Mix input DNA without identification

* No way to definitively separate data from different
samples afterwards

* Advantages:

— Single library prep for a number of samples
— No yield lost to barcodes

* Disadvantages:

— Loss of all individual associations
* Loss of ability to use replicates!

— No check on accuracy of pooling



PCR-based artifacts

* Most libraries are PCR amplified during construction
* After library construction, single molecules are isolated and then
amplified again for sequencing

* Errors from library construction PCR will not be detectable as
seguencing errors

* Regions with secondary structure or extreme GC content:
— Will amplify poorly and be underrepresented
— May form small or weak clusters with poor sequence quality

* PCR may form chimeric sequences (especially in targeted designs)
 PCR amplification may result in duplicated sequences



PCR Errors: How Much PCR?

* You may be doing more PCR than you think
* |nitial amplification of sample

* Targeting PCR

* Library amplification

* 100 rounds of PCR is equivalent to a 2 order of
magnitude drop in polymerase accuracy



PCR-based artifacts: PCR bias

* Most PCR protocols work best for ~50% GC

* Extreme GC sequences are underrepresented
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Sequencing of primers, adapters & tags

* Not every base you sequence is useful

* Primers will be present if you used PCR to target your
input DNA

— Sequence from primers does not represent target
— Variation seen (or not) under primers is not real

— Overlapping products will allow analysis of the primer-
covered regions

* Short fragments may read through to adapter

* Custom barcodes or other tags may get sequenced too,
though most vendor tags will be removed automatically
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Example uses of resequencing

* SNP discovery and genotyping
* Population sequencing
e Structural variant discovery and genotyping

 Comparative genomics of closely related
species



Considerations before a

resequencing experiment

* Considerations for all resequencing
experiments

— Working with a reference genome
— Aligning reads to a reference

— Alignability

— Read length and type

* Considerations for specific types of
resequencing experiments

* Targeted resequencing



Working with a reference genome

* How good is the reference?
— Completeness
— Accuracy

 How representative is it of your genome(s)?
* Sequence won't align if

— Absent from the reference

— Too diverged from the reference



Aligning to a reference genome

* Aligning long sequences is relatively easy
— Abundant information to predict true alignments
— Can trim sequences based on alighment

* Short reads are harder
— Less information per read
— Often need full length alignments
— For diverged sequences, may not match at all
— Many more sequences, so speed of the aligner matters



Alignability

* Not all of the reference will be useful for
alignment because some parts are too similar
for unique alignments (duplications, recent
repeats, gene families)

* Longer reads and pairing increase alignability
 Example from human genome resequencing:

| Nopairing | 400 bp pair _| 6000 bp pair

36 bp read 85% 96%
100 bp read 93% 97% 98%

Adapted from The 1000 Genomes Project Consortium, Nature (2010)



Read length and type

* Read length matters for alignability

* Paired end reads also help with alignment
— Aligning one end uniquely localizes other end
— Aligners may use this to run more sensitive alignments
— Allows finding highly variant regions and small indels if the

other read from that pair aligns cleanly

e Paired end reads are necessary for structural variant
discovery and genotyping

* Mate pairs (from jumping libraries) are very useful for
structural variant analyses but of relatively little use for
SNPs and small indels



Considerations for specific types of

resequencing experiments

* SNP discovery and genotyping
* Population sequencing

 Comparative genomics of closely related
species



Considerations: Sequencing depth

for SNP discovery
Type of Experiment Coverage Required
Haploid SNPs/divergence > 10 x
Diploid SNPs/divergence > 30 x
Aneuploid/somatic mutations > 50 x

Population sequencing > 200 x



Example: Haploid SNP discovery

* You know there is only one base-pair at each locus, so
you should make the majority call

e Assuming a uniform 1% error rate, what is the
probability that the majority call from your sequencing
is actually right?

