Quality Control Laboratory

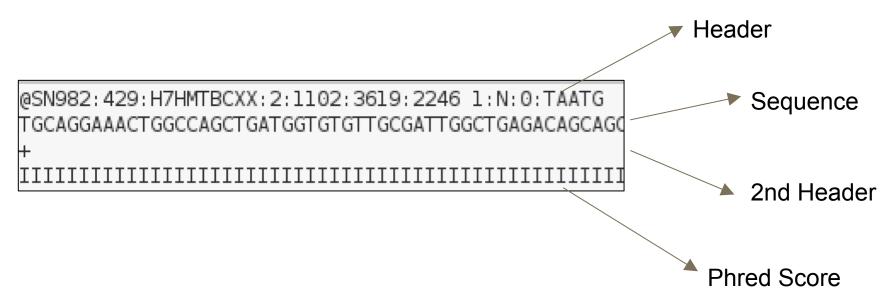
Josie Paris & Sophie Shaw Workshop on Genomics 2016

Fastq Format

@SN982:429:H7HMTBCXX:2:1102:3619:2246 1:N:0:TAATG

TGCAGGAAACTGGCCAGCTGATGGTGTGTGCGATTGGCTGAGACAGCAGCTTCCCCCTCTTGCCTTTCTCCATGTACCAGCGGAACAGGAAGTC +

TGCAGGTGCGCCGTTACAGGGCACTGTGTCTGTCACACAGAACATTCAACCAGAGGCCAGCCTCGAGAGGCTGGTACCCTTAGTATATTTTCT +


TGCAGGTATGCCCTTTCCGTTCCGGCTAGGAGCGAGGCTTTCGTCTGGGCTCGTTTGCCAGTACGGTCAAGTAGGCCGGATGGCTGGGTTCTTGT +

TGCAGGAACTCCAGCAGGAACTCCAGCAGGAACTCCAGCACTGCAACCACCGGCCAGTTAACCGGATCCAACTGGTGTTCTCTACACCAAGAAGT +

TGCAGGTCCCCTACCCTCTTGATGGAGGCCAATGCAACCAGGAGCGCTGTCTTCATTGACAGGAACTTAAGCTCCACTGATTGTAAAGGCTCAAT +

H

Fastq Format

Phred Scores (Q)

Quality Score	Probability of incorrect base call	Base call accuracy
10	1 in 10	90%
20	l in 100	99%
30	l in 1000	99.9%
40	l in 10000	99.99%

https://en.wikipedia.org/wiki/FASTQ_format

ASCII encoding of phred scores

one number : one letter

• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	:
45:E	95 :	146 : f
44:D	94:^	145:e
43:C	93:]	144:d
42 : B	92:\	143:c
41:A	91:[142:b
40 : @	90 : Z	141 : a

Different Phred Scores

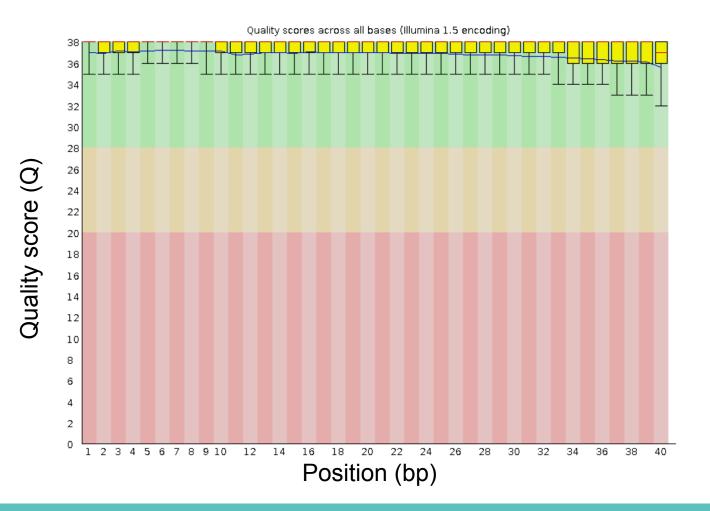
SSSSSSSSSSSSSSS	ssssssssssss	SSSSSSSS	SSSSS			
	XX	XXXXXXXX	******	(XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	xxxx	
		IIIII			IIII	
		J JJ	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	נננננננננננננ	JJJJ	
TATATATATATATA			LLLLL			
			EFGHIJKLMNOPQRSTUV			
		->: erdedi				.uvwxy21 }"
33	59	64	73		104	126
0			40			
	-5.	0	9		40	
			9			
			9			
0.2	26			•••••		
0.2			41			
S - Sanger	Phred+33	raw read	s typically (0, 40))		
X - Solexa			s typically (-5, 4			
	-					
			s typically (0, 40	· ·		
J = Illumina 1.5	+ Phred+64,	raw read	s typically (3, 40))		
with 0=unused	d, 1=unused,	2=Read Se	egment Quality Cor	trol Indicator	(bold)	
(Note: See d	iscussion abo	ve).				
L - Illumina 1.8	+ Phred+33,	raw reads	s typically (0, 41)		
					most data	aro Dhroc

