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1 Bayesian and Likelihood-based inference

In the lessons that I will be teaching, my goal is to give you an introduction to some of
the modeling frameworks that come into play in population and speciation genomics, rather
than teaching you specific software. This will be an introduction and a point of departure
for more learning.

I will be writing my notes on screen, so that you can take notes as we go. Please interrupt
me with your questions. I will continue with this material on Wednesday evening in my next
session, and we’ll add in more hands-on work there.

1.1 Why do we need probability theory for genomics?

We want to estimate parameters in genomics and probability gives us a basis for estimation
and inference.

1.1.1 Example: genotype probabilities

1. Fundamental issue with sequence reads: the true genotype at a locus sequenced from
a sample individual is an unknown parameter and we want to estimate a probability
associated with the possible genotypes at a locus. e.g.: AA (2): 0.99 AT (1): 0.01 TT
(0): 0.00

genotype probabilities have become a common question with the random reads gener-
ated from DNA sequencers and the necessity of modeling sequencing error. Common
software for variant calling results in genotype likelihoods.

2. Two ways of using genotype probabilities:

(a) we can retain and utilize information for genotypes only (code them as 0,1,2)
when probabilities exceed a threshold

(b) we can build models that work directly with genotype probabilities. Some software
does this. This will make use of all of the data, rather than throwing some of it
away.

1.1.2 Population genomic parameters more generally

We are typically interested in genotypes because they tell us something about individuals,
populations and species. They support biological inferences because we can use them to
estimate population genomic parameters.

Ideally we’ll use an inferential and modeling framework that recognizes that genotypes
come from individuals, within populations, within space and species. Likewise, diploid geno-
types also come from within a genome, with chromosomes (with linkage, assortment, recom-
bination, gene conversion, etc.).

We should strive for a modeling framework that utilizes mutual information between
these levels of organization and sampling: this properly accounts for our uncertainty across
the framework, and also captures parameters of interest in the hierarchy.
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Examples of population genetic parameters:

1. mutation rate (4Nµ) – population – individuals (and loci)

2. estimates of allele frequencies

3. FST

4. admixture coefficients (structure’s q)

5. FIS

Ask students: first parameter here is for a population, what about the other four? Where
does the mutual information arise to estimate these parameters (individuals, loci, or both)?

1.1.3 Parameter estimation

parameter estimation is central but often disregarded in biology. Not so in population ge-
netics; there we often have theory for a parameter but not much for statistics.

Oddly, much of what many of us know about probability and statistics is instead con-
cerned with the question of how improbable our data are, given a null hypothesis that were
not interested in. Consequently, many biologists give little thought to parameter estimation
itself, but instead on ways to get p-values.

So we need some different statistical tools that address the questions we’re interested in
and allow us to make decisions about evidence.

1. framework for model comparison and choice – confronting models with data

We are interested in:

(a) comparing alternative parameter values and finding values that have the most
support from observed data.

(b) contrasting models with different numbers and types of parameters to support in-
ferences about biology.

For example, we might want to compare FST estimates or models of genetic architec-
tures for a trait (numbers of causal loci and effect sizes).

These points, and other considerations, suggest that we will prefer Bayesian or likelihood
methods for parameter estimation. So I will outline some of the essentials of Bayesian
estimation, with asides about likelihood.
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1.2 Essentials of Bayesian estimation

1. Key elements of Bayesian inference

(a) Bayesian methods result in a probability density for the model parameters, given
the data (the posterior probability).

(b) The probability density fully describes all information about the parameters and
our uncertainty about them.

(c) Measure of uncertainty for each individual parameter incorporates uncertainty for
all parameters.

(d) Computers make it possible to obtain a very good description of the probability
density of the parameters, given the data

(e) Densities can readily be obtained for estimates of transformed parameters

(f) Probabilities provide a robust framework for scientific inference – model choice,
strength of evidence, etc.

2. Bayesian and likelihood: Bayesian inference is one of two principal approaches to
inference and parameter estimation. The other being Likelihood analysis. We’ll prefer
Bayes for the attributes in the previous list. Most of these things are not true for
Likelihood.

Given this very basic motivation, we need to make sure we have a foundation in prob-
ability.

3. Bayes theorem: equation for the posterior probability

P (θ|data) = P (data|θ)·P (θ)
P (data)

Label the different components – prior, likelihood and P(data), and discuss what each
represents.

