Using epigenetic marks for biological interpretation of complex trait associations

Gosia Trynka 15 January 2016

Understanding disease biology

- Using SNPs to map disease loci for complex traits
 - Immune-related diseases, coeliac disease

- From associated variants to function
 - Correlation with gene epxression
 - Causal variants, tissues and pathways

• Sequencing of the human genome

HapMap project

THE

HUMAN GENOME

AMERICAN ASSOCIATION

NEWENCEMENT OF SCIENCE

1000 Genomes
Project

wellcome trust

1000 Genomes

A Deep Catalog of Human Genetic Variation

Refernce panels of human variation: HapMap

- Goal: provide a haplotype map of human genome using common variants
 - Genotyped 1.6 million common SNPs
 - 1,184 reference individuals
 - from 11 global populations
 - Northern and western Europe (CEU); Han Chinesein Beijing, China (CHB); Japanese in Tokyo, Japan (JPT); Yoruba in Ibadan, Nigeria (YRI); African ancestry in the southwestern USA (ASW); Chinese in metropolitan Denver, Colorado, USA (CHD); Gujarati Indians in Houston, Texas, USA (GIH); Luhya in Webuye, Kenya (LWK); Maasai in Kinyawa, Kenya (MKK); Mexican ancestry in Los Angeles, California, USA (MXL); Tuscans in Italy (TSI)

Correlation of genetic variants - LD blocks

LD – your best friend, your greatest enemy

3 billion base pairs in the human genome

4 million common

500k tagging SNPs

HapMap Consortium, Nature 2003

Imputing missing genotypes

https://mathgen.stats.ox.ac.uk/impute/impute_v2.html

Refernce panels of human variation: 1000 Genomes Project

- 2,504 individuals from 26 populations using a combination of low-coverage whole-genome sequencing, deep exome sequencing, and dense microarray genotyping
- > 88 million SNPs, 3.6 million indels, and 60,000 structural variants
- phased onto high-quality haplotypes
- >99% of SNP variants with a frequency of >1% for a variety of ancestries

The total number of observed non-reference sites differs greatly among populations

1000 Genomes Project, Nature 2015

Putatively fuctional variation

- The majority of variants in the data set are rare but the majority of variants observed in a single genome are common
- A typical genome contained 149–182 sites with protein truncating variants
- ~2,000 variants per genome associated with complex traits through genome-wide association studies (GWAS)
- 24–30 variants per genome implicated in rare disease through ClinVar

Haplotype Reference Consortium

- <u>http://www.haplotype-reference-</u> <u>consortium.org</u>
- The first release consists of 64,976 haplotypes at 39,235,157 SNPs, all with an estimated minor allele count of >= 5

Genome wide association study (GWAS)

• GWAS compares allele frequency at common SNPs between cohorts of cases and controls

Quantile-quantile (Q-Q) plots

McCarthy et al., Nat Rev Genet 2008

Quantile-quantile (Q-Q) plots

McCarthy et al., Nat Rev Genet 2008

'Manhattan' plot represents significantly associated regions in the genome

Celiac disease – autoimmune disease of the small intestine

The most common food intolerance in western populations (~1%)

Unique understanding of pathogenesis of coeliac disease

HLA accounts for about 35% of the genetic variance The same genotypes are present in 30-40% of general population

Mapping risk variants for coeliac disease

800 cases and 1,400 controls from UK

A genome-wide association study for celiac disease identifies risk variants in the region harboring *IL2* and *IL21*

Van Heel, Nat Genet 2007

- Increased power with increased sample size and denser SNP genotyping
 - 4,533 cases and 10,750 controls from four populations
 - Top 131 SNPs genotyped in a replication cohort (10,602 samples, 7 populations)

GWAS on 10k cases and 16k controls from 10 populations – 26 associated regions

Trynka and Dubois et al., Nat Genetics 2010

HLA and 26 loci explain 40% of genetic risk

• Genes in proximity of associated variants confirm known and implicate novel pathways

Environmental factors Bacterial/virus infection?

Trynka et al. Trends in Mol Med 2010

Associated variants fall in the regions of extended LD

The challenge to identify disease relevant genes causal gene? causal variant? causal variant?

Genotype-gene expression correlation across 1500 samples

Lude Franke, UMCG, the Netherlands

http://genenetwork.nl/

Genotype-gene expression correlation across 1500 samples

53% of associated variants influence gene expression

Genes co-expressed can indicate biologically functional modules

Genes co-expressed can indicate biologically functional modules

Genes co-expressed can indicate biologically functional modules

http://genenetwork.nl/

Genetic sharing across immune diseases, motivation for Immunochip consortium

Associated loci are shared with other diseases

Immunochip

- Follow-up on results from 12 autoimmune GWASs
- 196,524 manufactured SNPs

Replication of signals with intermediate significance

- Dense genotyping at 186 loci associated to immunerelated diseases (10-20x greater marker density)
- Sequence variants (early release of 1000 Genomes Project and individual sequencing efforts)

Replicatior

Design

10-20x greater SNP density than Hap550 (post-QC)

IC vs Hap550 SNP density

wellcome trust Sanger

Sample collections – ultra clean dataset

Population	Celiac cases	Controls
UK	7728	8274 ^b
The Netherlands	1123	1147
Poland	505	533
Spain - Basque ^a	545	308
Spain - Madrid ^a	537	320
Italy - Rome, Milan, Naples	1374	1255
India - Punjab	229	391
Total	12041	12228

- Sample call rate > 99.5%
- SNP call rate > 99.95%
- Overall 0.008% missing genotype calls
- 139,553 polymorphic SNPs (excluded15,657 NP variants)
- 24,661 variants: 5%> MAF > 0.05% and 22,941 MAF<0.05%