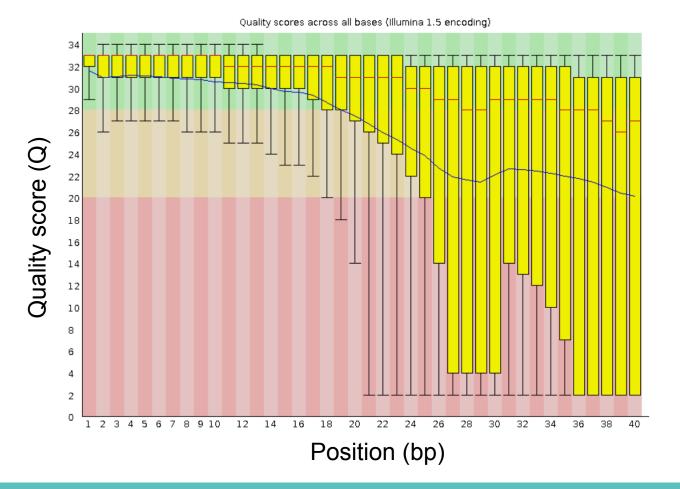
...most data are Phred+33

Quality Control

Why? Low quality reads, contamination and adaptors introduce errors into data.

Filtering and trimming these sequences may help to improve downstream analysis.


Filtering isn't always needed. Some programs take quality into account.


HOWEVER a visualisation of data quality should be carried out at the beginning of ANY analysis.

Do you want to manually assess the quality of each read? All 1000000?! NO!

FastQC is a software programme that analyses quality and produces a report showing key information.

Kmer

A "string" of letters (sequence) that can be any length

For example:

ATGC

ATCGCTTGTGTGACCAGTGATTGACGATGGTCATTATGTC

Datasets

Exercise 1: Genome sequence of the bacteria Bartonella

Exercise 2: Amplicon sequencing of 16S rRNA

Exercise 3: RAD Sequencing data

Exercise 4: Amplicon sequencing of COI genes

Exercise 5: microRNA sequencing

Exercise 6: PacBio data from *Arabidopsis*

How to Run a Programme - Command Line

\$ program_name [OPTIONS] <files>

For example:

\$ fastqc [-o output dir] [--(no)extract] [-f fastq|bam|sam]
[-c contaminant file] <seqfile1 .. seqfileN>