(a) analytical solutions – available in simple cases. “Closed form” solution for the
posterior probability density in the form of an integral. Quantiles (0.025, median,
0.975) and expectation (mean) can be calculated directly, as for any probability
distribution.

(b) simulation (MCMC) solutions – stochastic sampling from the posterior – when an-
alytical solutions are not available, there are algorithms (MCMC) to draw samples
from posterior and fully characterize it. This is typical in population genomics.

(c) P (data): it is a normalizing constant for the sum P (data) across all possible values
of θ. Makes it so that the posterior density sums to one and is a proper probability
distribution. We typically will not be able to calculate P (data). MCMC methods
allow us to draw samples from the posterior to converge on a proper pdf that
sums to one.

P (θ|data) ∝ P (data|θ) · P (θ)

(d) Obtain quantiles (2.5% to 97.5% is the 95% ETPI or credible interval for true
parameter) and expectation (mean) from pdf.
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4. An example and application:

Suppose we have genotypic data for 100 individuals from a population and we want to
estimate the frequency of the two SNP alleles in the population (p for ’A’ allele). Our
sample data contain: 63 AA, 34 AT, 3 TT.

Non-Bayesian point estimate of p: y = 63× 2+ 34 = 160, and n = 200, 160/200 = 0.8
(this is the ML estimate)

However, if we want to obtain a posterior probability distribution for p = f(A), what
do we need to do?

P (p|alleledata) ∝ P (alleledata|p)P (p)

(a) P (alleledata|p) – binomial – Process suggests we should model the allele data
as binomially distributed (i.e., binomial probability function; a set of Bernoulli
trials; discrete samples from a discrete process) – this is the likelihood.

(b) P (p) – We need to place a prior probability distribution on p.

i. p = [0, 1] – p can only take on values between 0 and 1.

ii. Are certain values of p more likely a priori? Perhaps, but lets assume all
equally likely.

iii. beta – The desirable prior for a binomial is a beta distribution, because of
their mathematical relationship (beta is conjugate prior to binomial).
So, lets chose a beta prior beta(α = 1, β = 1), although we could chose a
uniform prior and use simulations/MCMC instead.
Not all probability distributions have a conjugate prior, but many common
simple parameter probability distributions do.

5. Closed form solution for posterior distribution

(a) Full model: P (p|x, n) ∝ P (x|p, n)P (p).

(b) Binomial likelihood: P (x|p, n) = Cpx(1− p)n−x, where C is a constant that does
not depend on p.

(c) beta prior: P (p) = Cpα−1(1 − p)β−1, where C is again a constant that does not
depend on p.

(d) P (x|p, n)P (p) = Cpx+α−1(1− p)n−x+β−1

(e) This function is the probability density function for a beta distribution with pa-
rameters x+α and n− x+ β (our α and β = 1). So the posterior distribution is:
beta(x+1, n-x+1)

Rcode:

p<-seq(0,1,0.001)

plot(p, dbeta(p, shape1=160+1, shape2=200-160+1),

type ="l", xlab="p", ylab="density")

abline(v=qbeta(p=c(0.025, 0.975), shape1=160+1, shape2=200-160+1))

qbeta(p=c(0.025, 0.975), shape1=160+1, shape2=200-160+1)

## [1] 0.7390267 0.8494647
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Bayesian point estimate is: E(p) = α
α+β

= 161
161+41

= 0.797

Futher demo: Common question is how sample size affects confidence in an allele
frequency and how many individuals should I sample from a population. Adjust
model in Rcode to examine how confidence for 100 individuals differs from sample
of 10 individuals.

qbeta(p=c(0.025, 0.975), shape1=16+1, shape2=20-16+1)

## [1] 0.5809340 0.9178241

Note the larger 95% confidence interval for the allele frequency parameter. Inter-
pretation is that the true parameter lies in this interval with 95% confidence.

Instead we could also use MCMC simulation methods to draw samples from the poste-
rior distribution and obtain equivalent estimates. This is a rare case in pop genomics
where there is an analytical solution.

1.3 Probability distributions

We have seen a bit of application of probability to population genomics. There are a few
probability distributions that you need to know as a foundation for modeling and I’ll provide
a brief overview of these here.

Draw these and discuss.

Make distinction between discrete and continuous distributions. Mention generating
processes if possible.

