Metagenomic taxonomic profiling with MetaPhIAn2

Galeb Abu-Ali Eric Franzosa Curtis Huttenhower

09-17-15

Harvard T.H. Chan School of Public Health Department of Biostatistics

The bioBakery: a next-generation environment for microbiome analyses

vagrant_default_1391533701886_62205 [Running]
 vagrant_default_139153701886_62205 [Running]
 vagrant_default_139153701866_62205 [Running]
 vagrant_default_139153701866_62205 [

DOD

Environment for meta'ome analysis

- Shotgun metagenomes/transcriptomes
- Taxonomic and functional profiling
- Experimental design, statistical analysis
- Pre-built one-click environments to run:
 - On your laptop graphically
 - On a server remotely
 - On the cloud (Amazon)

Who is there? (taxonomic profiling)

What are they doing? (functional profiling)

Short Reads

6

Short Reads

7

MetaPhIAn in action: strain profiling

- In practice, not all markers are present
- Individual-specific marker "barcodes"
- Often very stable over time

DO

Some setup notes

- Slides with green titles or text include instructions not needed today, but useful for your own analyses
- Keep an eye out for red warnings of particular importance

MM

- Command lines and program/file names appear in a monospaced font.
- Commands you should specifically copy/ paste are in monospaced bold blue.

Go to <u>http://hmpdacc.org</u>

HAP

M

NIH HUMAN MICROBIOME PROJECT

Current News

- June 2012
 Owen White and Dirk Gevers discuss the HMP on Wisconsin Public Radio
- June 2012 DACC website updated in coordination with publication of HMP data
- April 2012
 HMP DACC Reference Genome download page has been updated

More News Items

Publications

- Ethical Discourse about the Modification of Food for Therapeutic Purpo...
- Caring about trees in the forest: incorporating frailty in risk analys...
- Dietary-fat-induced taurocholic acid promotes pathobiont expansion and...

Q **N B** 👻 Login REFERENCE IMPACTS ON MICROBIOME TOOLS & ETHICAL HMPDACC OUTREACH GENOMES ANALYSIS HEALTH TECHNOLOGY IMPLICATIONS DATA BROWSER Feedback Welcome to the Data Analysis and Coordination Center (DACC) for the National Institutes of Health (TH) GET DATA 1P Common Fund supported Human Microbiome Project (HMP). This site is the central repository for all data. The aim of the HMP is to characterize microbial communities found at multiple human body sites and to

Click "Get Data"

GETTOOLS

Common Fund supported Human Microbiome Project (HMP). This site is the central repository for all Hup data. The aim of the HMP is to characterize microbial communities found at multiple human body sites and to look for correlations between changes in the microbiome and human health. More information can be found in the menus above and on the NIH Common Fund site.

Areas of Interest

Check out what's available

MM

Check out what's available

MM

2 E Q 🔻 Login REFERENCE MICROBIOME IMPACTS ON TOOLS & ETHICAL HMPDACC OUTREACH GENOMES ANALYSIS HEALTH TECHNOLOGY IMPLICATIONS DATA BROWSER Feedback NIH HUMAN MICROBIOME HMIWGS/HMASM - Illumina WGS Reads and Assemblies PROJECT In the first phase of WGS sequencing, 764 samples were sequenced, comprising 16 body sites. Of these, 749 samples underwent assembly. Reads for all 764 samples, and 749 assemblies are provided here. Reads and assemblies were subjected to QC assessment, including identification of outliers by mean contig & ORF density, human hits, rRNA hits and Current News size. 690 samples passed this QC and were included in downstream wgs analyses. June 2012 This dataset includes over 35 billion human contaminant-screened reads in FASTQ format, which are 2.3 TB in size, compressed. Reads from each Owen White and Dirk Gevers discuss individual sample were assembled using SOAP, generating 48.3 million scaffolds with a total compressed size of 13 GB. the HMP on Wisconsin Public Radio June 2012 Data Table DACC website updated in coordination Click on your favorite body site Protocols and Tools with publication of HMP data Related Pages April 2012 HMP DACC Reference Genome download page has been updated Files More News Items SRS ID Reads Size A Reads MD5 Assembly Ass. Size Assembly MD5 Publications Anterior Nares (94 Rows) Ethical Discourse about the Modification of Food for iva (6 Rows) Therapeutic Purpo... Caring about trees in the forest: Buccal Mucosa (123 Rows) incorporating frailty in risk analys... Hard Palate (1 Row) Dietary-fat-induced taurocholic acid promotes pathobiont Left Retroauricular Crease (9 Rows) expansion and... Hid Vagina (2 Rows) More Publications

Don't click on anything!

Check out what's available

- April 2012

HMP DACC Reference Genome download page has been updated

More News Items

DOD

Publications

- Ethical Discourse about the Modification of Food for Therapeutic Purpo...
- Caring about trees in the forest: incorporating frailty in risk analys...
- Dietary-fat-induced taurocholic acid promotes pathobiont expansion and...

More Publications

Data Resources

- Tools & Protocols
- BLAST against Reference Genomes
- Project Catalog
- Access to Strains
- Clinical Sampling
- Most Wanted Resource

Files						
SRS ID	Reads	Reads Size 🔺	Reads MD5	Assembly	Ass. Size	Assembly MD5
Anterior I	Nares (94 Rows	;)				
SRS047708	FTP.	1.7 MB	d786590ff7fec20e8967127991766029	TP.	1.3 KB	ed98eda02d80a137c52b6fa8a3c57833
SRS019215	📑 🗊	10.1 MB	55de248bbfa8c1bbf4447d007330f7ff	📑 🗊	12.1 KB	cab8918433280eafc3d8f6ad78dc1ff7
SRS063178	FTP:	13.1 MB	336f0b31b92880224c91ad52c4784adc	TP.	10.7 KB	99de257f1942e98bf1c052e2d046df33
SRS065179	TP:	13.3 MB	27b2c9209bc56cbe219d8c65fa32296c	📑 EB	54.6 KB	bb8b0d62a3c1923abfcaea01a598a60a
SRS065142	TP:	13.5 MB	3b05d6fcb205106fbd03f314e39f6d63	TP:	7.6 KB	91177065cf438056f2bfc67e99562fe4
SRS018585	TP:	16.8 MB	9d4129d2f5fdd51b9fc899bd84c47b5b	📑 EB	7.9 KB	aa9e9857b26b9efb4fa39bfaf101dc9d
SRS015640	FTP:	17.6 MB	595baf36d8b3dcdd21149b3086ccbbee	TP:	52.4 KB	1c7a464db2fccce17c02f9600c867cb1
SRS056210	TP:	18.1 MB	9b2f74b8067e6f20551e6d3b48124c42	📑 🗊	18.3 KB	c4abace0ec0b3e7e5ce1513cb8270e56
SRS018312	FTP:	18.9 MB	2454e80d7e5216adf8d5b1850c98738c	TP:	25.4 KB	4f5f760eadd77782862669263e1b1d9d
SRS015450	TP:	18.9 MB	eefc0dcf2d52ca5251b01860d54d2bb5	📑 EB	107.1 KB	4e0a83868f2fb44f1788dfe1aaa5e13f
SRS049744	TP:	21.5 MB	6d9e2ffc82b08ef37551e902096e4c98	TP:	14.3 KB	da7a1cddd3c84b121ff49086432d25d3
SRS012291	📑 🗊	21.9 MB	12775f5df6e71961f1c544e84f6c7342	📑 EB	8.9 KB	17b5110d391817c7ce52b7c1026df1ba
SRS051600	FTP:	22.2 MB	391775b95926a221b8a3cde54a79ae22	E FTB	13.9 KB	6db7007edd32b534bc918aad42d600ae
SRS019339	TP:	23.1 MB	76a621d6503d11d1a133a023dc240ae5	📑 🗊	57.3 KB	9255d8206f10ac2611cf45270daa166c
SRS017244	FTP.	23.5 MB	b7c2dec67738f317cb8826c09e1a9e39	TP.	21.3 KB	9bcf59e6b4fe15a4e8ccacb0bc824ba8
SRS018671	ा हा	24.0 MB	7548b06b37038440c5420f7677ff7371	The second se	135.4 KB	4a180e3ea42a46bcea0a9441b137f243
Show All	Save As CSV F	ile				

Protocols and Tools

Getting some (prepped) HMP data

Connect to the server instead
 - cd to your favorite directory and run:

M

for S in `ls /home/ubuntu/metagenomics/data/input/7*.fasta`;
do ln -s \$S; done

• These are subsamples of six HMP files:

- SRS014459.tar.bz2 → 763577454-SRS014459-Stool.fasta
- SRS014464.tar.bz2 → 763577454-SRS014464-Anterior_nares.fasta
- SRS014470.tar.bz2 → 763577454-SRS014470-Tongue_dorsum.fasta
- SRS014472.tar.bz2 → 763577454-SRS014472-Buccal_mucosa.fasta
- SRS014476.tar.bz2 → 763577454-SRS014476-Supragingival_plaque.fasta
- SRS014494.tar.bz2 → 763577454-SRS014494-Posterior_fornix.fasta

All six shotgunned body sites from

- One subject, first visit
- Subsampled to 20,000 reads

 We won't use it today, but the first version of MetaPhIAn is at: <u>http://huttenhower.sph.harvard.edu/metaphlan</u>

Department of Biostatistics, Harvard School of Public Health

Contact Documentation People Presentations Publications Research Teaching

Home

M

MetaPhIAn: Metagenomic Phylogenetic Analysis

MetaPhIAn is a computational tool for profiling the composition of microbial communities from metagenomic shotgun sequencing data. MetaPhIAn relies on unique clade-specific marker genes identified from 3,000 reference genomes, allowing:

- up to 25,000 reads-per-second (on one CPU) analysis speed (orders of magnitude faster compared to existing methods);
- unambiguous taxonomic assignments as the MetaPhIAn markers are clade-specific;
- accurate estimation of organismal relative abundance (in terms of number of cells rather than fraction of reads);
- species-level resolution for bacterial and archaeal organisms;
- extensive validation of the profiling accuracy on several synthetic datasets and on thousands of real metagenomes.

Please refer to the MetaPhIAn paper for additional information, validations, and examples. Also the main paper of the Human Microbiome Project uses MetaPhIAn (version 1.1) for species-level metagenomic profiling.

Here is an **infographic** of the application of the **Human Microbiome Project** results obtained applying MetaPhIAn on the 690 shotgun sequencing samples. Email **me** for a high-resolution version. This infographic also appears in a slightly modified version as the main illustration of a **New York Times article** by Carl Zimmer available **here** (NY Times subscription needed) and **here** (NY Times copyrighted version).

A map of diversity in the human microbiome

Streptococcus dominates the oral cavity with S. mitis > 75% in the cheek Propionibacterium acnes lives on the skin and nose of most people Many Corynebacterium species characterize different body sites: C. matruchoti the plaque C. accolens the nose C. croppenstedtii

Instead, go to http://huttenhower.sph.harvard.edu/metaphlan2

DOC	The Huttenhower Lab Department of Biostatistics, Harvard School of Public Health								
	Contact Documentation People Presentations Publications Research Teaching								
Home	You <i>could</i> download MetaPhIAn2 by clicking here								

MetaPhIAn v2.0

M

MetaPhIAn v2.0: Metagenomic Phylogenetic Analysis

MetaPhIAn is a computational tool for profiling the composition of microbial communities from metagenomic shotgun sequencing taka. MetaPhIAn relies on unique cladespecific marker genes identified from ~17,000 reference genomes (~13,500 bacterial and archaeal, ~3,500 viral, and ~110 eukr votic), allowing:

- up to 25,000 reads-per-second (on one CPU) analysis speed (orders of magnitude faster compared to existing manods);
- · unambiguous taxonomic assignments as the MetaPhIAn markers are clade-specific;
- accurate estimation of organismal relative abundance (in terms of number of cells rather than fraction of reads);
- · species-level resolution for bacteria, archaea, eukaryotes and viruses;
- extensive validation of the profiling accuracy on several synthetic datasets and on thousands of real metagenomes.