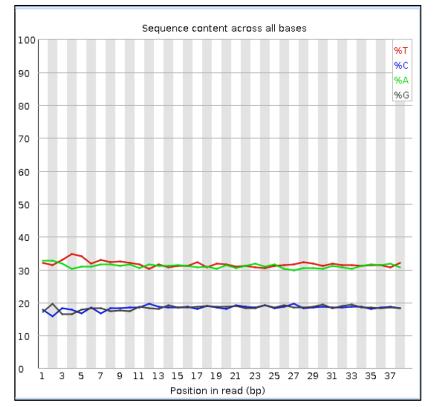
Generally,

- [] optional
- < > mandatory, e.g. files

OR

Genome sequence of the bacteria Bartonella

Exercise One


There are 10,000 sequences of 38 nucleotide length

The GC content is 37%

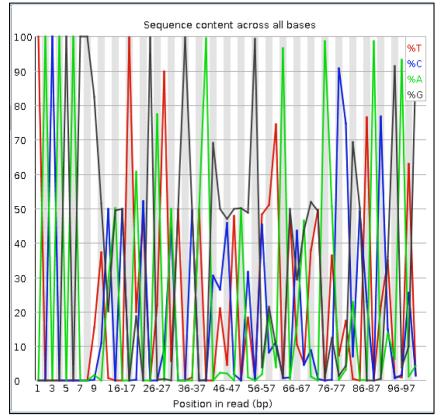
Quality score is > Q30, which = 1 error in 1000 so base call quality is 99.9%

Would you think this is good quality sequencing data?

Genome sequence of the bacteria Bartonella Exercise One - Are we worried about this data?

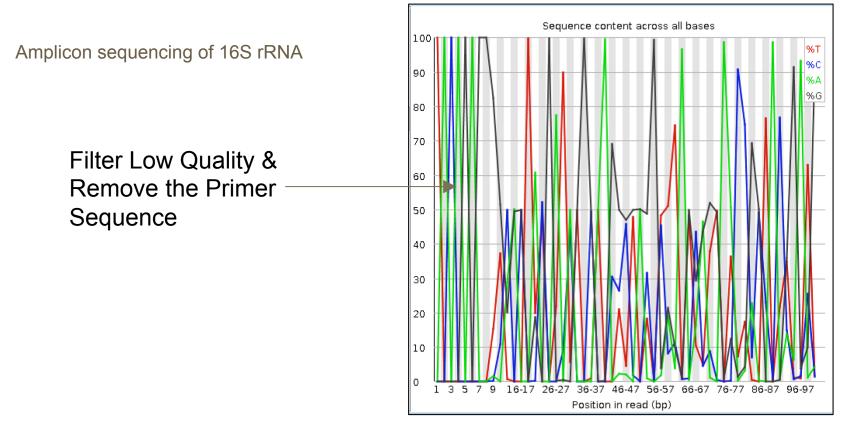
Overrepresented sequences				
Sequence	Count	Percentage	Possible Source	
GATCGGAAGAGCAC	17	0.17	TruSeq Adapter, In	