Depth of coverage % of time that % of time there was | % of time that majority
at the locus majority call is correct no majority call call is an error

1 99.000 0.00 1.00
2 98.010 1.98 0.01
3 99.970 0.00 0.03
4 99.941 0.06 <0.001

— 5§ 99.999 0.00 <<0.001 —




SNP discovery: Adjusting for

random sampling

* Previous graph assumed uniform coverage

 What are the probabilities if the reads are theoretically
randomly distributed?

Average depth of % of time that % of time there was no | % of time that majority
coverage across genome | majority call is correct majority call call is an error

62.475 37.153 0.372
2 85.646 14.075 0.279
3 94.409 5.432 0.158
4 97.786 2.134 0.081
S 5 99.110 0.851 0.039 __—
8 99.938 0.059 0.004
| 10 99.987 0.012 <0.001  —

* |n reality, distribution will be worse because reads are
non-randomly distributed



SNP discovery: Diploid or

aneuploid samples

* Diploid samples require twice as much coverage
— Want to be able to call heterozygotes
— Need to see each allele as often as you would for a
haploid organism
* Aneuploid or somatic mutation samples
— Cannot rely on expected 1:0 or 1:1 allele ratios
— Often unique variants, and thus are harder to confirm



Considerations:

Population Sequencing

 Example: Want to find all real variants in pooled
or host/environmental samples

 What coverage do we need to find a variant at
a given frequency?
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Considerations:

Population Sequencing

* Where is the sampling bottleneck?

* Generating more reads than input molecules
doesn’t improve calling

— The accuracy and sensitivity of calling is limited by
the sampling of the population, not the reads

* With limiting amounts of input, consider using
a barcoding scheme that tags input molecules



Considerations: Comparative

genomics of closely related species

 Comparative genomic analysis is most effective
when species are less than a few % diverged

e Using a more diverged reference:

— Requires more sensitive (time consuming)
algorithms

— Results in loss of alignability (reads are not placed)

— |s worse if the divergence is due to insertion/
deletion



Targeted sequencing

* Mostly similar to whole genome resequencing
e Targets specific regions (e.g., exome) by:

— PCR amplification

— Hybrid selection

— Targeted genome amplification

* |nvolves some special analysis considerations



Pros & Cons: Targeted sequencing

* Pros:
— Significant cost savings if target <<< genome
— Can achieve higher coverage on target

* Cons:
— Cost of targeting reagents can be high
— Some sequenceable regions very hard to target
— Variability of coverage is higher
— Targeting may introduce bias
— Challenging to identify duplicates in targeted sequence



Considerations: Targeted sequencing

* Targeting introduces additional bias

* More coverage required to overcome this (want
3 times or more as much average depth)

 Many off-target reads are generated
— Not all reads will come from targeted regions

— Need to bulk up coverage to overcome this
— Amount will depend on specificity of the targeting



Considerations: Targeted sequencing

e Targeted sequences often include repeats and
duplications, and thus some untargeted regions
may be sequenced as well

* Need to align to whole genome (not just to the
part you targeted) to ensure that unique hits to

targeted regions are the best hits for that read
in the genome



Considerations: Targeted sequencing

 Some targeting generates identical fragments
— Hard to find PCR duplicate reads
— Many or all starts and ends are the same

* Can use a random barcoding scheme in the
amplification to tag fragment of origin



Tagged Primers

M 1 Primer2 /

Genome

Amplification/Sequencing Primer(s)
Barcode: Known + random

Targeting Primer



Types of sequencing experiments

* Resequencing
* Genome assembly
 RNA-Seq

* Metagenomics



Example uses of genome assembly

* Generate a reference genome

e Alternative method of SNP discovery (even if you
have a reference)
— Mostly for small, haploid genomes
— Provides better diversity calling for small indels and
particularly difficult-to-align regions
* Discover structural variants

— De novo assembly is the only way to get the sequence of a
novel insertion

— Complex structural variants can be more easily discovered
through de novo assembly than read alignment to a pre-
existing reference