Obtaining MetaPhIAn v2.0

MetaPhIAn v2.0 can be obtained via the **MetaPhIAn v**.0 **Bitbucket repository**. The repository contains the source code and database insurged to run Meta-mAn v2.0, as well as a README file that includes the following information:

- Downloading MetaPhIAn v2.0
- Installation
- Detailed instruction on running MetaPhIAn v2.0

Tutorials

But don't! Instead, we've installed MetaPhIAn already for you by clicking here on the development site, http://bitbucket.org/biobakery/metaphlan2

M

• The complete MetaPhlAn2 install is in /class/stamps-software/biobakery/metaphlan2/

Bitt	oucket ^{Features}	Pricing			owner/repository	٩	? ▼	English -	Sign up	Log in
•	Source	MetaF	PhIAn2 /							
Ш	db_v20									
	utils									
¢	.hgtags	205 B	4 hours ago	tagging version 2.0_beta3						
\mathcal{V}_{-}	README.md	24.6 KB	2 hours ago	README.md edited online with	Bitbucket					
đ	metaphlan2.py	35.7 KB	6 hours ago	Making MetaPhIAn exiting grad	iously when the input	forma	t cannot	be guessed b	ecause two f	iles are
- - - - -	 MetaPhIAn 2.0: Descriptio Pre-requis Installation Basic Usa Full comm Utility Scri Meta Heatmap Graf 	Metagenon n sites n ge nand-line op pts rging Table Visualizatio iPhIAn Visu	nic Phylogenetic A ptions s n alization	nalysis						

DOD

>>

From the command line...

You can create your own virtual copy by running:

ln -s /home/ubuntu/metagenomics/metaphlan2/

• To see what you can do, run:

DOD

./metaphlan2/metaphlan2.py -h | less

– Use the arrow keys to move up and down, ${\rm q}$ to quit back to the prompt

00	1. ssh	M ^M
usage: metaphlan2.py	[-h] [-v] [mpa_pkl] [stat] [-t ANALYSIS TYPE]	
	[tax_lev TAXONOMIC_LEVEL] [nreads NUMBER_OF_READS]	
	[pres_th PRESENCE_THRESHOLD]	
	[bowtie2db METAPHLAN_BOWTIE2_DB]	
	[bt2_ps BowTie2 presets] [tmp_dir] [clade]	
	[min_ab] [min_cu_len]	
	[input_type {automatic,fastq,fasta,multifasta,multifas	itq,
bowtie2out,sam}]		
	[ignore_viruses] [ignore_eukaryotes]	
	[ignore_bacteria] [ignore_archaea] [stat_q]	
	[ignore_markers IGNORE_MARKERS] [avoid_disqm]	
	[bowtie2_exe BOWTIE2_EXE] [bowtie2out FILE_NAME]	
	[no_map] [-o output file] [nproc N]	
	<pre>[biom biom_output] [mdelim mdelim]</pre>	
	[INPUT_FILE] [OUTPUT_FILE]	

DESCRIPTION

DOD

MetaPhlAn version 2.0.0 beta2 (12 July 2014): METAgenomic PHyLogenetic ANalysis for

taxonomic classification of metagenomic reads.

AUTHORS: Nicola Segata (nicola.segata@unitn.it)

```
COMMON COMMANDS
```

• To launch your first analysis, run:

./metaphlan2/metaphlan2.py \

M

- --mpa_pkl ./metaphlan2/db_v20/mpa_v20_m200.pkl \
- --bowtie2db ./metaphlan2/db_v20/mpa_v20_m200 $\$
- ./763577454-SRS014459-Stool.fasta \
- --input_type fasta \
- > ./763577454-SRS014459-Stool.txt

This will run for ~3-4 minutes

What did you just do?

- Two new output files:
- 763577454-SRS014459-Stool.fasta.bowtie2out.txt
 - Contains a mapping of reads to MetaPhIAn markers
- 763577454-SRS014459-Stool.txt
 - Contains taxonomic abundances as percentages

less -S 763577454-SRS014459-Stool.fasta.bowtie2out.txt

MM

No. 1. [screen 2: bash] chuttenhower@class:~/tmp (ssh) HWUSI-EAS1625_615HE:4:100:0:1248/1 gil479140210/ref/NC_021010.1/:1043207-1044529 HWUSI-EAS1625_615HE:4:100:0:1301/1 gil483877978|ref|NZ_KB890364.1|:31018-31902 HWUSI-EAS1625_615HE:4:100:1000:167/1 gi|242362078|ref|NZ_GG692716.1|:28261-29169 HWUSI-EAS1625_615HE:4:100:1001:1264/1 gi|270295698|ref|NZ_GG730107.1|:470181-472532 gi|224993849|ref|NZ_ACFY01000158.1|:c1296-10 HWUSI-EAS1625_615HE:4:100:1001:1320/1 HWUSI-EAS1625_615HE:4:100:1001:1604/1 gi|319644663|ref|NZ_GL635657.1|:c320982-320029 HWUSI-EAS1625_615HE:4:100:1001:1734/1 gi|484001485|ref|NZ_KB894131.1|:91019-91717 HWUSI-EAS1625_615HE:4:100:1001:259/1 gi|479210985|ref|NC_021043.1|:c1165057-1164158 gi|224485637|ref|NZ_E0973491.1|:c620672-618312 HWUSI-EAS1625_615HE:4:100:1002:1501/1 HWUSI-EAS1625_615HE:4:100:1003:1644/1 gil2244856361refINZ_EQ973490.11:c204903-202990 HWUSI-EAS1625_615HE:4:100:1003:1702/1 gi | 423335209 | ref | NZ_JH976498.1 | : 329186-330046 HWUSI-EAS1625_615HE:4:100:1003:2030/1 gi|238922432|ref|NC_012781.1|:2910912-2912072 HWUSI-EAS1625_615HE:4:100:1004:353/1 gil223955873|ref|NZ_DS499674.11:c266282-265248 HWUSI-EAS1625_615HE:4:100:1004:742/1 gi|283767237|ref|NZ_GG730311.1|:c124395-124171 HWUSI-EAS1625_615HE:4:100:1005:1722/1 gi|410105720|ref|NZ_JH976502.1|:750498-751148 HWUSI-EAS1625_615HE:4:100:1005:505/1 gi|479170689|ref|NC_021020.1|:1540599-1542305 HWUSI-EAS1625_615HE:4:100:1006:848/1 gi|347530298|ref|NC_015977.1|:c3433030-3431387 HWUSI-EAS1625_615HE:4:100:1007:1428/1 gi | 423332908 | ref | NZ_JH976496.1 | : 1485161-1487113 gil4233329081ref1NZ_JH976496.11:906255-909584 HWUSI-EAS1625_615HE:4:100:1007:1465/1 gi|224485479|ref|NZ_EQ973214.1|:108053-108250 HWUSI-EAS1625_615HE:4:100:1008:1187/1 HWUSI-EAS1625_615HE:4:100:1008:1241/1 gil270293478/ref/NZ_GG730105.1/:c830784-828727 HWUSI-EAS1625_615HE:4:100:1008:140/1 gi|224514921|ref|NZ_DS499545.1|:41991-42827 gi|301307949|ref|NZ_GG774972.1|:644845-649113 HWUSI-EAS1625_615HE:4:100:1009:154/1 gi|303257489|ref|NZ_GL383997.1|:67163-67873 HWUSI-EAS1625_615HE:4:100:1009:467/1

less -S 763577454-SRS014459-Stool.txt

MND

No. 00 1. [screen 2: bash] chuttenhower@class:~/tmp (ssh) k__Bacteria 100.0 k__Bacterialp__Firmicutes 64.82041 k__Bacterialp__Bacteroidetes 35.17959 k__Bacterialp__Firmicutes/c__Clostridia 64.82041 k__Bacterialp__Bacteroideteslc__Bacteroidia 35.17959 k__Bacterialp__Firmicuteslc__Clostridialo__Clostridiales 64.82041 k__Bacterialp__Bacteroideteslc__Bacteroidialo__Bacteroidales 35,17959 k__Bacterialp__Firmicutes/c__Clostridialo__Clostridiales/f__Ruminococcaceae 37.71449 k__Bacterialp__Bacteroideteslc__Bacteroidialo__Bacteroidaleslf__Bacteroidaceae 31.5000 k__Bacterialp__Firmicutes/c__Clostridialo__Clostridiales/f__Eubacteriaceae 21.99035 k__Bacterialp__Firmicuteslc__Clostridialo__Clostridialeslf__Lachnospiraceae 5.11557 k__Bacterialp__Bacteroideteslc__Bacteroidialo__Bacteroidaleslf__Porphyromonadaceae 3.6 k__Bacterialp__Firmicuteslc__Clostridialo__Clostridialeslf__Ruminococcaceaelg__Subdolig k__Bacterialp__Bacteroideteslc__Bacteroidialo__Bacteroidaleslf__Bacteroidaceaelg__Bacte k__Bacterialp__Firmicuteslc__Clostridialo__Clostridialeslf__Eubacteriaceaelg__Eubacteri k__Bacterialp__Firmicuteslc__Clostridialo__Clostridialeslf_Lachnospiraceaelg__Roseburi k__Bacterialp__Bacteroideteslc__Bacteroidialo__Bacteroidaleslf__Porphyromonadaceaelg__P k__Bacterialp__Firmicutes/c__Clostridialo__Clostridiales/f__Ruminococcaceae/g__Subdolig k__Bacterialp__Firmicuteslc__Clostridialo__Clostridialeslf__Eubacteriaceaelg__Eubacteri k__Bacterialp__Bacteroideteslc__Bacteroidialo__Bacteroidaleslf__Bacteroidaceaelg__Bacte k__Bacterialp__Bacteroideteslc__Bacteroidialo__Bacteroidaleslf__Bacteroidaceaelg__Bacte k__Bacterialp__Firmicuteslc__Clostridialo__Clostridialeslf__Eubacteriaceaelg__Eubacteri k__Bacterialp__Firmicuteslc__Clostridialo__Clostridialeslf__Lachnospiraceaelg__Roseburi k__Bacterialp__Bacteroideteslc__Bacteroidialo__Bacteroidaleslf__Bacteroidaceaelg__Bacte 763577454-SRS014459-Stool.txt

• You can finish the job if you like:

M

• • •

- ./metaphlan2/metaphlan2.py \
 --mpa_pkl ./metaphlan2/db_v20/mpa_v20_m200.pkl \
 --bowtie2db ./metaphlan2/db_v20/mpa_v20_m200 \
 ./763577454-SRS014464-Anterior_nares.fasta \
 --input_type fasta \
 > ./763577454-SRS014464-Anterior_nares.txt
- Note that you can use the up arrow key to make your life easier!
- Or you can copy the rest pre-calculated:

cp /home/ubuntu/metagenomics/results/metaphlan/*.txt .

 Let's make a single table containing all six samples:

mkdir tmp

DOD

mv *.bowtie2out.txt tmp

./metaphlan2/utils/merge_metaphlan_tables.py *.txt > \
 763577454.tsv

- You can look at this file using less
 - -Note 1: The arguments less -x4 -S will help
 - Note 2: You can set this "permanently" using export LESS="-x4 -S"

• But it's easier using MeV; go to http://www.tm4.org/mev.html

M

• Or use the appropriate local copy for your machine:

scp /home/ubuntu/metagenomics/ext/MeV_4_9_0_r2731_win.zip .
scp /home/ubuntu/metagenomics/ext/MeV_4_8_1_r2727_mac.tgz .
scp /home/ubuntu/metagenomics/ext/MeV_4_8_1_r2727_linux.tar.gz .

• Don't forget to transfer your 763577454.tsv file locally for viewing using scp

M

Unzip, launch MeV, and select File/Load data

- Click "Browse" to your TSV file, then
 - Tell MeV it's a two-color array
 - Uncheck "Load annotation"

DOD

- Click on the upper-leftmost data value

00			Express	ion File Load	er			
Select File Loa	der Help							
File (Tab Deli	mited Multiple Sam	ole (*.*))						
Select expression	on data file /Users	/chuttenh/I	Downloads/7	63577454.ts	7		Browse	
	////	((3F374F4 +	_			
Visers/chuttenh/Downloads/763577454.tsv								
💽 Two-co	lor Array			🔵 Sir	ngle-color Arra	ay		
-Load Annotatio	ata							
Automatic	ally download		from local	file		🗌 Load An	otation	
Automatic	any download	OLOad	monniocar	me		C Load Am	iotation	
Choose an o	organism 🛟	No file :	selected			No	e loaded.	
	\$			Choose File				
E								
Expres								
Pastaria 10	357745 7635. 45	76357745.	. 76357745.	76357745	100.0		101	
Bacteria 10	95.8 66	8 2253	2 33635	72 14171	100.0			
k Bau	90666	8.2253	2.33635	72.14171				
k Bacteri 0	95,90666	5.51533	2.33635	72.14171				
k Bacteri 0		3.51469	0.38831	6.74077				
k Bacteri 0		3.51469	0.38831	6.74077				
k Bacteri 0		3.51469	0					
k Bacteri 0		0		2.43846				
k_Bacteri 0		0	0.38831	4.30232				
k_Bacteri 0	42.97557	0		41.42792				
k_Bacteri 0	42.97557	0		41.42792				
Click the upper	-leftmost expressio	n value. Cli	ick the Load	l button to fi	nich			
Circk the upper	-ieraniost expressio	in value. Cli	ick the Load	button to n	mail.			
			A MultiTu	norimont				
		r∣Me	V * Viewer	perment	Cancel Lo	ad		
	_			_				

 "Load" your data, then make it visible by: – Display/Set Color Scale Limits

MM

- Choose Single Gradient, min 0, max 10

• Finally, to play around a bit:

DOD

- Display/Set Element Size/whatever you'd like
- Clustering/Hierarchical Clustering
- Optimize both gene and sample order
- And select Manhattan Distance (imperfect!)