1. binomial (Bernoulli trials) – count of events in reference category, discrete samples
from discrete trials

2. multinomial (with one draw, for genotypes) – count of events in categories, discrete
samples from discrete trials

3. beta – continuous distribution on [0,1]
Illustrate betas with different parameters (we want to be able to refer to this below)

p<-seq(0,1,0.01)

par(mfrow=c(1,3))

plot(p, dbeta(p, shape1=1, shape2=1),

type="l", main="1,1", xlab="p", ylab="Density")

plot(p, dbeta(p, shape1=100, shape2=100),

type="l", main="100,100", xlab="p", ylab="Density")

plot(p, dbeta(p, shape1=0.1, shape2=0.1),

type="l", main="0.1,0.1", xlab="p", ylab="Density")

4. Dirichlet (multivariate generalization of the Beta)

5. uniform e.g., (0,10000]
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1.3.1 AFS: Student discussion regarding beta

. Given that beta is a reasonable the prior for allele frequency, it can be used to learn about
the genome-wide distribution of for allele frequency at loci. What type of shape do you think
characterizes the allele frequency spectrum and the beta for allele frequency prior?

Relate this to Nelson et al. 2012 paper (14002 individuals, 202 genes). Open it on screen,
describe briefly, show top of Fig. 1.; DOI: 10.1126/science.1217876

2 Hierarchical models for allele frequencies

We want to work on some fundamental models associated with genotypic and next-generation
sequence data that are useful and allow us to understand some of the modeling choices and
possibilities.

We will develop three models today and use these as a basis for understanding more
complicated models in the workshop.

1. Multilocus model for allele frequencies

Suppose we have genotypic data for several loci and individuals. Let’s generalize our
single locus model for allele frequencies at each locus (j).

P (~p|x) ∝
∏

j P (x|pj)P (p)

Likelihood: P (x|pj) ∼ binomial(pj) – This is one binomial for all allele copies sampled
from the population, as we did before 160 A out of 200 total copies sampled.

Prior: P (p) ∼ beta(1, 1) – constant and used for all loci

What are we assuming in this model? We are assuming all loci are independent. But
in reality loci share a genome and some history (for example history of drift). We will
incorporate this in the next model.

2. Multilocus model for allele frequencies and diversity

We could allow the prior on allele frequencies to be a parameter that we estimate
from the data. We could make a hierarchical model that has a beta prior for allele
frequencies and a hyperprior for the parameter of the beta.

P (~p, θ|x) ∝
∏

j P (x|pj)P (pj|θ)P (θ)

Likelihood: P (x|pj) ∼ binomial(pj) – as before, a binomial for all allele copies sampled
from the population

Conditional prior for pj: P (pj|θ) ∼ beta(θ, θ)

Hyperprior for θ: P (θ) ∼ Uniform(0.001, c)

(a) The θ parameter describes diversity at loci. It is a version of the allele frequency
spectrum. Recall beta with small value for θ would indicate that most loci have
allele frequencies that are near one or zero. So θ is an interesting parameter itself.
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(b) θ ∼ 4Nµ – if drift and mutation were the only the processes that affect diversity
and they are constant, allele frequencies will equilibrate to a beta distribution
with parameter θ, which under these circumstances is an estimate of 4Nµ. That’s
interesting. A parameter in a conditional prior for allele frequencies can be the
population size-scaled mutation rate.

(c) Transformation – Recall that we said that we can transform parameter estimates
and the distribution of the transformed estimates will be a posterior distribution
for the transformed value. In this case we are estimating allele frequencies with
P (pj|θ) and getting a posterior distribution for pj. So we can calculate expected
heterozygosity He = 2p(1− p) (a transformation of p), as we estimate p, and get
a posterior distribution for He.

3. Multilocus model for allele frequencies and diversity, with data that involve genotype
uncertainty (individual data). The unobserved genotype is now an unknown. Could
also incorporate sequence error, but we will not here.

P (~p,~g, θ|~x, ~n) =
∏

i

∏
j P (xij|gij , nij)P (gij|pj, n = 2)P (pj|θ)P (θ)

Likelihood: P (x|gij, nij) ∼ binomial(gij/2, nij) – where gij = (0, 1, 2)

Conditional prior for genotype: P (gij|pj, n = 2) ∼ binomial(pj, n = 2)

The rest is the same as previous model.