No - This shows the GC content we expect and very few adaptors

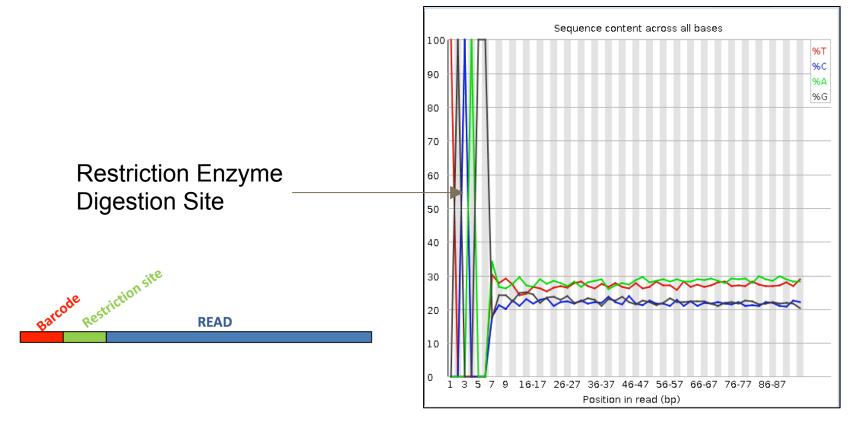

Amplicon sequencing of 16S rRNA

Exercise Two - Per Base Sequence Quality

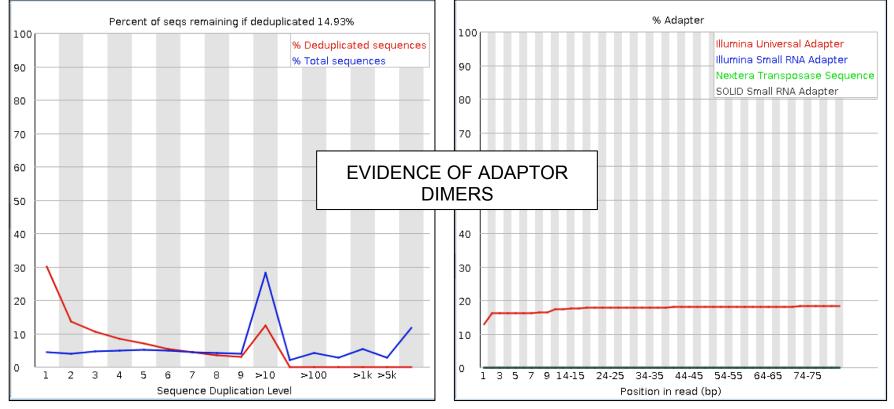
Conserved sequence at the beginning of the reads:


TACAGAGG

Lots of sequences with very similar sequence.



Amplicon sequencing of 16S rRNA

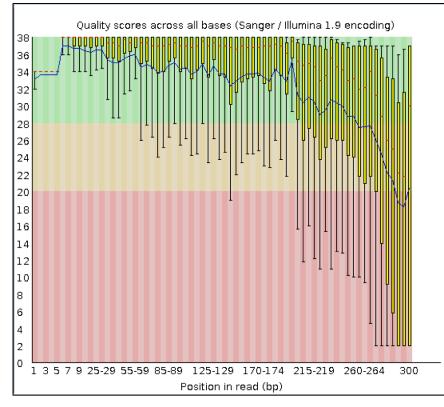

Exercise Two - Filtering/Trimming?

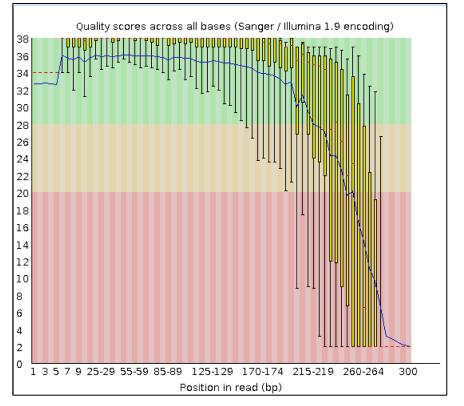
Exercise Three - Dataset 1: The First 6 Bases

Exercise Three - Dataset 2: Read 1

Exercise Three - Dataset 2: Read 2

Sequence content across all bases 100 %Т %C 90 %A %G 80 70 60 50 40 30 20 10 0 9 66-67 76-77 86-87 96-97 1 з. 5 16-17 26-27 36-37 56-57 46-47 Position in read (bp)


No restriction enzyme digestion site, therefore not double digested


Exercise Three - Dataset 2: Read 2

Amplicon sequencing of COI genes

Exercise Four - Why is read 2 poorer quality?

Exercise Four - When would you be less strict?

Quality vs. Quantity - Do you have enough data after filtering?

SOME alignments - RNA sequencing vs. SNP calling

Does your downstream software handle quality scores and filtering? E.G. QIIME and Stacks

microRNA sequencing

Exercise Five - Adaptor Contamination

What is the source of the overrepresented sequences?