	O O HCL: Hierarchical Clustering									
Γ	MeV	Π								
h	Tree Selection	1								
L	Gene Tree	I								
Ľ	Cuering Optimization									
	🗹 Optimize Gene Leaf Order 🛛 🗹 Optimize Sample Leaf Order	I								
	(Leaf ordering optimization will increase the calculation time)	I								
	Distance Metric Selection									
	Current Metric: Manhattan Distance 🗘									
	(The development of the second	1								
	Use Absolute Distance									
14	Linkage Method Selection	l								
11, 11, 11, 11,	Average linkage clustering									
FL, FL, FL	Complete linkage clustering									
-	Single linkage clustering									
FL, FL, FL	Validation									
	Use Validation (Requires MeV+R)									
7 7 7	? MeV MultiExperiment Reset Cancel OK	1								

• If you'd like, you can

M

– Display/Sample-Column Labels/Abbr. Names

- MeV is a tool; imperfect, but convenient
 - You should likely include just "leaf" nodes
 - Species, whose names start include "s____"
 - You can filter your file using:

MM

- You can, but might not want to, z-score normalize
 - Adjust Data/Gene-Row Adjustments/Normalize Genes-Rows

• Many other tools built in – experiment!

Summary

MetaPhlAn2

M

- Evolution of MetaPhlAn1
 - Viruses, euks, subspecies, speed
 - And a LOT more reference data!
- Raw metagenomic reads in
- Tab-delimited species relative abundances out

Meta'omic functional profiling with ShortBRED

Galeb Abu-Ali Eric Franzosa Curtis Huttenhower

09-18-15

Harvard T.H. Chan School of Public Health Department of Biostatistics

Who is there? (taxonomic profiling)

What are they doing? (functional profiling)

What we mean by "function")

INOSITOL PHOSPHATE METABOLISM

00562 11/1/10 (c) Kanehisa Laboratories

UMAnN <u>HMP Unified Metabolic Analysis Network</u>

B.

 A_2

Sample 1

Α

В

С

Short reads + protein families Nucleotide pan-genome search Translated BLAST search

Sample 2 Sample 3 Sample 4 Sample 5

Weight hits by %ID Sum over seqs. within family

Adjust for sequence length

Repeat for each metagenomic or metatranscriptomic sample

UMAnN <u>HMP Unified Metabolic Analysis Network</u>

Many millions of hits are collapsed into a few million gene families (UniRefs) (*still a large number*)

Map genes to MetaCyc pathways

- Use MinPath (Ye 2009) to find simplest pathway explanation for observed genes
- Remove pathways unlikely to be present due to low organismal abundance
- Smooth/fill gaps

Collapsing UniRef abundance into MetaCyc pathway abundance (or presence/absence) yields a smaller, more tractable feature set

What's there: ShortBRED

Jim Kaminski

- ShortBRED is a tool for <u>quantifying protein families in metagenomes</u> or metatranscriptomes
 - Short Better REad Dataset
- Inputs:

DOD

- FASTA file of proteins of interest
- Large reference database of protein sequences (FASTA or blastdb)
- Metagenomes (FASTA/FASTQ nucleotide files)
- Outputs:
 - Short, unique markers for protein families of interest (FASTA)
 - Relative abundances of protein families of interest in each metagenome (text file, RPKM)
- Compared to BLAST (or HUMAnN), this is:
 - Faster
 - More specific

What's there: ShortBRED algorithm

- Cluster proteins of interest into families
 Record consensus sequences
- Identify any common areas among proteins
 - Compared against each other
 - Compared against reference database
 - Remove all of these

M

Remaining subseqs. uniquely ID a family
 – Record these as markers for that family

DOD

What's there: ShortBRED family quantification

Metagenome reads ShortBRED markers

MM

Translated search for high ID hits Normalize relative abundances

Setup notes reminder

- Slides with green titles or text include instructions not needed today, but useful for your own analyses
- Keep an eye out for red warnings of particular importance

MM

- Command lines and program/file names appear in a monospaced font.
- Commands you should specifically copy/ paste are in monospaced bold blue.

What's there: ShortBRED

ShortBRED is available at <u>http://huttenhower.sph.harvard.edu/shortbred</u>

Contact Documentation People Presentations Publications Research Teaching

Home

MM

You could download ShortBRED by clicking here

ShortBRED

ShortBRED, the Short Better REad Dataset, is a method for high-precision detection and quantification of functional pretion families in microbial communities (metagenomes and metatranscriptomes). It considers a set of protein sequences of interest, reduces them to a set of universus entifying strings ("markers"), and then searches for these markers in metagenomes or metatranscriptomes to very precisely determine the presence and aburcance of the original protein families. ShortBRED-Identify clusters the protein sequences into families, removes regions of overlap among the consensus sequences and between the consensus sequences and a set of reference proteins, and saves the remaining sequences as high-confidence unique markers for the narmilies. ShortBRED-Quantify then searches for the markers in unassembled shotgun meta'omic data and returns a normalized relative abundance table of the markers found in the data.

For more information on the technical aspects to this program and cite ShortBRED, please reference the following manuscript:

Kaminski J, Gibson M, Franzosa E, Segata N, Danto La, and Huttenhower C. Fast and accurate meta'omic search with ShortBRED. (In progress)

Download ShortBPE2 (preliminary version)

Please note their states a beta version of ShortBRED. An official release will be ready soon.

Download ShortBRED here

- You may also install ShortBRED using Mercurial:
- \$ hg clone https://bitbucket.org/biobakery/shortbred

More information on the ShortBRED implementation, including runtime documentation, is available at its Bitbucket page.

From the command line...

But don't!

MO

Instead, we've installed ShortBRED already for you

• You can create your own virtual copy by running:

ln -s /home/ubuntu/metagenomics/shortbred/

• To see what you can do, run:

./shortbred/shortbred_identify.py -h | less -S
./shortbred/shortbred quantify.py -h | less -S

MM Getting some annotated protein sequences You could download the ARDB protein sequences here Go to http://ardb.cbcb.umd.edu **ARDB** - Antibiotic Resistance Genes Database HOME DOCUMENTATION BLAST ADVANCED SEARCH BROWSE Search Help Tutorial for ARDB Database All Databases Input \$ Welcome to Antibiotic Resistance Genes Database Horse Page Antibiotic Resistance **Database Statistics** Brief introduction to Version: 1.1 Our motivations in creating ARDB are to: antibioitc resistance. Last Update: July 3, 2009 · provide a centralized compendium of information on antibiotic resistance Analysis & Tools · facilitate the consistent annotation of resistance information in newly sequenced organisms Genes: 23137 facilitate the identification and characterization of providences Single Gene Annotation Types: 380 Genome Annotation and More... Comparision Antibiotics: 249 Genome Resistance Profiles Comparison Genomes: 632 News Mutation Detection Species: 1737 ARDB is not being maintained at the moment, though we hope to secure funding to further i. An underryding data available for download at: Genera: 267 GO Annotation ttp://ftp.cbcb.umd.edu/pub/data/ARDB/ARDBflatFiles.tar.gz. Documentation about the DIOVIDE weilable at fro://ftp.cheh.umd.che/puo/gata/ARDB/doc4ARDBflatFiles.pdf. Vectors, Plasmids: How to use GO terms to annotate resistance genes? 2881 ARDB is recently updated to Version 1.1 on July 3, 2009.

From the command line...

• But don't!

MM

- Instead, we've downloaded the important file for you
- Take a look by running:

less /home/ubuntu/metagenomics/data/resisGenes.pfasta

00	1. screen (less)	R _M
>ZP_02959935 hypot MGIEYRSLHTSQLTLSEK IIQRHMALDNTPISVGYV	<pre>thetical protein PROSTU_01837 [Providencia stuartii A KEALYDLLIEGFEGDFSHDDFAHTLGGMHVMAFDQQKLVGHVA VEAMVVEQSYRRQGIGRQLMLQTNKIIASCYQLGLLSASDDGQ VACCOVERSTERSCOMMENTASLYCEDFECCOMENTASLYCEDFECCOMMENTASLYCEDFECOMENTASLYCEDFECCOMENTASLYCEDFECCOM</pre>	TCC 25827]
<pre>>Q52424 RecName: F MGIEYRSLHTSQLTLSEK IIQRHMALDNTPISVGYV KIYHSVGWOTWKGKIFFI</pre>	EQGSTIRSIEEEGGVMGWKADGEVDFTASLTCDFRGDDW Full=Aminoglycoside 2'-N-acetyltransferase; AltName: KEALYDLLIEGFEGDFSHDDFAHTLGGMHVMAFDQQKLVGHVA /EAMVVEQSYRRQGIGRQLMLQTNKIIASCYQLGLLSASDDGQ LKOGSYTRSIEEEGGVMGWKADGEVDETASLYCDERGCDOW	Full=AAC(2
>AAA03550 aminogly MGIEYRSLHTSQLTLSEK IIQRHMALDNTPISVGYV KLYHSVGWQIWKGKLFEL	ycoside 2'-N-acetyltransferase [Providencia stuartii] KEALYDLLIEGFEGDFSHDDFAHTLGGMHVMAFDQQKLVGHVA VEAMVVEQSYRRQGIGRQLMLQTNKIIASCYQLGLLSASDDGQ LKQGSYIRSIEEEGGVMGWKADGEVDFTASLYCDFRGGDQW	
>Q49157 RecName: F MPFQDVSAPVRGGILHTA FICHHGALIAHAAVVQRR YQLGALSASDTARGMYLS	Full=Aminoglycoside 2'-N-acetyltransferase; AltName: ARLVHTSDLDQETREGARRMVIEAFEGDFSDADWEHALGGMHA RLLYRDTALRCGYVEAVAVREDWRGQGLATAVMDAVEQVLRGA SRGWLPWQGPTSVLQPAGVTRTPEDDEGLFVLPVGLPAGMELD	Full=AAC(2
>NP_214776 aminogl MHTQVHTARLVHTADLDS HAAVIQRRLIYRGNALRC RARRLYASRGWLPWHGPT	Lycoside 2'-N-acetyltransferase AAC (AAC(2')-IC) [Myc SETRQDIRQMVTGAFAGDFTETDWEHTLGGMHALIWHHGAIIA CGYVEGVAVRADWRGQRLVSALLDAVEQVMRGAYQLGALSSSA FSVLAPTGPVRTPDDDGTVFVLPIDISLDTSAELMCDWRAGDV	obacterium
W >NP_334681 aminogl	lycoside 2-N-acetyltransferase [Mycobacterium tubercu SETRODIROMVIGAEACDETETDWEHTLGGMHALIWHHGAITA	losis CDC1
ttenh/Dropbox/shar	red/ShortBRED/data/ARDB/ardbAnno1.0/blastdb/resisGene	s.pfasta

Getting some reference protein sequences

Go to <u>http://metaref.org</u>

Home Abou Download lelp	
Melan	Microbial taxonomy +
- You could download	the MetaRef protein sequences here

Browse

Bacteria: 2706 Genomes Archaea: <u>112</u> Genomes Taxonomy Correction Info

MM

Highlighted Clades

(Commonly Found in Human Microbiome)

Airways Nares Corynebacterium accolens Propionibacterium acnes Staphylo, epidermidis

Buccal Mucosa <u>Gemella haemolysans</u> Haemophilus influenzae Streptococcus mitis

MetaRef Database v 1.0

MetaRef is a resource to comprehensively catalog and characterize clade-specific microbial genes. We identify and provide all core genes associated with all microbial species and genera with available reference genomes (final or draft). A subset of these gene families are consistently present in one or more taxonomic clades, which allows us to further indicate them as marker genes.

MetaRef paper is now available on PubMed.

Running ShortBRED-Identify

• But don't!