Alternatively, rather than working we read data directly (x), one could multiply by
each of genotype likelihood obtained from other models (e.g., bcftools).

p

g

B)

p

C)

g

x

p

Binomial(g|p,n=2)

g

α,βBeta(p|      )

θUniform(  )

Binomial(x|g,n)

α=1,β=1 α=θ,β=θα=θ,β=θ

θ θA)
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3 F-models for population differentiation

The amount of genetic variation within populations and differentiation among populations
are determined by evolutionary processes:

• effective population sizes (Ne) and genetic drift

• mutation rate

• gene flow

• selection

• recombination and gene conversion

Estimates of genetic differentiation might shed light on these underlying processes

3.1 Quantifying differentiation

FST commonly used to quantify differentiation.

1. FST is generally a measure of the variance in allele frequencies among populations.

2. Ambiguity in usage of FST – not all people mean the same thing by FST . One major
distinction is whether FST is a simple deterministic summary (fixed effects parameter)
of allele frequencies or it is an evolutionary (random effects) parameter.

(a) deterministic, fixed effects parameter – FST can be a simple deterministic summary
of allele frequencies (e.g., Nei’s GST ), where FST = HT−HS

HT

.

All uncertainty in FST is due to uncertainty in allele frequencies (finite sample).
NB: no definition of multi-locus estimate of FST .

(b) Random effects, evolutionary parameter – the same evolutionary parameter can
give rise to different allele frequencies. Uncertainty in FST is due finite sampling
of population and limited sampling of the evolutionary process (evolutionary sam-
pling).

Weir and Cockerham’s FST and various “F-models”. We will focus on FST as an
evolutionary parameter and on F-models.

3.2 F-models overview

1. beta distribution of allele frequencies – The F-model posits that the distribution of
allele frequencies among populations is beta with parameters α = πθ and β = (1−π)θ,
where θ = 1

FST
− 1 and π is the expected allele frequency.

2. The F-model arises (approximately) under two conditions:
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(a) Infinite-island model – when many populations exchange migrants, the equilib-
rium allele frequency (equilibrium between drift and gene flow) is beta where π
is the migrant gene pool allele frequency and θ = 4Nm, which at equilbrium has
a direct relationship to FST .

(b) Divergence from a common ancestor – when populations diverge simultaneously
from a common ancestor, the distribution of allele frequencies is approximately
beta, where π is the ancestral allele frequency and θ is inversely proportional to
the effect of drift following divergence, and is a function of time and Ne.

Draw ancestor (π) and three descendant populations connected by θ = 1
FST

− 1
amount of evolution.

(c) when these conditions are not met, model is still useful – distribution of allele
frequencies can still be modelled as beta, where θ = 1

FST
− 1 is a measure of

genetic differentation (the variance in allele freq. among populations ) and π is
the expected allele frequency.

3. F-model has been used as a foundation for several Bayesian population genomic models
and software. E.g., 1) Foll and Gaggiotti’s F-model and Bayescan and 2) Pritchard et
al. F-model (correlated allele frequencies) in structure

4. Use R to plot the distribution of allele frequencies across populations with: π = 0.1, 0.5
and FST = 0.01, 0.4

R code:

p<-seq(0,1,0.01)

plot(p, dbeta(p, shape1=0.5 * (-1 + 1/0.4), # Fst 0.4

shape2=(1-0.5)* (-1 + 1/0.4)), col="red", type="l", ylab="density",

xlab="p", ylim=c(0,10))

lines(p, dbeta(p, shape1=0.5 * (-1 + 1/0.01), # Fst 0.01

shape2=(1-0.5)* (-1 + 1/0.01)), col="blue")

abline(v=0.5, col="red")

plot(p, dbeta(p, shape1=0.1 * (-1 + 1/0.4),

shape2=(1-0.1)* (-1 + 1/0.5)), type="l", ylab="density",

xlab="p")

abline(v=0.1)

Discuss the F-model results for changes in allele frequencies.

• Allele frequency variation from a intermediate frequency variant: low and high drift.

• Allele frequency variation from a very common or rare variant (two sides of same coin,
typical case). Large magnitude allele frequency variation (drift) often will not be that
evident, because it will happen to common/rare alleles and result in fixation/loss after
small shift in allele frequency.

Illustration of lack of one-to-one between pattern and process.
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3.3 Locus-specific F-model

FST can vary among loci and often we’re interested in this variation and finding extraordi-
narily differentiated loci. In the above F-model, we assumed all loci had the same FST .

Alternatively, FST could also vary among populations. Could also write nested models,
but there is limited information to estimate parameters in these.

We will assume genotypes are known, but as we’ve seen, this assumption could be relaxed
and we could easily model genotype uncertainty.