Overrepresented sequences				
Sequence	Count	Percentage	Possible Source	
AGCAGCATTGTACA	3398	3.398	No Hit	
TACAGTCCGACGAT	1814	1.814	Illumina PCR Prime	
TCTACAGTCCGACG	1570	1.57	RNA PCR Primer, In	
TATTGCACTTGTCCC	1421	1.421	No Hit	
TTCTACAGTCCGAC	1181	1.181	RNA PCR Primer, In	
CTACAGTCCGACGA	1168	1.168	Illumina PCR Prime	
CATTGCACTTGTCTC	839	0.839	No Hit	
ACAGTCCGACGATC	835	0.835	RNA PCR Primer, In	
AGTTCTACAGTCCG	648	0.648	Illumina PCR Prime	
AAAGTGCTGCGACA	491		No Hit	
TCGTATGCCGTCTT	465	0.465	Illumina Single En	
CAGTCCGACGATCT	436	0.436	Illumina PCR Prime	
TNNNNNNNNNNNN	392	0.392	No Hit	
TAGCTTATCAGACT	388		No Hit	
TATTGCACTCGTCC	366	0.366	TruSeq Adapter, I	
ACCGGGCGGAAAC	357	0.357	No Hit	
ANNNNNNNNNNNN	355		No Hit	
GTTCTACAGTCCGA	353	0.353	Illumina PCR Prime	
AAGTGCTGCGACAT	341	0.341	No Hit	

Exercise Five

Are we happy with the final data?

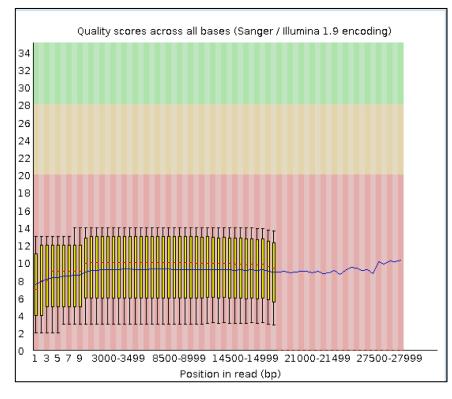
What about the adaptor sequences that remain?

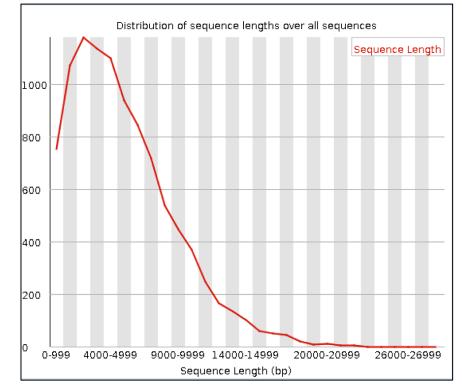
- Could be real adaptors that are too small to match based on software parameter OR could be real sequence

What about the quality trimming?

- Trimmers work with a sliding window and calculates the average Q score in that window, if it's higher on average than the cut off, it stays.

Exercise Six


PacBio data


GGCCACCACCTGCGTTTTAAGCCTGCTGCGCGACCTGTGGTGTTGTCAAATGCGAAACTTTCGATACTAACATCGATGGCCGTCTAGGTCGTAGGAATGGTTGTTCTCTGTAATCATGTGTAACTGTGTAACTCCCCGCCTTGAAACCCCCCGCCTTGAAGATGCCATAAA CTCACCTATGATCCAAAGCCCCCTCGCTATCATGCCCGAAGGTGCTGCGGAAGTTGTTCCGGCAAAACCGTTTCTGGCCTCGCAAGCGCCTTATCATTCCTCCTCGGGCCATATCCTCCCGGAGGTGACGCCCCGAAAAAGTTCTTCTTCTTCTTCT CTGTGTAACACGCGGAATTATCGATTTAGCGATTTGCTCGGATGCAGGGTTGATGAAAAATCACCTCAATTGCGGTACCGTAGACCCTATCAACGGCTCCAGCACCGACTAACATCCAGCTTTGACAGCTTTGACAGCTTTGCAGCTTTGCAGCTTCGCCCTGCT TGGTCACCCCAGCTAGAGAAATCCTACAAGAAACGAAATAATCGGTAATATGAAGGACCATCCCGACTATTACACGCTCAGCCGGACCTAACATGTAGATGGGAAATGGGTGATGTTCTTAAGTCCATACCAAAGTCTAACGCGAATATGCGGTCATCCCGGACTATCACCGGAATATGCGTCATCACCGGTAGGG CTCCAGGTATGATAAAACTCCCTCTTCTGTTGGTCGCTGAGATGATTCAATGGGTGTTCTTCGGTTGTACTATTCAGGATACTGTCTACTCGCTCAAAAAATAGCATCATGCTCCCCTAGAGGATGTCTCCCCACTCTTGGCCGATTACACCTATTCC TAGAAAAACTCAACTAGTTTCCATGGTTGAAGTATGATAACCAGGCAATCAAAAATCCACCCTCCTTCTTCATGCTCCCAGGTTCTGAAGGTATCTTGCTGTCCGCTGTTCATCAAGATTACGAGCCCATATGACATCCTCATCAACACCCTATGTATAAATCC AGTACT6GT6CGCGTAGAC6CGGACATT6CCGGAAAATGCTCGACACGTCTCCCCTGAAAATTCT6CGGAGCCGCTTCGCCTGACCCGAGTCCAGGACGGGCCGGACGACGGGGTGCAGAAAGGCCGGGGTTGTCACGAAGGAGACGCC