Steps of a genome assembly

experiment

* Choose your sample(s)
e Extract DNA from samples

* Fragment the DNA (may need to do this into
multiple sizes)

 Library construction (probably need to make
multiple libraries)

* Sequencing



Genome assembly considerations:

Depth of coverage

* Very deep coverage needed
— For short reads (lllumina, lon, SOLiD): 50x — 100x

— For longer reads (454, PacBio): 20x

« Common issue is not having sufficient coverage
for de novo assembly



Genome assembly considerations:

Type of reads

* Long reads help greatly
— Provide connectivity through low coverage
— Resolve repetitive/duplicated regions

* Paired reads necessary

e Jumping libraries (& mate pair reads) are not
always necessary, but yield much better
connectivity



Genome assembly considerations:

Genome complexity and composition

* Repeat content of genome
— More repetitive genomes require more coverage
— Paired end reads and jumping libraries more important

* GC content of genome

— Genomes with extremes of GC content will have more
bias in representation

— Greater average coverage will be required to assemble
through extreme GC regions



Genome assembly considerations:

Viral Genomes

* Viral genomes can be difficult to assemble
despite their small size

* High internal variability

 More variability of coverage due to
amplification techniques required



Genome assembly considerations:

Highly variable viral coverage
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Genome assembly considerations:

Highly variable viral coverage

A HIV clone HIV clinical sample WNV clone
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Genome assembly considerations:

Assembler performance on viruses
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Types of sequencing experiments

* Resequencing
* Genome assembly
* RNA-Seq

* Metagenomics



Example uses of RNA-Seq

* Global expression differences

* Annotating genes from a newly sequenced
genome

* Discovery of novel genes or transcripts

* Discovery of antisense or other regulatory
transcripts

e Variability of isoform expression across conditions



Steps of an RNA-Seq experiment

e Extract RNA from samples
* Enrich for mRNAs

 Make cDNA from RNA

* Fragment the cDNA

e Library construction

* Sequencing



Considerations before an

RNA-Seq experiment

* Number of samples needed (conditions and
replicates)

* Number of reads needed

e Optional specialized techniques

* Length of reads

* Single end or paired end sequencing

 Two methods of analysis:
— Align then assemble
— Assemble then align

* Measuring transcript levels by RNA-Seq



Number of samples needed

* Number of conditions or tissues determined by
experiment:
— For differential expression, what are you comparing
— For novel discovery, what are the relevant tissues,

conditions, or time points?

* Number of replicates determined by biological
variability among replicates

* Website to help estimate optimal power: Scotty
— http://euler.bc.edu/marthlab/scotty/scotty.php



Number of reads needed

* Need enough reads to identify (and quantify)
all transcripts of interest

* How abundant are transcripts of interest?

* What fraction of all transcripts in the cell are in
your transcripts of interest?



Number of reads needed

* How large are expression differences?
* Determines significance of the statistical difference
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Optional: Strand-specific libraries

e Standard techniqgues make sequencing libraries
that lose the strand of the transcripts

* Multiple special techniques exist to preserve
strand information (Levin, Nat. Methods, 2010)

* Strand-specific libraries make it easier to annotate:

— Starts and stop of overlapping genes on opposite
strands

— Low abundance transcripts
* Cons: extra steps, extra cost



Strand-specific libraries
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Length of Reads

* Longest high quality reads you can get

* Reads should be at least 75 bp to take
advantage of the best analysis tools

e Caveat: very long reads may create a problem if
they span more than 2 exons



Single end or paired end

sequencing

e Always generate paired reads if possible
* Read pairing is used to assemble transcripts

* Exception: Aligning to known transcripts for
expression



Example RNA-Seq Runs

 Human expression (per condition):
% lane HiSeq, 76bp paired

* Vertebrate annotation (per tissue):
% lane HiSeq, 101 bp paired, strand-specific