M

- We'll use an example mini reference database for speed
- Lets make some antibiotic resistance markers by running:

```
./shortbred/shortbred_identify.py \
```

- --goi /home/ubuntu/metagenomics/data/resisGenes.pfasta \
- --ref ./shortbred/example/ref_prots.faa \
- --markers ardb_markers.faa
- less ardb_markers.faa
- This should take ~5 minutes
 - If you get bored waiting, kill it and copy:

/home/ubuntu/metagenomics/results/shortbred/ardb_markers.faa

It will produce lots of status output as it runs

ShortBRED markers

MX

ſ

💿 😑 📄 CFAR2015 — ubuntu@	pip-10-113-166-56: ~/metagenomics	/hutlabTest - ssh - 100×26	
gabuali@hutlabrray/slurm_logs3	ubuntu@ip-10omics/hutlabTest	ubuntu@ip-10-1mics/hutlabTest	+
>ZP_01723236_TM_#01		Frue Markers	
>ZP_01723236_TM_#02		at the top	
IVVMWKRMLSLVGLYKIDGQSQSINRRFNLLH	VIVGM		
>ZP_01723236_IM_#03 FAFKDETDDHI FKVEHVVYA			
>ZP_01723236_TM_#04			
KPKVDSLDKISYGLAF			
>ZP_01723236_TM_#05			
LVSVLKNWDTLSMDYFGFYAVGFISSFI			
ALISKVKLM			
>AAA25717_TM_#01			
MHLTITYWIDRLREAYPHAVAILLKGSYARGE	ASAWSDIDFDVLVSDEEVEEYRTWIEPV		
GERLVHISVAVEWVTGWERDSADPSSWSYGLP	TQETTQLLWAADENIRRRLDRPFKVHPA		
	RPNEWCAARSRFCRNMRISSVRISRGCW		
>CAD61201_TM_#01			
MFQIRSFLVGISAFVMAVLGSAAYSAQPGGEY	PTVDDIPVGEVRLYK		
>CAD61201_TM_#02			
LTRQLAEAAGNEVPAHSLKA			
>CAD61201_IM_#03			
>CAD61201 TM #04			
ardb_markers.faa			

ShortBRED markers

MX

ſ

💿 😑 📄 CFAR2015 — ubuntu@	≩ip-10-113-166-56: ~/metagenomics	/hutlabTest — ssh — 100×26	
gabuali@hutlabrray/slurm_logs3	ubuntu@ip-10omics/hutlabTest	ubuntu@ip-10-1mics/hutlabTest	+
MNDIDREEPCAAAA	Junct	ion/Quasi Markers	
PESMAAHVMGYKWARDKVGQSGCAVYRLHSKS	GGSDLFLKHGKDAF	at the bottom	
>P14509_TM_#03			
SECS	VLKSDFGARLVVVDALAAFMKKLHAIPV		
>P14509_TM_#04			
IEAGVVDVDDFDKEREGWTAEQVWEAMHRLLP	PLA		
>P14509_IM_#05 LIVEGKVVGCTDVGRAGTADRYODLAVLWNCL	FEEPSI OFRI VAOYGTADPDRR		
>1112175A_JM_#01[1112175A_w=0.	486, YP_001103000_w=0.143, YP_00110	03000_w=0.371]	
LFEWEFVEKVDSAIMRLRRRAEPLLEGAALER	YE		
>1112175A_JM_#02[1112175A_W=0. RKYPRRRVFAAFDHAGVGGGAVVAYVRPFOW	515,YP_001103000_w=0.333,YP_00110	03000_w=0.152]	
>ABF69686_JM_#01[ABF69686_w=0.	459,ABN80187_w=0.135,ZP_03989103	_w=0.405]	
DTAYPGEIVILADDTLKLNDILGNEKLLPHKT	RI		
>YP_002081505_JM_#01[YP_002081	505_w=0.630,YP_274481_w=0.370]		
>YP_274481_QM33_#01[YP_274481_	w=0.500,YP_002081505_w=0.500]		
PAAFISGLTGQFYKQFALTIAISTVISAFNSL	т		
>YP_970399_JM_#01[YP_970399_w=	0.306,ZP_03552050_w=0.163,YP_997	055_w=0.163,YP_997055_w=0.102,CAJ9	39
47_w=0.061, 1P_001348697_w=0.061, GGMLLGLSRKAATDX	TP_316450_w=0.041,TP_002092118_w	=0.061,Q2KX31_w=0.041]	
>ZP_01817983_JM_#01[ZP_0181798	3_w=0.493,YP_001694417_w=0.362,Y	P_001694417_w=0.145]	
TLTGPFIGGFIKEDFQPVAKEKAIPTKELFTS	VK		
(END)			

Running ShortBRED-Quantify

 Using your existing HMP data subset, you can search for antibiotic resistance proteins in the oral cavity by running:

./shortbred/shortbred_quantify.py \
 --markers ardb_markers.faa \
 --wgs 763577454-SRS014472-Buccal_mucosa.fasta \
 --results 763577454-SRS014472-Buccal_mucosa-ARDB.txt
less 763577454-SRS014472-Buccal_mucosa-ARDB.txt

- This should take just a few seconds

M

- It will again produce lots of status output as it runs

ShortBRED marker quantification

AR proteins in the human gut

Example of some real data

M

/home/ubuntu/metagenomics/data/shortbred_ardb_hmp_t2d.tsv

- This is the result of running:
 - ShortBRED-Identify on the real ARDB + reference
 - ShortBRED-Quantify on the real HMP + T2D data (Qin Nature 2012)
 - Summing each sample's RPKMs for families in each ARDB resistance class

AR proteins in the human gut

MM

0	00								shortbre	d_ardb_hn	np_t2d.tsv								M	N
9	🏥 🗔		× 6 6	👌 🎸 🔟	. • 🔊 •	Σ • 🛃	• 1.	fx 🛅 💾	100% -	0						Q- Sea	rch in Shee	t		2
	A Home	Layout	Tables	Charts	SmartA	Art Forr	nulas I	Data Re	eview										_ ^ ‡	-
	Edit			Font			Aligr	ment		Nu	umber		For	mat		Cells		Themes		
r e	🦣 🔄 🐺 Fi	II 🔻 Cali	bri (Body)	v 12	• A• A	-	abo	🔻 🗒 Wra	p Text +	General		-	-	ormal	1	- 61		Aab_	•	
			T T		A A						-	.00			· 💽 📋		• •			
Pa	aste 🥥 CI	lear • B	ΙU		≫ ▼ <u>A</u>				Merge 🔻	* %	9 .00	Format	tting	ad	Ins	sert Delete	e Format	Themes 4	Aa∙	
	A1	: 8	💿 (= f	x Sample.	ID															•
- 4	A Completion	B	C	D	E	F	G	H	LINADO	J	K	L	M	N UNAD12	0	P	Q	R	S	
2	Dataset	HMP	HMP	HMP	HMP4	HMP	нир	HMP/	HMP	HMP	HMP10	HMP	HMP	HMP	HMP14	HMP	HMP	HMP17	HMP	1
3	Gender	Female	Male	Female	Male	Female	Female	Male	Male	Female	Female	Female	Male	Male	Male	Female	Male	Male	Male	1
4	ABR Class	SRS011061	SRS011134	SRS011239	SRS011271	SRS011302	SRS011405	SRS011452	SRS011529	SRS011586	SRS012273	SRS012902	SRS013158	SRS013215	SRS013476	SRS013521	SRS013687	SRS013800	SRS013951	1
5	ABC Antibiot	0	0.6097114	0.53837173	0	0	0.05083452	0	0	18.879238	0.3999418	0.6375002	0.11029351	0	0	0.1499069	3.3238466	0	0	1
6	Aminoglycos	0	0	0	0.5570841	0	0	0	0	0	0.4844142	0	0	0	7.15621993	0	0	0	0.06597383	
7	Aminoglycos	11.8847826	2.3493412	1.31127279	2.1879248	1.70197254	25.2342538	0	1.4888313	6.7524558	11.6664297	0.2944691	0	0.54364476	22.1364669	1.0549423	6.1159491	2.1534126	2.95684284	
8	Aminoglycos	0.72342527	9.510191	0.43478001	9.31863091	1.44994258	21.7649766	0	0	1.8219867	1.9941331	0.7220629	1.82419711	0	1.09356043	1.6969943	5.382002	1.6022915	0.98286613	
9	Antibiotic I a	0	0.4319648	0 50566400	0 000001100	0.11002037	0	0	0	0.1044046	0 2286045	0.6096981	4.45863298	0	0	0.1242086	0	0 2260012	0	1
10	Chlorampher	0	0.8931/58	0.50566409	0.06863132	0	0	0	0	0.2300411	0.2280945	0	0	0	0	0	0	0.3360012	0	
12	Chlorampher	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
13	Class A Beta-	11.9616538	14.1741569	192,732027	57.3421171	30.3784485	36.4756423	41,445191	77.8068337	27.5978829	84,7152993	29.5138602	4.47890136	7.54656865	6.17723545	67.6346059	121.5429	40.9881448	18,254292	
14	Class B Beta-	0.73757867	0.4730655	0	0.35938332	0.22651252	0.45452038	0	0.1196987	1.5652141	0.5770399	0	0	0	0	0	0	0	0	1
15	Class C Beta-	0	0	0	0	0	0	0	0	0	0.4758603	0.2556631	0	0	0	0	0.1458178	0	0	1
16	Class D Beta-	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	(U
17	Gene Modul	0	0	0.12940327	0	0	0	0	0	0	2.6860575	0.3513343	0.52138395	0.18121492	0.09719297	0	0.6224941	0	0	1
18	Gene Modul	0	0	0.53609928	0.10341706	0.28813026	0	0	0.1033344	0	0.4529638	0	0.59939377	0	0.73268549	0	0	0	0.15287079	
19	Glycopeptide	0	0.1148873	0.10721986	2.91192901	11.8252927	1.06129011	0	1.475885	0	3.8329823	0.2028631	0.17855513	0	2.57636295	0	12.8763448	0	1.37583708	
20	Lincosamide	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
21	Macrolide Ke	0	0	0	0	0	0	0	0	0	0	0.2216556	0	0	0	0	0	0	0	
22	MES Antibiot	0	0 1079916	2 44436309	2 24124166	0 15717195	19 6482667	0	0	0	6 0081483	4 73637	0 16432993	0	9 88061341	0 2382082	43 436675	1 4549685	0	
24	Other ARG	0	0.1641248	1.50507872	4.90492355	0.80462657	0.27160156	0	0.4618416	1.2797248	2.911427	1.0099704	0.79420864	0	0.21818147	0.3167416	0.7025792	1.4545005	4,57893981	
25	Puromycin R	0	0.101121.0	0	0	0.00102007	0.27100150	0	0.1010110	0	0	0	0	0	0.210101.0	0.0107 110	0.7025752	0	0	
26	Quinolone R	0	0	0.05601037	0.09933481	0.05066727	0.05083452	0	0	0	0.8647162	0.1335553	3.29844229	0.06626516	0.6266389	0	0.1841579	0.1746919	0	
27	Rifamycin Re	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
28	RND Antibiot	1.11005589	0.2116346	0.87820136	0.51112275	1.80007009	12.407319	34.237278	3.5262745	38.781576	4.5900824	1.9670192	0.17668244	38.004141	1.38795841	0.7786209	2.9700758	1.1984926	6.61769588	
29	rRNA Methyl	5.61799582	6.0194576	37.2369165	9.44289101	34.6172522	94.7288439	2.051664	80.7900949	122.947846	2.4135554	10.2418695	0.06217665	7.23364421	13.9417838	130.737494	96.9503344	18.8879339	5.07069194	
30	SMR Antibio	0	0	0	0	0	0	0	0	0	0.876332	0	0.08288129	0	0.19222828	0	0.2560272	0	0	
31	Streptogram	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
32	Tetracycline	0.06843748	2.6183624	0.57325559	0.86505449	12.8908188	0.16675423	2.793598	0.359161	0.5939219	2.0434753	2.4886453	0.33754257	0.23247387	0	0.9097696	2.3449461	0	5.81292995	
		⊢ ► ► ► S	hortbred_arc	db_hmp_t2d.t	sv +														11	
╝	Norm	nal View	Ready								Sum=0		•							1

Summary

- HUMAnN2 (up next!)
 - Quality-controlled metagenomic reads in
 - Tab-delimited gene, module, and pathway relative abundances out
- ShortBRED

MM

- Raw metagenomic reads,
 Proteins of interest, and
 Protein reference database in
- Tab-delimited gene family rel. abundances out

Meta'omic functional profiling with HUMAnN2

Galeb Abu-Ali Eric Franzosa Curtis Huttenhower

Harvard School of Public Health Department of Biostatistics 09-18-15

Who is there? (taxonomic profiling)

What are they doing? (functional profiling)

Setup notes reminder

- Slides with green titles or text include instructions not needed today, but useful for your own analyses
- Keep an eye out for red warnings of particular importance

MM

- Command lines and program/file names appear in a monospaced font.
- Commands you should specifically copy/ paste are in monospaced bold blue.