/++//+,/,'-+,#)&,/.-//)--&"#%&-,-*/./,-.))#-'"&-*,-,-*\$&)&(+('#%\$'%&,%-%...+/.,.-(-).(,'.,+,/,%--.+)+'/.-.-*#&%.,-.'(+\$,-+,*(-#-+.+////.+#%,-,()'%+(-./#,..)-+\$%-+*\$-(\$\$\$.+.++#\$*()\$#++-%+(\$##+-%+(\$##+++(\$##++-%+(\$##+++)))))))) \$"\$(`6\$!#"%#"##&6.+*'\$#%"##!''!6\$\$''''#&',*/(-(\$"#%\$\$#('###"\$\$\$\$#)&##%\$#\$'*'),,+6\$"+(,'\$\$+-/\$-\$,6+*\$6),-#"\$#!!'8)-(*%-.',*#+(*+"(\$%#"")-,../,+.-.)())!-,.),6-)'"#*--*+)"()-*+\$.-+*"&/+--"%%%%%##'\$\$(%"'#').&(#),#*%%---/%%)(+&(""*-'(.\$*).",)\$+/&*-).../../.'.',%&&.(+),))*-\$-')+#--(/)&--'&#\$(,-&(-*)+'*#++,../+..(+.)/-%.(,+(+)+##"#\$)()&---/+ /0////.+&(\$+(-,/..+*%#(")+.(+.*(--+-,)*%#+&(-(()*-).,&.&,+#+*+.,./(--+*#+)-*%-\$(\$&&**\$##\$',,#,,)+%-+,(/.\$#*.,/-/././.++./,.&,/.\$**,*/-***,.//, ...'', (-*-*/,.,',%',\$%%'.'%6\$##\$'%#)-+,'()(((+--+/.//'/../.+\$6/\$--,./*)/#/,*/.\$+*-*/-+..*,/-,/*'.*/++..-&.//../.*//-/\$/*/(--.)*,.*%%'.-/.-/*./%\$&'''(&'))(+#.,-(.%'6*# #&&))-,*+.*/'/.,//0*/.--&,%+\$**(')*,#(--.)./\$,.)..&/.+.,(.,+-.+/*(-&+'.-..+',,-.+-,(--*+).+(,,\$-.#,)#-)*\$/-*-+-/**#---.%.&/.,,.)%+,#))''').-.&...+-/\$/-,.-.'\$*,#(* -/).(/..-',%.../*)',-.+',-&*(''#)--&)),#)&-&'&-','-&&*****-).---.***/0.//(/.,-****/0.///"0+0/../.**0./*(',///./+//+/-/.+&(-/('//...0./0//.*///.0(//'...0./+0/../+-//-/./0*.(-/--.%0/./&-.--..-0(00/.....0..*0..*/0..0./../.().///.../&-0*+0/./\$).*)00***.-+.*00/./-#'/.+/0.".*0/+///-/.0../0/-.#/-.+0-#..///./%(0.-00/0-.&)/0.+0.// --+0.//).0/,.'*/.0/)/..+/..(/,-/(./,/+(/.,,/0'%/*+//\$/)*&."...,./+/+/0/0-,,,-+/.0/.*+.-//).0*..///-.*/.0*/.*)/.\$,-)(.00//)./-.++.*/+-//0).*,-0*&(*,&)0.-./+/-.&... ,.'+/,'/0-//%//-'.+))**+//..///0.//\$*/-#-0///&0-////+0.//&//+'0//)0-,-.-+%--.,,'//)\$#(-/).0./-%.///+.//////0..&\$.//.../\$*//.&'(./.&%./0.///)/+-./0/&+//.-/.(00/ .//-++.-../%/.'/0//-/00/) (///)00) '%..0/00/0(0/.0..)0.-0/,) '..+..//#.\$../)*/-(/--*#)./.