* Bacterial and fungal annotation:
1/12 lane HiSeq, 101 bp paired, strand-specific



Two methods of RNA-Seq analysis

RNA-Seq reads
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Analysis method: Align first

* Leverages the genome to guide construction of
transcripts

— Allows complete reconstruction at lower coverage
— More power to detect low abundance transcripts

* Dependent on having a good reference genome

Genome:

Reads: —_

Split Reads: SollllLD DiiinoTeeee = —sseeziiirs



Analysis method: Assemble first

e Works without a reference

* Must use if organism has no or poor quality
reference genome

* Good for reconstructing full length models for
moderate to high abundance transcripts

* Does poor job of reconstructing models for low
abundance transcripts



Measuring transcript levels by

RNA-Seq

* Read count from a transcript is proportional to
transcript levels, with two considerations:

— Transcripts differ in length

— Experiments differ in total read count



Measuring transcript levels by

RNA-Seq

* Read count from a transcript is proportional to
transcript levels, with two considerations:
— Transcripts differ in length
Normalize: divide read count by length in kb
— Experiments differ in total read count
Normalize: divide read count by millions total reads

e Resulting value in RPKM

* For paired end sequencing, count each fragment
once whether one or two read align = FPKM




Caveats exist when measuring

expression by RNA-Seq

RNA-Seq values can be compared across different
experimental conditions

Current programs that perform statistical tests on RNA-
Seq data are of variable quality

Programs like Cufflinks and Cuffdiff are reasonable for
comparing genes or isoforms in different conditions, but
not perfect

Genuine differences between conditions are easiest to
show with statistical significance if several replicates are
used in analysis



Examples of caveats when

measuring expression by RNA-Seq

* PCR duplicates don’t represent actual counts of RNA
fragments, so you need to remove them for quantitation

e Need to be careful about variance:

* Biological Variance, e.g. Biological variability between
replicates of the same conditions may be greater than
what is needed to determine statistically significant gene
expression changes between conditions

e Statistical Variance, e.g. When you align reads, they may

map to multiple isoforms or multiple paralogs, so you
need to assign those reads fractionally to get total

transcription levels



Types of sequencing experiments

* Resequencing
* Genome assembly
* RNA-Seq

* Metagenomics



Example uses of metagenomics

* Characterize species present in an environment

e Determine differences in an environmental
population measured at different times or

conditions

* Associate metagenomic results with
environmental conditions (e.g., host health)



Steps of a metagenomic experiment

e Extract DNA from samples

* Fragment the DNA (or amplify 16S if not doing
whole-genome shotgun sequencing)

* Library construction
* Sequencing



Considerations before a

metagenomics experiment

* Reproducibility of metagenomic data depends on:
— Sample Prep
— Sequencing Technology
— Analysis tools
— Read length and read depth

* Results are not consistent across different
experimental designs, but are comparable within
identical designs



Metagenomics:

Different sample preps

* PCA plots from three samples (colors)
sequenced by three groups using
different (left) versus identical (right) protocols

for sample prep
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Metagenomics:

Different sequencing technologies

 Same (known) mock community sequenced on
3730, 454, and lllumina
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Metagenomics: Different

sequencing & analysis techniques

* Mock community of 21 samples sequenced by
3730 (left) and 454 (right) show greatly different
numbers of taxa when filtered differently
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Metagenomics: Considerations for

read type

* Length is very important for all strategies
— For 165, length provides more of target

— For WGS, better assemblies
— More chance of indentifying gene from single read

* Importance of pairs depends on strategy

— For 16S, provides more length only
— For assembly methods, very important
— Will not help much with direct gene finding




Course Outline

* Considerations before starting a sequencing
experiment

e Steps of generating sequencing data
* Considerations before starting specific types of
seguencing experiments
— Resequencing
— Genome assembly
— RNA-Seq
— Metagenomics