 As a broad functional profiler, you could download HUMAnN at: <u>http://huttenhower.sph.harvard.edu/humann</u>

MM

Department of Biostatistics, Harvard School of Public Health	
Contact Documentation People Presentations Public	cations Research Teaching
MAnN: The HMP Unified Metabolic Analysis Netw	ork Click
You can obtain the HUMAnN software here: humann-0. This is the latest version, which provided the analysis to the software you find the software or data useful, please cite our manuscript: Abubucker S, Segata N, Goll J, Schubert AM, Izard J, Cantarel B, White O, Kelley ST, Methé B, Schlees PD, Gevers D, Mi	.98.tar.gz energy Shotgun data from the Human Microbiome Project. If BL, Rodriguez-Mueller B, Zucker J, Thiagarajan M, Henrissat
Please contact us if you have any comments, suggestions, or bug Mercurial source code repository at http://bitbucket.org/chutten	robiome." PLoS Comput Biol. 2012 Jun;8(6):e1002358 robiome. The software. Code is also available directly from our h/humann using the bg_clone command.

HUMAnN is a pipeline for efficiently and accurately determining the presence/absence and abundance of microbial pathways in a community from metagenomic data. Sequencing a metagenome typically produces millions of short DNA/RNA reads. HUMAnN takes these reads as inputs and produces gene and pathway summaries as outputs:

- The abundance of each orthologous gene family in the community. Orthologous families are groups of genes that perform roughly the same biological roles. HUMANN uses the KEGG Orthology (KO) by default, but any catalog of orthologs can be employed with minor changes (COG, NOG, etc.)
- The presence/absence of each pathway in the community. HUMANN refers to pathway presence/absence as "coverage," and defines a pathway as a set of two or more genes. HUMANN uses KEGG pathways and modules by default, but again can easily be modified to use GO terms or other gene sets.
- The abundance of each nathway in the community i.e. how many "conject" of that nathway are present

 Or even *better*, the latest version is HUMAnN2 at: <u>http://huttenhower.sph.harvard.edu/humann2</u>

HUMAnN2: The HMP Unified Metabolic Analysis Network 2

HUMAnN2 is the next generation of HUMAnN. HUMANN is a pipeline for efficiently and accurately profiling the presence/absence and abundance of microbial pathways in a community from metagenomic or metatranscriptomic sequencing data (typically millions of short DNA/RNA reads). This process, referred to as functional profiling, aims to describe the metabolic potential of a microbial community and its members. More generally, functional profiling answers the question "What are the microbes in my community-of-interest doing (or capable of doing)?"

If you use the HUMAnN2 software, please cite our manuscript: TBD

For additional information, please see the HUMAnN2 User Manual.

Contents

MO

Features
 Workflow
 Requirement
 Installation
 How to run

 Basic usage
 Demo runs

 Output files

 Gene families
 Pathway coverage
 Pathway abundance

- ...but instead we've already installed it!
- Normally you'd follow the online tutorial to expand:

tar -xzf humann2_v0.2.3.tar.gz

Install:

MO

cd humann2_v0.2.3
python setup.py minpath
python setup.py install

And download DIAMOND from here:

<u>http://ab.inf.uni-tuebingen.de/software/diamond/</u>
 We're going to use it preinstalled instead

- If we weren't all running this, you'd need to:
 - Get our precomputed DNA/AA databases

M

- ChocoPhIAn ~50M genes from NCBI
- UniRef ~100M proteins from UniProt

humann2_databases --download chocophlan full \
 /class/stamps-software/biobakery/humann2/
humann2_databases --download uniref diamond \
 /class/stamps-software/biobakery/humann2/

• This would take too long for everyone to use, so we'll stick with the demo database instead...

• Take a look at the demo input metagenome:

less -S /home/ubuntu/metagenomics/data/humann2/examples/demo.fastq

• From your home directory, run HUMAnN2:

humann2 \
 --input /home/ubuntu/metagenomics/data/humann2/examples/
demo.fastq \
 --output humann2_demo

• What did you just do?

MO

less -S humann2_demo/demo_genefamilies.tsv

- UniRef gene family IDs
- With human-readable glosses when available
- Broken down per organism

۲

DOD

CFAR2015 — ubuntu@ip-10-113-166-56: ~/metagenomics/hutlabTest — ssh — 100×32

gabuali@hutlab...rray/slurm_logs3

ubuntu@ip-10-...omics/hutlabTest

ubuntu@ip-10-113-166-56: ~

Gene Family demo Abundance
UniRef50 A6L108 8.7719298246
UniRef50_A6L108 g_Bacteroides.s_Bacteroides_stercoris 8.7719298246
UniRef50_E1WMC2 7.5757575758
UniRef50_E1WMC2 g_Bacteroides.s_Bacteroides_fragilis 7.5757575758
UniRef50_R5FJB9: Conjugative transposon TraN protein 7.3070013559
UniRef50_R5FJB9: Conjugative transposon TraN protein g_Bacteroides.s_Bacteroides_fragilis 3.05
UniRef50_R5FJB9: Conjugative transposon TraN protein g_Bacteroides.s_Bacteroides_thetaiotaomicron
UniRef50_R5FJB9: Conjugative transposon TraN protein g_Bacteroides.s_Bacteroides_stercoris 2.07
UniRef50_B6YQ01: 50S ribosomal protein L11 6.7567567568
UniRef50_B6YQ01: 50S ribosomal protein L11 g_Bacteroides.s_Bacteroides_fragilis 2.2522522523
UniRef50_B6YQ01: 50S ribosomal protein L11 g_Bacteroides.s_Bacteroides_stercoris 2.2522522523
UniRef50_B6YQ01: 50S ribosomal protein L11 g_Bacteroides.s_Bacteroides_thetaiotaomicron 2.25
UniRef50_Q64R13 6.5359477124
UniRef50_Q64R13 g_Bacteroides.s_Bacteroides_fragilis 6.5359477124
UniRef50_F5XD83: Conjugative transposon protein TraK 6.4102564103
UniRef50_F5XD83: Conjugative transposon protein TraK g_Bacteroides.s_Bacteroides_thetaiotaomicron
UniRef50_F5XD83: Conjugative transposon protein TraK g_Bacteroides.s_Bacteroides_fragilis 1.60
UniRef50_F5XD83: Conjugative transposon protein TraK g_Bacteroides.s_Bacteroides_stercoris 1.60
UniRef50_B6YQ88: 30S ribosomal protein S7 6.2893081761
UniRef50_B6YQ88: 30S ribosomal protein S7 g_Bacteroides.s_Bacteroides_stercoris 4.1928721174
UniRef50_B6YQ88: 30S ribosomal protein S7 g_Bacteroides.s_Bacteroides_fragilis 2.0964360587
UniRef50_D1KAI8 6.2893081761
UniRef50_D1KAI8 gBacteroides.sBacteroides_stercoris 6.2893081761
UniRef50_Q2S3Q3: 50S ribosomal protein L24 6.2599188856
UniRef50_Q2S3Q3: 50S ribosomal protein L24 g_Bacteroides.s_Bacteroides_thetaiotaomicron 3.14
UniRef50_Q2S3Q3: 50S ribosomal protein L24 g_Bacteroides.s_Bacteroides_stercoris 3.1152647975
UniRef50_A0A016LIR2 6.1728395062
UniRef50_A0A016LIR2 g_Bacteroides.s_Bacteroides_stercoris 6.1728395062
UniRef50_Q5LEY5 6.1728395062
UniRef50_Q5LEY5 gBacteroides.sBacteroides_fragilis 6.1728395062
humann2_demo/demo_genefamilies.tsv

This has created three main files:

One listing gene family abundances

M

- Two listing pathway (default MetaCyc) abundances and coverages
 - Coverage % of "essential" pathway genes present
 - Abundance "Average" abundance of essential pathway genes
- Each is tab-delimited text with two columns

humann2_demo/demo_genefamilies.tsv

• Relative abundance (RPKM) of gene families (UniRef)

humann2_demo/demo_pathabundance.tsv

• Relative abundance (RPKM) of pathways (MetaCyc)

humann2_demo/demo_pathacoverage.tsv

Coverage (%) of pathways (MetaCyc)

I almost always just use abundances (gene or pathway)

• Pathways look very much like gene families:

less -S humann2 demo/demo_pathabundance.tsv

) 😑 🔵 🔚 CFAR2015 — ubuntu@ip-10-113-166-56: ~/metagenomics/hutlabTest — ssh — 100×24 👘

gabuali@hutlab...rray/slurm_logs3

MX

ubuntu@ip-10-...omics/hutlabTest

ubuntu@ip-10-113-166-56: ~

Pathway demo Abundance

SUCROSEUTIL2-PWY: sucrose degradation VII (sucrose 3-dehydrogenase) 5,8949329489 SUCROSEUTIL2-PWY: sucrose degradation VII (sucrose 3-dehydrogenase) |g_Bacteroides.s_Bacteroides_th SUCROSEUTIL2-PWY: sucrose degradation VII (sucrose 3-dehydrogenase) |g_Bacteroides.s_Bacteroides_st PWY-6627: salinosporamide A biosynthesis 2.8307602366 PWY-6627: salinosporamide A biosynthesis|g_Bacteroides.s_Bacteroides_thetaiotaomicron 0.9701665013 PWY-5209: methyl-coenzyme M oxidation to CO2 2.7862228006 PWY-7555: α-cyclopiazonate biosynthesis 2.6676145598 PWY-7555: α-cyclopiazonate biosynthesis/g_Bacteroides.s_Bacteroides_thetaiotaomicron 0.86 PWY-7440: dTDP-β-L-4-epi-vancosamine biosynthesis 2.5755106274 PWY-3841: folate transformations II 2.3673882669 PWY-7301: dTDP-β-L-noviose biosynthesis 2.3051941136 PWY-7043: 11-cis-3-hydroxyretinal biosynthesis 2.3017477039 PWY-7043: 11-cis-3-hydroxyretinal biosynthesis/g_Bacteroides.s_Bacteroides_stercoris 2.0827022653 HSERMETANA-PWY: L-methionine biosynthesis III 2.2932930562 HSERMETANA-PWY: L-methionine biosynthesis III|g__Bacteroides.s_Bacteroides_thetaiotaomicron 0.99 PWY-7104: dTDP-L-megosamine biosynthesis 2.2089022269 PWY-5100: pyruvate fermentation to acetate and lactate II 2,1231927723 PWY-5100: pyruvate fermentation to acetate and lactate II|g_Bacteroides.s_Bacteroides_stercoris PWY-7432: L-phenylalanine biosynthesis III (cytosolic, plants) 2.0812499269 PWY-7432: L-phenylalanine biosynthesis III (cytosolic, plants)|g_Bacteroides.s_Bacteroides_thetaio PWY-6973: dTDP-D-olivose, dTDP-D-oliose and dTDP-D-mycarose biosynthesis 1.9963472394 PWY-6973: dTDP-D-olivose, dTDP-D-oliose and dTDP-D-mycarose biosynthesis/g_Bacteroides.s_Bacteroid humann2_demo/demo_pathabundance.tsv

+

You can always open these in Excel too

DOD

 Note: this is sparse since we're using small subsets of the reference data (ChocoPhIAn and UniRef) and input metagenome