Assume pair (or larger group) of populations that share locus-specific FST .

1. Likelihood term: as before, the data are the count of allele at each locus (i) and
population (j), yij, with n allele copies sampled from each population (n = 2× the
number of individuals).

The probability of the data is a function of allele frequencies in each population and
locus. Thus, the likelihood is a product of binomial distribution (their joint probabil-
ity):

P (y|p, n) =
∏

i

∏
j binom(yij|pij, nij)

2. Conditional prior for allele frequencies: the allele frequencies for each locus follow a
beta distribution with parameters α = πiθi and β = (1− πi)θi. Recall, θ =

1
FST

− 1.

Taking the product across loci:

P (p|π, θ) =
∏

i beta(πiθi, (1− πi)θi)

3. Priors on π and FST :

(a) π – For simplicity, we’ll place independent priors on each πi as beta(1,1). Clearly
we could incorporate another layer in the hierarchy and share information among
loci as we did in earlier allele frequency models.

(b) FST – Various possibilities. A natural choice would be beta, because it is con-
strained to the scale of FST and can assume many shapes (does not need to be
symmetrical, and can be uni- or bimodal).

We will assume FST ∼ beta(ψS, (1− ψ)S), where ψ is the expected value of FST

and S is the precision (1/var) in FST .

4. Uniform, uninformative priors on ψ and S.

5. Full model for locus-specific FST :

P (p, π, FST , ψ, S|y) ∝
∏

i

∏

j

[P (yij|pij)P (pij|πi, FSTi
)]
∏

i

[P (πi)P (FSTi
|ψ, S)]P (ψ)P (S)

binomial beta beta(1,1) beta , beta(1,1) , uniform(0.001,1000)

6. Discuss definition of outliers in this context: P (FSTi
|ψ, S) is a beta distribution and we

can estimate the quantiles for FSTi
within the genome-wide distribution. Draw picture

of beta and individual deviates.
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7. Questions:

(a) How realistic is it to assume all populations share a locus-specific FSTi
?

When will this assumption be most reasonable? – replicate experimental popula-
tions, pairs of populations

(b) The alternative is that all (or sets of) loci share an FST , but that populations
vary. How realistic and useful is that?

8. (if time allows) draw graph of model.

4 Models for ancestry and introgression in hybrid zones

The Pritchard et al. (2000) and Falush et al. (2003) papers have played a central role
in analysis of population genetics, particularly when we’re interested in mixed ancestry of
individuals that results from distant crosses or admixture. These and related models are
referred to as structure-like models.

They assume that there are demes from which individuals are sampled whole (the no
admixture model) or with hybridization (the admixture model). They are closely related to
the allele frequency models that we discussed and only require minor modifications relative
to these.

1. The Pritchard et al 2000 paper has two models: the no-admixture model and the
admixture model.

(a) no-admixture model:interested in assigning individuals to populations of ancestry,
without allowing for possibility of admixture. We would also estimate population
allele frequencies along the way.

P (Z, P |X) ∝ P (X|Z, P )P (Z)P (P ) (Eq. 1 in Pritchard et al 2000).

Example: assignment of fish caught at sea to their freshwater populations of
origin.

(b) admixture model: allows individuals to have mixed ancestry and now is a model
for P (Z, P,Q, α|X). In this case, we’re interested in the estimate of admixture
proportion for each individual (Q), along with P and Z.

2. Round 1 of questions for the students to answer:

(a) In the case of the no-admixture model, how could each component on the right-
hand side of the equation distributed?

Answers:

i. P (X|Z, P ) ∼ multinomial(pzl, 1) or Bernoulli(pzlj)

ii. P (Z) = 1/K or multinomial(1/K, n = 1)

iii. P (P ) ∼ Dirichlet(1, ..., 1), which is equivalent to beta(1, 1) for SNPs.
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(b) Below is the full equation for the posterior in the case of the admixture model.
How could each component distributed?

Answer: P (Q,Z, P, α|X) ∝ P (X|Z, P )P (Z|Q)P (Q|α)P (α)P (P )

multinom multinom(q,n=1) Dirichlet(α) Unif[0,10] Dirichlet(1,,1)

(c) How could F-models be brought into this model? (they have been in structure.

Discuss these as a class before going on to the next set of questions (if time allows).

3. Round 2 of questions for the students to answer:

(a) The Pritchard et al 2000 model assumes that all loci introgress equally: P (Z|Q) ∼
q. Is this reasonable? How could we relax this assumption?