-..//-,.-+//-0+%.)./.00/.*///*/-..+(/-..//&-**&'-.0//.(///././%+*\$-/.--/.-.*.. ·/*,#*/.-,#.//0,//-.#(///-/..&(.//+/.%.%.//+./'-*.+0)&+#.//..-,/..-0,./,-.,-*0./(0*////(/)/,..//--&,-+#,0,&)/-(%.-.(/.-.(/.+(*,///0*///-/.-/./0+/'*(,./+/..-////&(,/0*///-/.-/./0+//*(,./+/..-////&(,/0*///-/.-/./0+//*(,./+/..-////&(,/0*///-/.-/./0+//*(,./+/..-////&(,/0*///-/.-/./0+//*(,./+/..-////&(,/0*///-/.-/./0+//*(,./+/..-////&(,/0*///-/.-/./0+//*(,./+/..-////&(,/0*///-/.-/./0+//*(,./+/..-////&(,/0*///-/.-/./0+////////..-/.-0) .*\$//#/(&.-../)#/*./*.0///`\$////&.(.-/./.%&+#-./())0.0+/\$///.*.\$-.//-//(%()-./+/.%.--/0.//(*///*.%/.///+../-/.000/0//0*&////-%(%(*////-.0)((\$--#-%-.)..//%+'/0*\$. ,/-'+/./////+/'+/.'\$&+-,./..)0+/0.#'.',-,//0+,-///,/.(*.,+-/.(/+(./-*+'///*.-/++\$--,./'-.//+0+/0./.*//.-/#..,/'...,,'+0/--/)..(...*//0../.))-/-%-'+-'/-,,-/+-/.-/.-)-.0//.--0////*(../..+/#&//.#\$/'0.,.*../#-.-')*)../,&.)/%,///.,(/./0.*+.//.-//,--/%*"/,/./*0%0./-0//"*.%,0/,./,/-*/'/(,,+/%*-),#-.*/-.+,&'/''/...-/,+./.-/'/-./0/*+0/.. +//+.-%-/.(/\$,/),(+/./0/+..(//&.))#.0+/.('*.%)/0../-..*#//*-%-.&*/0.&.(./'*.---&/-/+(/-..\$-/'*///.-.-.\$/%..-*///.(\$#/0/+.././.#(/.//-///%/..-/.-.../0/)\$-/-&-//' /.#%+.0.--+/./++//../0(,)#0,*0//(,.0,0/-///%.\$/.////.0/+,//%')'++,/+/*0"+.-\$,'*#/(*/-+&))//&/***/\$.)(.,-.-0*00,...+,0..-,/0*')/0///0,"./..0%-((/(//./.+...../&/'0// /(/-,./*/&../.-*00./00'+0/-../-0//0///,/./.-.(&###--.,)././,0//0-+/&+.*,.-/%//+-0000%//.)+,./0//0,00*'//0)//,.+-(/#/().*&'.).\$)'/.0-%/*-0+...-./(/./0/.\$...//-#.-\$.. --More--(0%)

PacBio data

Exercise Six

PacBio data

Exercise Six

Why can't we filter PacBio data based on quality?

Take Home Message...

It is essential to QC your data before beginning analysis.

What are you expecting? Think about your experimental design, your species etc...

No two datasets are the same!