•		demo_genef	amilies.t	sv								
0	י 🛅 🗊 🔚 🚔 🔏 🔓 🞻 🙆 י 🗠 י 🗴 י 🛣 י 🐼 י 🖼 🗄	100% - 🕜						Q-	prevotel	la	8	
	♠ Home Layout Tables Charts SmartArt Formulas Data Revie	w										∧ ☆-
	Edit : Font : Alignment		Number			Format			Cells		Themes	
ré	🚔 🔄 🐺 Fill 🔻 Calibri (Body) 💌 12 💌 🗛 🗛 🧮 🚍 💼 abc 🖷 🏹 Wrap Ti	ext = Genera	1	•		Norma			8 -		Aab-	
L			0/2 .	\$.0 ,00	Conditional	Rad	0					
P		rge 🔪 🔁 🕇	70 9	.00 \$.0	Formatting	bau		Insert	Delete	Format	Themes Aa*	
	$C8 \qquad \ddagger \otimes \oslash (fx $	2		2	-	-	-					-
1	4 Gana Family	demo Abundani	C	D	E	F	G	н		J	K	
2	IniPation Action	8 77102082	e									
2	Uniterso_Addition	8 77102082										
4	UniRef50_R5EIB9: Conjugative transposon TraN protein	8 38107701										
5	UniRef50_R5EIR9: Conjugative transposon TraN protein a Racteroides s Bacteroides sterroris	6 20569818										
6	UniRef50_R5ER8-Conjugative transpoon TraN proteining Bacteroides & Bacteroides thetaintamicron	2 17537883										
7	UniRef50_R6Y001: 505 ribosomal protein [11	6 75675676										
8	UniRef50_B6Y001: 505 ribosomal protein [11] g Bacteroides s Bacteroides stercoris	4 5045045										
9	UniRef50_B6YQ01: 505 ribosomal protein [11] gBacteroides.sBacteroides_thetaiotaomicron	2,25225225										
10	UniRef50_R5VOR8: 305 ribosoma protein 57	6 28930818										
11	UniRef50_B6Y088: 305 ribosomal protein S71g_Bacteroides s_Bacteroides stercoris	4.19287212										
12	UniRef50, B5V088: 30S ribosomal protein S7/g, Bacteroides & Bacteroides thetaiotaomicron	2.09643606										
13		6.28930818										
14	UniRef50_D1KAI81g_Bacteroides.s_Bacteroides_stercoris	6.28930818										
15	UniRef50_02S303: 50S ribosomal protein L24	6.25991889										
16	UniRef50_02S303: 505 ribosomal protein L24/gBacteroides.sBacteroides_thetaiotaomicron	3.14465409										
17	UniRef50_025303: 50S ribosomal protein 1241g Bacteroides s Bacteroides stercoris	3.1152648										
18		6,17283951										
19	UniRef50_A0A016LIR21gBacteroides.s_Bacteroides_stercoris	6.17283951										
20	UniRef50_BONTS9	5.84795322										
21	UniRef50_R0NTS91#_Bacteroides_s_Bacteroides_stercoris	5.84795322										
22	UniRef50_R5IH84	5.64971751										
23	UniRef50 R51H841g Bacteroides Bacteroides stercoris	5.64971751										
24	UniRef50_R6FNM5	5.46448087										
25	UniRef50_R6FNM51gBacteroides_s_Bacteroides_thetaiotaomicron	5.46448087										
26	UniRef50_BONOY6	5,29100529										
27	UniRef50_R0N0Y61g_Bacteroides_s_Bacteroides_stercoris	5.29100529										
28	UniRef50_E3PHD0	5.29100529										
29	UniRef50 F3PHD01g Bacteroides.s Bacteroides stercoris	5.29100529										
30	UniRef50 A6KY10: 50S ribosomal protein L6	5.26315789										
31	UniRef50 A6KYI0: 50S ribosomal protein L6 g Bacteroides.s Bacteroides thetaiotaomicron	5.26315789										
32	UniRef50 BONP96	5.20833333										
	demo_genefamilies.tsv / + /											11
	Normal View Ready			Sum=0	•							
												- //

If you run more than one sample, you can combine them:

less -S \setminus

MO

/home/ubuntu/metagenomics/data/humann2/genes/763577454-SRS014459-Stool_genefamilies.tsv
/home/ubuntu/metagenomics/data/humann2/humann2/tools/join tables.py \

- -i /home/ubuntu/metagenomics/data/humann2/genes/ \
- -o 763577454_genefamilies.tsv
- less -S 763577454_genefamilies.tsv

And you can open the resulting table in Excel/etc.

# Gene Family	763577454-5	763577454-5	763577454-9	763577454-5	763577454-5	763577454-SRS01449	4-Posterior_forni	x_Abundance
UniRef50_A9FGD2: 50S ribosomal protein L36	17.0940171	0	0	0	0	0		
UniRef50_A9FGD2: 50S ribosomal protein L36 g_Bacteroides.s_Bacteroides_cellulosilyticus	17.0940171	0	0	0	0	0		
UniRef50_R6AES1	14.8148148	0	0	0	0	0		
UniRef50_R6AES1 gBacteroides.sBacteroides_stercoris	14.8148148	0	0	0	0	0		
UniRef50_UPI00047E7990: glycosyl transferase family 1	0	8.96495518	0	0.81499593	3.2599837	1.05317188		
UniRef50_UPI00047E7990: glycosyl transferase family 1 unclassified	0	8.96495518	0	0.81499593	3.2599837	1.05317188		
UniRef50_UPI00047498D2: hypothetical protein, partial	3.003003	3.003003	3.003003	3.003003	0	0		
UniRef50_UPI00047498D2: hypothetical protein, partial unclassified	3.003003	3.003003	3.003003	3.003003	0	0		
UniRef50_A6L108	11.6959064	0	0	0	0	0		
UniRef50_A6L108 gBacteroides.sBacteroides_stercoris	11.6959064	0	0	0	0	0		
UniRef50_R6Q0V8: ABC-type metal ion transport system periplasmic component/surface antigen	3.23624595	0	2.1574973	2.1574973	3.23624595	0		
UniRef50_R6Q0V8: ABC-type metal ion transport system periplasmic component/surface antigen unclassified	3.23624595	0	2.1574973	2.1574973	3.23624595	0		
UniRef50_E6UAV0: Preprotein translocase, YajC subunit	2.94985251	0	0.98420138	5.89970501	0.65314007	0		
UniRef50_E6UAV0: Preprotein translocase, YajC subunit unclassified	2.94985251	0	0.98420138	5.89970501	0.65314007	0		
UniRef50_U2Q6I3	0	0	0	5.20833333	0	5.20833333		
UniRef50_U2Q6I3 unclassified	0	0	0	5.20833333	0	5.20833333		
UniRef50_A6KXA8: Transposase	10.0704935	0	0	0	0	0		
UniRef50_A6KXA8: Transposase g_Bacteroides.s_Bacteroides_stercoris	10.0704935	0	0	0	0	0		
UniRef50_UPI000374C24F: hypothetical protein	1.68740089	0	3.23238577	0	4.67294834	0		
UniRef50_UPI000374C24F: hypothetical protein unclassified	1.68740089	0	3.23238577	0	4.67294834	0		
UniRef50_P37247: Transposase for insertion sequence element IS4351	9.17431193	0	0	0	0	0		
UniRef50_P37247: Transposase for insertion sequence element IS4351 g_Bacteroides.s_Bacteroides_cellulosilyticus	9.17431193	0	0	0	0	0		
UniRef50_B0NNQ2: Transposase	9.00031022	0	0	0	0	0		
UniRef50_B0NNQ2: Transposase gBacteroides.s_Bacteroides_stercoris	9.00031022	0	0	0	0	0		
UniRef50_R0KTN8	0	0	1.51860289	1.51860289	3.8238261	1.79224317		
UniRef50_R0KTN8 unclassified	0	0	1.51860289	1.51860289	3.8238261	1.79224317		
What they're doing: HUMAnN2

And there's nothing stopping us from using MeV
 Or R, or QIIME, or LEfSe, or anything that'll read tab-delimited text

MM

Quality control: KneadData

- Did you notice that we didn't QC our data at all?
 - MetaPhIAn2 is very robust to junk sequence

DOD

- HUMAnN2 is pretty robust, but not quite as much
- Demo data includes standard metagenomic QC:
 Quality trim by removing bad bases (typically Q ~15)
 Length filter to remove short sequences (typically <75%)

Metagenome and metatranscriptome quality control: KneadData

 You can trim and filter reads, remove host contamination, and deplete ribosomal sequences using: <u>http://huttenhower.sph.harvard.edu/kneaddata</u>

4	DOC					
	• ,	The Huttenho	wer La	ιb		
		Department of Biostatistics	s, Harvard T.H	I. Chan School o	f Public Health	
HOME	RESEARCH	DOCUMENTATION	PEOPLE	CONTACT	PUBLICATIONS	

KneadData

KneadData is a tool designed to perform quality control on metagenomic sequencing data, especially data from microbiome experiments. In these experiments, samples are typically taken from a host in hopes of learning something about the microbial community on the host. However, metagenomic sequencing data from such experiments will often contain a high ratio of host to bacterial reads. This tool aims to perform principled in silico separation of bacterial reads from these "contaminant" reads, be they from the host, from bacterial 16S sequences, or other user-defined sources.

If you use the KneadData software, please cite our manuscript: TBD

Metagenome and metatranscriptome quality control: KneadData

• KneadData performs quality trimming using Trimmomatic:

kneaddata -1 seq1.fastq -a SLIDINGWINDOW:4:20 -o seqs

• And read length filtering (including paired ends):

```
kneaddata -1 seq1.fastq -2 seq2.fastq \
    -a "SLIDINGWINDOW:4:20 MINLEN:60" -0 seqs
```

 And will remove host (e.g. human) sequences from a reference database:

```
kneaddata -1 seq1.fastq -2 seq2.fastq \
    -a "SLIDINGWINDOW:4:20 MINLEN:60" \
    -db Homo_sapiens_db -o seqs
```

And will remove ribosomal sequences (for metatranscriptomes):
 kneaddata -1 seq1.fastq -2 seq2.fastq \
 -a "SLIDINGWINDOW:4:20 MINLEN:60" \
 -db Homo_sapiens_db -db bact_rrna_db -o seqs

Multivariate associating testing with random effects using MaAsLin

Galeb Abu-Ali Eric Franzosa Curtis Huttenhower

Harvard School of Public Health Department of Biostatistics 09-18-15

The two <u>three</u> big questions...

Who is there? What are they doing? What does it all mean?

Sample #	1	2	3	4	5	6	
Profession	Student	Postdoc	Postdoc	Professor	Student	Student	
Gender	Male	Female	Female	Male	Male	Female	
Site	Oral	Gut	Oral	Oral Gut		Gut	
Clade1	0.40	0.87	0.43 0.68		0.47	0.32	
Clade1 Bug1	0.40	0.56	0.07 0.31		0.42	0.27	
Clade1 Bug2	0.00	0.30	0.36	0.37	0.04	0.05	
Clade2	0.60	0.13	0.57	0.32	0.53	0.68	
Clade2 Bug3	de2 Bug3 0.11 0.00		0.10	0.32	0.15	0.23	
Clade2 Bug4	0.49	0.13	0.47	0.00	0.39	0.45	

Properties of microbiome data

- Compositional nature (Σ = 1)
 - Abundance is relative, not absolute
- High dynamic range
- Often sparse (sample dominated by a few species)
- Noisy
- Hierarchical organization

Site	Oral	Gut	Oral	Gut	Oral	Gut	
Clade1	0.40	0.87	0.43	0.68	0.47	0.32	
Clade1 Bug1	0.40	0.56	0.07	0.31	0.42	0.27	
Clade1 Bug2	0.00	0.30	0.36	0.37	0.04	0.05	
Clade2	0.60	0.13	0.57	0.32	0.53	0.68	
Clade2 Bug3	0.11	0.00	0.10	0.32	0.15	0.23	
Clade2 Bug4	0.49	0.13	0.47	0.00	0.39	0.45	

M a AsLin

Multivariate microbial Association with Linear models

A more general solution for finding significant metagenomic associations in metadata-rich studies

Tim Tickle

http://huttenhower.sph.harvard.edu/maaslin

Linking host and microbial function in ileal pouch inflammation

With Mark Silverberg

184 subjects with j-pouches at Mt. Sinai since 1981

MM

Morgan Genome Bio 2015

82

Boyko Kabakchiev Andrea Tyler Xochi Morgan Levi Waldron NP No Pouchitis UC (A/C)P Pouchitis (Acute/Chronic) CDL Crohn's Disease-Like Phenotype FAP FAP Familial Adenomatous Polyposis

230 biopsies with host gene expression + microbiome

	FAP	NP	(A/C)P	CDL
Pouch	N	N	І	N/I
	16	15	11	16
Pre-pouch	N	N	N	І
ileum (PPI)	18	48	83	23

Multivariate association of microbes with pouchitis phenotypes

clade ~
 transcript +
 location +
 antibiotics +
 inflammation +
 phenotype

Can also include random effects (i.e. multiple samples per subject over time / space) and high dimensional models (e.g. genetics)

Taxonomic level of association Species Genus Family Order Class Phylum

Multivariate association of microbes with phenotype in the American Gut

clade ~ acne_meds + age + alcohol + abx + asthma +
BMI + carb% + country_now + country_birth +
csection + diabetes + diet_type + dog + fat% +
fiber + gluten + ibd + lactose_int + pregnant +
protein% + race + sex

ANTIBIOTIC_MEDSyes (-0.185 sd 0.0277, p=2.79e-11, q=2.34e-08)

ANTIBIOTIC_MEDS

Setup notes reminder

- Slides with green titles or text include instructions not needed today, but useful for your own analyses
- Keep an eye out for red warnings of particular importance

MM

- Command lines and program/file names appear in a monospaced font.
- Commands you should specifically copy/ paste are in monospaced bold blue.

Multivariate associations: MaAsLin

 You can find the MaAsLin install and documentation at: <u>http://huttenhower.sph.harvard.edu/maaslin</u>

Home / MaAsLin: Multivariate Association with Linear Models

MaAsLin: Multivariate Association with Linear Models

MaAsLin is a multivariate statistical framework that finds associations between clinical metadata and microbial community abundance or function. The clinical metadata can be of any type continuous (for example age and weight), boolean (sex, stool/biopsy), or discrete/factor (cohort groupings and phenotypes). MaAsLin is best used in the case when you are associating many metadata with microbial measurements. When this is the case each metadatum can be a diffrent type. For example, you could include age, weight, sex, cohort and phenotype in the same input file to be analyzed in the same MaAsLin run. The microbial measurements are expected to be normalized before using MaAsLin and so are proportional data ranging from 0 to 1.0.