Answers:

i. For understanding overall make-up of individuals, this might be an ok sim-
plification. Overall admixture should be estimated fine. But if you want
to understand locus-specific behavior and introgression, it is probably not
reasonable.

ii. One could take q as the expectation, but write a function that allows for
locus-specific deviations from the genome-wide expectation. Gompert and
Buerkle have implemented such a function in bgc, finestructure by Falush,
and there are many different methods that allow for locus-specific ancestry.

5 Exercise: simple F-models in JAGS

Software for Bayesian parameter estimation in population genomics uses Markov Chain
Monte Carlo methods. These are methods to obtain samples from the posterior distribution,
particularly when there is no analytical solution for it (the typical situation).

5.1 Algorithms for MCMC

Generally there are two types of algorithms for new values in a chain:

1. Gibbs – every sample will be from the posterior distribution. Used when a step is
based on conjugate distributions.

2. Metropolis (one variant is Metropolis-Hastings)

In Metropolis, there are independence chains and random-walk chains. We need to
monitor mixing in updates that use Metropolis (the rate of acceptance of new values).

The Metropolis-Hastings algorithm meets criteria that ensure we will eventually con-
verge to and sample the posterior distribution. Unfortunately, this could take millions
of years and there is no way to be completely certain of convergence to the posterior
distribution. We use diagnostics to get a sense. We discard initial samples as a burnin
and run the chain long enough to obtain a good number of independent samples from
the posterior.



Population and Speciation Genomics Workshop (January 2016, Czech Republic) 13

5.2 Illustration with software for MCMC

JAGS is software that implements methods to generate stochastic samples from Markov
chains. It is easy to specify the models, and the JAGS software determines what algorithms
to use for updating chain.

Example: Implement locus-specific F-model for an analysis with known genotypes, but it
is trivial to add a new likelihood to the model hierarchy to incorporate genotype uncertainty.

## simulate allele frequencies at 100 loci in ancestral population

nloci <- 100

nind <- 25

## generate loci that are likely to be variable with beta(15,15).

## Invariant loci give JAGS trouble. Alternatively, drop

## invariant loci in sim.g below. Try resimulating data (and avoid

## invariant loci) if you get JAGS error: "Slicer stuck at value with infinite density"

sim.pi <- rbeta(nloci, 15, 15)

## simulate allele frequencies in three derived (Fst=0.01) populations

sim.p <- matrix(nrow=nloci, ncol=3)

for(k in 1:3){

sim.p[,k] <- rbeta(nloci, sim.pi * (-1 + 1/0.01), (1-sim.pi) * (-1 + 1/0.01)) }

#plot(sim.pi, sim.p[,1]) ## compare ancestral and derived allele frequencies

sim.g <- array(0, dim=c(nloci,nind,3))

for(k in 1:3){

sim.g[,,k] <- matrix(rbinom(nloci*nind, 2, prob=sim.p[,k]),

nrow=nloci, ncol=nind)

}

## Use R to JAGS interface to estimate Fst from these data

library(rjags)

mod.jags <- jags.model("locusFmodel.jags", data=list(nind=nind,

nloci=nloci, npop=3, g=sim.g), n.chains=2)

mod.sam <- jags.samples(model=mod.jags, variable.names=c("Fst", "psi"), n.iter=2000, thin=2)

plot(mod.sam$Fst[2,,1]) ## for locus 2

mean(mod.sam$Fst[2,,1])

plot(c(mod.sam$psi[1,,1], mod.sam$psi[1,,2])) ## plot both chains for genome-wide Fst (psi)

The JAGS model should be in a separate text object (or file).

model{

for(i in 1:nloci){

for(j in 1:nind){

## binomial likelihood for genotype = number allele copies of reference allele

for(k in 1:npop){

g[i,j,k] ~ dbinom(p[i,k], 2)

}

}

}
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for(i in 1:nloci){

for(k in 1:npop){

## population allele frequency in sample populations

p[i,k] ~ dbeta(0.001+pi[i]*theta[i], 0.001+(1-pi[i])*theta[i])

}

theta[i] <- -1 + 1/Fst[i]

Fst[i] ~ dbeta(0.001+psi*S, 0.001+(1-psi)*S)

pi[i] ~ dbeta(1,1)

}

psi ~ dbeta(1, 1)

S ~ dunif(0.01, 1000)

}