Click

here

Install MaAsLin (preliminary version)

MaAsLin requires the following R packages: agricolae, gam, gamlss, gbm, glmnet, inlinedocs, logging, MASS, nlme, optparse, outliers, penalized, pscl, robustbase

Please install these packages before installing MaAsLin.

To install MaAsl in:

MM

1. Download the lates version of MaAsLin. 5. Install MaAsLing, mere X.Y.Z is the version number)

Multivariate associations: MaAsLin

• But we've already installed it! Take a look:

ln -s /home/ubuntu/metagenomics/maaslin/

./maaslin/R/Maaslin.R -h | less -S

MO

screen (ssh) Usage: ./maaslin/R/Maaslin.R [options] <data.tsv> <outputdir> Options: -h, --help Show this help message and exit -i DATA.READ.CONFIG, --input_config=DATA.READ.CONFIG Optional configuration file describing data input format. -I DATA.R, --input_process=DATA.R Optional configuration script normalizing or processing data. -d SIGNIFICANCE, --fdr=SIGNIFICANCE The threshold to use for significance for the generated q-values (BH FDR). Anything equal to or lower than this is significant. [Default 0.25] -r MINRELATIVEABUNDANCE, --minRelativeAbundance=MINRELATIVEABUNDANCE The minimum relative abundance allowed in the data. Values below this are removed and imputed as the median of the sample data. [Default 1e-04] -p MINPREVALENCE, --minPrevalence=MINPREVALENCE The minimum percentage of samples in which a feature must have t he minimum relative abundance in order not to be removed. Also this is the maxim .

 Let's start by associating one covariate with microbiome data :

/home/ubuntu/metagenomics/util/metadata.py \

/home/ubuntu/metagenomics/data/hmp_metadata.dat \

< /home/ubuntu/metagenomics/data/HMP.ab.filtered.txt \

> HMP.ab.filtered.metadata.pcl

less -S HMP.ab.filtered.stsite.pcl

DOD

3. screen (ssh)
sid SRS043001 SRS017127 SRS021473 SRS011134 SRS050184 SRS011529 SRS0
STSite Stool Buccal_mucosa Buccal_mucosa Stool Posterior_fornix Stoo
kBacteria pProteobacteria cBetaproteobacteria oBurkholderiales fSutter
kBacterialpActinobacterialcActinobacterialoCoriobacterialeslfCoriobact
kBacteria pBacteroidetes cBacteroidia oBacteroidales fPorphyromonadace
kBacterialpFirmicuteslcClostridialoClostridialeslfRuminococcaceaelgR
kBacterialpFirmicutes cClostridialoClostridiales fLachnospiraceae gB
kBacterialpBacteroideteslcBacteroidialoBacteroidaleslfBacteroidaceaelg
kBacterialpActinobacterialcActinobacterialoActinomycetales fMicrococca
kBacterialpFirmicuteslcBacilliloLactobacillaleslfStreptococcaceaelgS
kBacterialpProteobacterialcEpsilonproteobacteria 0.0 0.0049 1.10502 0.0
kBacterialpFirmicutes cBacilli oLactobacillales fStreptococcaceae gS
kBacterialpFusobacterialcFusobacterialoLeptotrichaleslfLeptotrichiacea
kBacterialpBacteroidetes cBacteroidialoBacteroidales fBacteroidaceae g
kBacterialpVerrucomicrobialcVerrucomicrobiaeloVerrucomicrobialeslfVerr
kBacterialpFusobacterialcFusobacterialoLeptotrichaleslfLeptotrichiacea
kBacterialpBacteroideteslcBacteroidia 84.60804 0.17674 1.20942 58.53925
kBacterialpProteobacterialcEpsilonproteobacterialoCampylobacterales 0.0
kBacterialpFirmicuteslcBacilliloBacillales 0.0 3.7702 5.24454 0.0 0.0
kBacterialpFirmicuteslcBacilliloLactobacillaleslfLactobacillaceaelgL
kBacterialpBacteroidetes cBacteroidialoBacteroidales fPorphyromonadace
kBacterialpBacteroideteslcBacteroidialoBacteroidaleslfPorphyromonadace
kBacterialpFirmicuteslcNegativicutesloSelenomonadaleslfAcidaminococcac
kBacterialpActinobacterialcActinobacterialoBifidobacteriales fBifidoba
HMP.ab.filtered.stsite.pcl

• To run MaAsLin easily on one covariate:

./maaslin/R/Maaslin.R HMP.ab.filtered.stsite.pcl \
 HMP.ab.filtered.stsite --lastMetadata=2

DOD

\mathbf{O}		3. sc	creen (ssh)	
2015-08-1	3 13:31:44	INFO:maaslin:SRS0	54590	
2015-08-13	13:31:44	INFO:maaslin:Removi	ing data 42 for being all NA after	QC
2015-08-13	13:31:45	INFO:maaslin:Removi	ing the following for having only M	As afte
r cleaning	(maybe du	ue to only having N/	A after outlier testing).	
2015-08-13	13:31:45	INFO:maaslin:kBac	cteria	
2015-08-13	13:31:45	INFO:maaslin:Output	tting to: HMP.ab.filtered.stsite/HM	IP.ab.fi
ltered_log	.txt			
2015-08-13	13:31:46	INFO:maaslin:Taxon	10/182	
2015-08-13	13:31:49	INFO:maaslin:Taxon	20/182	
2015-08-13	13:31:52	INFO:maaslin:Taxon	30/182	
2015-08-13	13:31:54	INFO:maaslin:Taxon	40/182	
2015-08-13	13:31:59	INFO:maaslin:Taxon	60/182	
2015-08-13	13:32:02	INFO:maaslin:Taxon	70/182	
2015-08-13	13:32:05	INFO:maaslin:Taxon	80/182	
2015-08-13	13:32:08	INFO:maaslin:Taxon	90/182	
2015-08-13	13:32:11	INFO:maaslin:Taxon	100/182	
2015-08-13	13:32:13	INFO:maaslin:Taxon	110/182	
2015-08-13	13:32:16	INFO:maaslin:Taxon	120/182	
2015-08-13	13:32:19	INFO:maaslin:Taxon	130/182	
2015-08-13	13:32:22	INFO:maaslin:Taxon	140/182	
2015-08-13	13:32:24	INFO:maaslin:Taxon	150/182	
2015-08-13	13:32:28	INFO:maaslin:Taxon	160/182	
2015-08-13	13:32:30	INFO:maaslin:Taxon	170/182	
2015-08-13	13:32:34	INFO:maaslin:Taxon	180/182	
[chuttenhow	wer@class@)3 ~]\$		

What are all these files!?!

ls -R HMP.ab.filtered.stsite

MM

• First, processed inputs:

- generated_config indicates how MaAsLin read your data
 - One matrix containing metadata model variables, one containing data
- QC directory contains separate files for data + metadata
- Run_Parameters.txt contains model variables
 - Was it sparse, were there random variables, what filtering criteria, etc.

• Next, what you care about, outputs:

DDD

HMP.ab.filtered-STSite.txt lists associations between clades and the model variable STSite and their significance

Variable	Feature	Value	Coefficient	N	N not 0	P-value	Q-value
STSite	k_Bacteria p_Firmicutes c_Bacilli o_Bacillales f_Bacillales_uncl g_Gemella s_Gemella_haemolysans	STSiteStool	-0.7036054	297	112	2.48E-196	1.60E-193
STSite	k_Bacteria p_Firmicutes c_Bacilli o_Bacillales f_Bacillales_uncl g_Gemella	STSiteStool	-0.6315029	297	114	1.04E-169	2.23E-167
STSite	kBacteria pFirmicutes cBacilli oBacillales fBacillales_uncl	STSiteStool	-0.6315029	297	114	1.04E-169	2.23E-167
STSite	k_Bacteria p_Firmicutes c_Bacilli o_Bacillales f_Bacillales_uncl g_Gemella s_Gemella_haemolysans	STSitePosterior_fornix	-0.7047368	297	112	5.18E-163	8.35E-161
STSite	k_Bacteria p_Firmicutes c_Bacilli o_Bacillales f_Bacillales_uncl g_Gemella	STSitePosterior_fornix	-0.6344187	297	114	7.57E-138	8.12E-136
STSite	kBacteria pFirmicutes cBacilli oBacillales fBacillales_uncl	STSitePosterior_fornix	-0.6344187	297	114	7.57E-138	8.12E-136
STSite	k_Bacteria p_Firmicutes c_Bacilli o_Bacillales	STSiteStool	-0.5226617	297	120	3.27E-119	3.01E-117
STSite	k_Bacteria p_Firmicutes c_Clostridia o_Clostridiales f_Ruminococcaceae	STSiteStool	0.60575613	297	151	1.12E-118	9.05E-117
STSite	$\label{eq:label_string} k_Bacteria p_Firmicutes c_Clostridia o_Clostridiales f_Ruminococcaceae g_Faecalibacterium$	STSiteStool	0.5194707	297	143	1.88E-111	1.35E-109

- HMP.ab.filtered-STSite.pdf plots them

- HMP.ab.filtered_log.txt logs all tests, significant or not

• Let's run a more interesting IBD model:

ln -s /home/ubuntu/metagenomics/data/ibd2012.pcl

less -S ibd2012.pcl

MM

 Screen (ssh) 																		
sample	700	7	701	0	701	6	701	8	702	1	702	2	703	5	703	7	703	9
age 28	41	36	30	39	34	45	32	50	54	38	56	40	44	53	49	35	55	49
antibio	tics	0	0	0	0	0	1	0	0	0	0	0	0	0	0	1	0	0
dx CD	CD	UC	UC	CD	CD	CD	CD	CD	UC	CD								
gender	0	1	0	0	0	0	0	1	1	0	1	0	1	1	0	0	0	0
ileal	1	1	0	0	0	1	1	1	1	0	1	1	1	1	0	1	0	1
immunos	up	1	1	1	0	1	0	1	1	0	0	1	1	1	1	0	1	1
mesalam	ine	0	0	0	0	0	0	0	1	1	1	0	1	0	0	1	1	0
smoker	1	1	1	0	0	0	1	0	0	1	1	0	1	2	0	0	1	1
steroid	s	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0
stool	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Archaea	Archaea Euryarchaeota Methanobacteria Methanobacteriales Methanobacteriaceae																	
Archaea	lEur	yarc	haeo	talM	etha	noba	cter	ialM	etha	noba	cter	iale	slMe	than	obac	teri	acea	elMet
Archaea	lEur	yarc	haeo	talM	etha	noba	cter	ialM	etha	noba	cter	iale	slMe	than	obac	teri	acea	elMet
Bacteri	a .	0.9	7670	1	0.9	2342	9	1	0.9	7295	6	0.8	0343	7	0.6	9673	9	0.94
Bacteri	alAc	tino	bact	eria	Act	inob	acte	ria	0	0.0	0457	143	0	0.0	1976	28	0.0	03209
Bacteri	alAc	tino	bact	eria	Act	inob	acte	rial	Acti	nomy	ceta	les	0	0.0	0114	286	0	0.00
Bacteri	alAc	tino	bact	eria	Act	inob	acte	rial	Acti	nomy	ceta	lesl	Acti	nomy	ceta	ceae	0	0
Bacteri	alAc	tino	bact	eria	Act	inob	acte	rial	Acti	nomy	ceta	lesl	Acti	nomy	ceta	ceae	Act	inomy
Bacteri	alAc	tino	bact	eria	Act	inob	acte	rial	Acti	nomy	ceta	lesl	Acti	nomy	ceta	ceae	Var	ibacu
Bacteri	alAc	tino	bact	eria	Act	inob	acte	rial	Acti	nomy	ceta	lesl	Acti	nomy	ceta	ceae	lunc	lassi
Bacteri	alAc	tino	bact	eria	Act	inob	acte	rial	Acti	nomy	ceta	lesl	Brev	ibac	teri	acea	elBr	eviba
Bacteri	alAc	tino	bact	eria	Act	inob	acte	rial	Acti	nomy	ceta	lesl	Cory	neba	cter	iace	aelC	oryne
Bacteri	alAc	tino	bact	eria	Act	inob	acte	rial	Acti	nomy	ceta	lesl	Derm	abac	tera	ceae	0	0
ibd2012	.pcl																	

92

Running this isn't any harder than before (it just takes a little longer):

M

./maaslin/R/Maaslin.R ibd2012.pcl ibd2012 --lastMetadata=11

3. screen (ssh)
2015-08-13 16:31:29 INFO:maaslin:Grubbs Test::Removing 6 outliers from unclassif
ied
2015-08-13 16:31:29 INFO:maaslin:7049
2015-08-13 16:31:29 INFO:maaslin:7059
2015-08-13 16:31:29 INFO:maaslin:7095
2015-08-13 16:31:29 INFO:maaslin:7125
2015-08-13 16:31:29 INFO:maaslin:7233
2015-08-13 16:31:29 INFO:maaslin:7871
2015-08-13 16:31:29 INFO:maaslin:Grubbs Test::Removing 2 outliers from smoker
2015-08-13 16:31:29 INFO:maaslin:7164
2015-08-13 16:31:29 INFO:maaslin:7610
2015-08-13 16:31:29 INFO:maaslin:Grubbs Test::Removing 1 outliers from steroids
2015-08-13 16:31:29 INFO:maaslin:7871
2015-08-13 16:31:30 INFO:maaslin:Outputting to: ibd2012/ibd2012_log.txt
2015-08-13 16:31:38 INFO:maaslin:Taxon 70/360
2015-08-13 16:31:42 INFO:maaslin:Taxon 100/360
2015-08-13 16:31:51 INFO:maaslin:Taxon 150/360
2015-08-13 16:31:54 INFO:maaslin:Taxon 170/360
2015-08-13 16:31:57 INFO:maaslin:Taxon 180/360
2015-08-13 16:31:59 INFO:maaslin:Taxon 190/360
2015-08-13 16:32:04 INFO:maaslin:Taxon 210/360
2015-08-13 16:32:06 INFO:maaslin:Taxon 220/360
2015-08-13 16:32:10 INFO:maaslin:Taxon 260/360
2015-08-13 16:32:19 INFO:maaslin:Taxon 360/360
[chuttenhower@class03 ~]\$

We can see all of the significant results: ightarrow

less -S ibd2012/ibd2012.txt

dx dx

dx

DOD

•	3. screen (ssh)		
	Variable Feature Value Coefficient N N.not	.0 P.valı	ue Q.value
1	age BacterialBacteroidetes age 0.004345071753979	82 220 21	12 0.00016448840082
2	age Bacteria Bacteroidetes Bacteroidia Bacteroida	leslBacte	eroidaceaelBacteroi
3	age Bacteria Firmicutes Bacilli Lactobacillales L	euconosto	ocaceaelLeuconostoc
4	age Bacteria Firmicutes Clostridia Clostridiales	Ruminocod	ccaceaelSporobacter
5	age Bacteria Actinobacteria Actinobacteria Bifido	bacterial	les Bifidobacteriac
6	age Bacteria Actinobacteria Actinobacteria Bifido	bacterial	les Bifidobacteriac
7	age Bacteria Bacteroidetes Bacteroidia Bacteroida	iles ad	ge 0.00409312520323
8	age Bacteria Firmicutes Bacilli Lactobacillales L	euconosto	ocaceae age -0.0
9	age Bacteria Firmicutes age -0.00286276397618523	220 21	19 0.00333716992643
10	age Bacteria Proteobacteria Gammaproteobacteria P	asteurell	lales Pasteurellace
11	age Bacteria Firmicutes Clostridia Clostridiales	Incertae_	_Sedis_XI Parvimona
12	age BacterialFirmicutes Clostridialunclassified a	ige 0.0001	111560534782389
13	age Bacteria Bacteroidetes Bacteroidia Bacteroide	lac Donnk	hunomonadaceae I Dana
14	age Bacteria Bacteroidetes Bacteroidia Bacteroia	ariable	Feature
15	age Bacteria Firmicutes Clostridia Clostridiales	age	Bacteria Bacteroidetes
16	age Bacteria Firmicutes Clostridia Clostridiales	age	Bacteria Bacteroidetes Bacteroidia Bacteroidales Bacteroidaceae Bacteroides
17	antibiotics Bacteria Actinobacteria Actinobacter	age	Bacteria Firmicutes Bacilli Lactobacillales Leuconostocaceae Leuconostoc
18	antibiotics BacterialFirmicutes Clostridia Clost	age	Bacteria Firmicutes Clostridia Clostridiales Ruminococcaceae Sporobacter
19	antibiotics Bacteria Bacteroidetes Bacteroidia Bª	age	Bacteria Actinobacteria Actinobacteria Bifidobacteriales Bifidobacteriaceae
20	antibiotics Bacteria Bacteroidetes antibiotics1ª	age	Bacteria Actinobacteria Actinobacteria Bifidobacteriales Bifidobacteriaceae Bifidobacteria
21	antibiotics Bacteria Bacteroidetes Bacteroidia Bª	age	Bacteria Bacteroidetes Bacteroidia Bacteroidales
22	antibiotics Bacteria Bacteroidetes Bacteroidia E	age	Bacteria Firmicutes Bacilli Lactobacillales Leuconostocaceae
23	antibiotics Bacteria Bacteroidetes Bacteroidia B	age	Bacteria Firmicutes
ibd	012/ibd2012.txt	ige	Bacteria Proteobacteria Gammaproteobacteria Pasteurellales Pasteurellaceae Actinoba
	a	ige	Bacteria Firmicutes Clostridia Clostridiales Incertae_Sedis_XI Parvimonas
	a	age	Bacteria Firmicutes Clostridia unclassified
	a	age	Bacteria Bacteroidetes Bacteroidia Bacteroidales Porphyromonadaceae Parabacteroide
	a	ige	Bacteria Bacteroidetes Bacteroidia Bacteroidales Porphyromonadaceae
		0.00	Pastaria Eirmigutos Clastridia Clastridia los Ruminacases casa Ruturisio escus

age	Bacteria Bacteroidetes Bacteroidia Bacteroidales Bacteroidaceae Bacteroides	age	0.00387834	220	206	0.00033318	0.00781462
age	Bacteria Firmicutes Bacilli Lactobacillales Leuconostocaceae Leuconostoc	age	-0.000176	220	29	0.00035114	0.00808887
age	Bacteria Firmicutes Clostridia Clostridiales Ruminococcaceae Sporobacter	age	0.00014751	220	53	0.0003815	0.0084851
age	Bacteria Actinobacteria Actinobacteria Bifidobacteriales Bifidobacteriaceae	age	-0.0008113	220	126	0.00042121	0.00877677
age	Bacteria Actinobacteria Actinobacteria Bifidobacteriales Bifidobacteriaceae Bifidobacterium	age	-0.0008086	220	126	0.00042663	0.00877677
age	Bacteria Bacteroidetes Bacteroidia Bacteroidales	age	0.00409313	220	212	0.00083297	0.01557283
age	Bacteria Firmicutes Bacilli Lactobacillales Leuconostocaceae	age	-0.0001888	220	39	0.00089099	0.01618847
age	Bacteria Firmicutes	age	-0.0028628	220	219	0.00333717	0.05204288
age	Bacteria Proteobacteria Gammaproteobacteria Pasteurellales Pasteurellaceae Actinobacillus	age	-0.0001436	220	27	0.00362747	0.05570764
age	Bacteria Firmicutes Clostridia Clostridiales Incertae_Sedis_XI Parvimonas	age	0.00016739	220	26	0.00704009	0.09460119
age	Bacteria Firmicutes Clostridia unclassified	age	0.00011156	220	47	0.0082163	0.10815338
age	Bacteria Bacteroidetes Bacteroidia Bacteroidales Porphyromonadaceae Parabacteroides	age	0.00097951	220	147	0.00922914	0.11672154
age	Bacteria Bacteroidetes Bacteroidia Bacteroidales Porphyromonadaceae	age	0.00101908	220	163	0.00942202	0.11800397
age	Bacteria Firmicutes Clostridia Clostridiales Ruminococcaceae Butyricicoccus	age	0.00036856	220	171	0.01802349	0.19215128
age	Bacteria Firmicutes Clostridia Clostridiales Veillonellaceae unclassified	age	0.00022306	220	104	0.02138539	0.21714042
antibiotics	Bacteria Actinobacteria Actinobacteria Coriobacteriales Coriobacteriaceae Collinsella	antibiotics1	-0.0862293	220	118	5.82E-06	0.00025891
antibiotics	Bacteria Firmicutes Clostridia Clostridiales Lachnospiraceae Dorea	antibiotics1	-0.0734784	220	197	4.79E-05	0.00162547
antibiotics	Bacteria Bacteroidetes Bacteroidia Bacteroidales Rikenellaceae	antibiotics1	-0.0428438	220	132	0.01213827	0.14365478
antibiotics	Bacteria Bacteroidetes	antibiotics1	-0.1419265	220	212	0.01485215	0.16660234
antibiotics	Bacteria Bacteroidetes Bacteroidia Bacteroidales Rikenellaceae Alistipes	antibiotics1	-0.0402089	220	132	0.01502882	0.16713084
antibiotics	Bacteria Bacteroidetes Bacteroidia Bacteroidales	antibiotics1	-0.1415995	220	212	0.01525422	0.16818757
antibiotics	Bacteria Bacteroidetes Bacteroidia Bacteroidales Porphyromonadaceae Odoribacter	antibiotics1	-0.0129536	220	72	0.01542788	0.16866076
antibiotics	Bacteria Firmicutes Clostridia Clostridiales Veillonellaceae unclassified	antibiotics1	-0.0119452	220	104	0.01697982	0.18253305
antibiotics	Bacteria Firmicutes Clostridia Clostridiales Veillonellaceae Phascolarctobacterium	antibiotics1	-0.0278794	220	95	0.02117856	0.21682815
antibiotics	Bacteria Bacteroidetes Bacteroidia Bacteroidales Bacteroidaceae Bacteroides	antibiotics1	-0.1250394	220	206	0.02171404	0.21714042
dx	Bacteria Firmicutes Clostridia Clostridiales Lachnospiraceae Roseburia	dxHealthy	0.12959193	220	177	2.55E-07	2.63E-05
dx	Bacteria Proteobacteria Gammaproteobacteria Enterobacteriales Enterobacteriaceae Cronobacter	dxHealthy	-0.0190217	220	66	3.08E-05	0.00193979
dx	Bacteria Firmicutes Clostridia Clostridiales Ruminococcaceae Ruminococcus	dxHealthy	0.05645538	220	114	0.00038492	0.01460437

Value

age

Coefficient N

0.00434507

N.not.0

220

P.value

Q.value 212 0.00016449 0.00442063

94

• Or you can visualize raw data for individual variables:

MO

Advanced MaAsLin: random effects

What if you have multiple samples / subject?

MO

grep -E '^(sid) | (RANDSID) | (STSite) | (k_) ' HMP.ab.filtered.metadata.pcl > HMP.ab.filtered.subject.pcl ./maaslin/R/Maaslin.R HMP.ab.filtered.subject.pcl HMP.ab.filtered.subject --lastMetadata=3 -R RANDSID

Advanced MaAsLin: other models

What if you like to use a zero-inflated negative binomial?
 Be warned, R's version is buggy as all get go...

MM

./maaslin/R/Maaslin.R HMP.ab.filtered.stsite.pcl HMP.ab.filtered.negbin --lastMetadata=2 -z -m neg binomial

Advanced MaAsLin: more tricks

• MaAsLin can...

M

- Change all QC and significance parameters
 - Minimum relative abundance, prevalence, FDR threshold, method, etc.
- Skip some metadata
 - Check out the read.config file documentation and -i flag
- Use other regularization approaches
 - Not just boosting: LASSO, forward, backward, none, etc. (-s flag)
- Test all-against-all features, e.g. all bugs against all genetic variants
 - –a flag, use with caution power!
- And there's a beta Galaxy interface
 - <u>http://huttenhower.sph.harvard.edu/maaslin</u>

15 M

Ξ

Thank you! DOC

Xochitl

Morgan

Gholamali

Rahnavard

Boyu

Ren

Jim

Curtis Huttenhower

Aleksandar Kostic

Tiffany Hsu

Casey DuLong

Luc Bijnens

Tommi Vatanen

Emma

Schwager

Minah

lqbal

Melanie

Schirmer

Kaminski

Levi Waldron Nicola Segata

Kat Huang

Wendy Garrett

Michelle Rooks

Ramnik Xavier MGH 1811 Harry Sokol Dan Knights

http://huttenhower.sph.harvard.edu 100

Rob Kniaht

BRO

INSTITUTE

36 Mark Silverberg Boyko Kabakchiev Greg Caporaso Jesse Zaneveld Andrea Tyler

Mihai Pop Larry Forney

Barbara Methe

Anthony Fodor Marty Blaser **Jacques Ravel** Pat Schloss

Beltran Rodriguez-Mueller Makedonka Mitreva Yuzhen Ye

Sahar Abubucker

DANONE

Ruth Ley

Omry Koren

Owen White

Joe Petrosino

Karen Nelson

Lita Proctor

George Weinstock

Erica Sodergren

Bruce Birren Mark Daly

Dovle Ward Ashlee Earl

% HEATY

Lauren

Mclver

Koji Yasuda

Andy

Shi

Ayshwarya Sirota-Madi Subramanian

George Weingart

Siyuan

Ma