Identification of 39 risk loci

Excessive enrichment for association signals in autoimmune loci

 Dense SNP map should allow us to carry out statistical fine-mapping to refine association signals

Refining the association signals

Trynka and Hunt et al., Nat Genet 2011

Unsuccessful fine-mapping

Trynka and Hunt et al., Nat Genet 2011

Multiple independent signals

Trynka and Hunt et al., Nat Genet 2011

GWAS Catalog

The NHGRI-EBI Catalog of published genome-wide association studies

Search the catalog

Q

Examples: breast cancer, rs7329174, Yang, 2q37.1, HBS1L

https://www.ebi.ac.uk/fgpt/gwas/

Division of Genomic Medicine

A Catalog of Published Genome-Wide Association Studies

Division Staff : Funding Opportunities : Genomic Medicine Activities : GWAS Catalog : Meetings & Workshops Potential Sample Collections for Sequencing : Programs : Publications : Trans-NIH Sequencing Inventory

Additional information has been added to the HTML catalog columns below. For a description of column headings for the HTML catalog, go to: Catalog Heading Descriptions 🕮 🚥

Potential etiologic and functional implications of genome-wide association loci for human diseases and traits 🕮 Click here to read our recent Proceedings of the Academy of Sciences (PNAS) article on catalog methods and analysis.

View the Full Catalog and Download the Catalog and Search the Catalog and

The genome-wide association study (GWAS) publications listed here include only those attempting to assay at least 100,000 single nucleotide polymorphisms (SNPs) in the initial stage. Publications are organized from most to least recent date of publication, indexing from online publication if available. Studies focusing only on candidate genes are excluded from this catalog. Studies are identified through weekly PubMed literature searches, daily NIH-distributed compilations of news and media reports, and occasional comparisons with an existing database of GWAS literature (HuGE Navigator).

SNP-trait associations listed here are limited to those with p-values < 1.0 x 10-5 (see full methods for additional details). Multipliers of powers of 10 in p-values are rounded to the nearest single digit; odds ratios and allele frequencies are rounded to two decimals. Standard errors are converted to 95 percent confidence intervals where applicable. Allele frequencies, p-values, and odds ratios derived from the largest sample size, typically a combined analysis (initial plus replication studies), are recorded below if reported; otherwise statistics from the initial study sample are recorded. For quantitative traits, information on % variance explained, SD increment, or unit difference is reported where available. Odds ratios < 1 in the original paper are converted to OR > 1 for the alternate allele. Where results from multiple genetic models are available, we prioritized effect sizes (OR's or beta-coefficients) as follows: 1) genotypic model, per-allele estimate; 2) genotypic model, heterozygote estimate, 3) allelic model, allelic estimate.

https://www.genome.gov/gwastudies/

We have mapped thousands of disease loci!

And then we got stuck...

The path from disease association to function remains a challenge

Interpreting disease variants

The challenge to identify relevant variants – extended LD

Trynka* and Hunt* et al. Nat Genet, 2011

Celiac disease alleles implicate gene regulatory function

Trynka* and Hunt* et al. Nat Genet, 2011

Interpreting disease variants Variant Mechanism Tissue wellcome trust

A handful of studies describing function of non-coding disease variants

- E.g. LDL (Musunuru et al., *Nature* 2010)
- LDL associated noncoding variant creates transcription factor binding site and alters the hepatic expression of the SORT1

Interpreting disease variants Variant Mechanism Tissue Gene wellcome trust

The challenge to identify relevant variants and genes

 Multiple genes within associated LD block

Mapping gene regulation

http://genome.ucsc.edu/ENCODE/

ChIP-seq

Park P, Nat Rev Genet 2009

Park P, Nat Rev Genet 2009

Resources

- <u>ENCODE</u>: cell types and cell lines, broad range of assays
- <u>NIH Roadmap Epigenome Project:</u> human tissue atlas, limited number of assays
- <u>BLUEPRINT epigenome:</u> >50 blood cells from healthy and patient samples, variome

Can we interestect associated variants with epigenetic data to learn about their function?

Challenges to functionally follow-up GWAS variants

 For many diseases the causal cell type is <u>unknown</u>

Disease variants can express functionality in a cell <u>type</u> and a cell <u>state</u> specific context

Outline

- Identifying informative chromatin marks to perform quantitative genomic assays at scale
- Trynka et al., Nature Genet 2013
- Developing a robust test to infer enrichment of associated variants across a range of genomic annotations
- Trynka et al., AJHG 2015
- Where pathways and histone marks meet: increasing specificity to identify disease relevant cell types

Leveraging cell type specific gene regulation with GWAS SNPs can pinpoint relevant cell types

Motivation

1) Is there a **<u>single</u>** informative chromatin mark?

2) Can it be used to:

- identify <u>cell-types</u> relevant to the phenotype
- <u>fine-map</u> to suggest causative variant

Cell-type specific signature of disease associated variants

Datasets – publically available

ENCODE:

- n = 14 cell lines
- 15 histone marks

NIH Epigenome

Project:

- □ n = 34 primary cells
- 6 histone marks

1) Utilise LD information

A. For phenotypically associated variants, find other variants in tight LD (r²>0.8)

Define best scoring variant at each locus

B. Score each locus based on height and distance of the nearest peak to a variant in tight LD

Quantify cell-type specificity of each histone mark

C. Across many phenotypes, assess if marks overlap alleles in specific cell-types

wellcome trust Sanger institute

Assess the significance of cell type sepcific signal

D. Permute to assess significance of phenotypic cellspecificity

Informative marks – active gene regulation

wellcome trust

er

Trynka*, Sandor* et al., Nat Genet 2013
Cell type specific H3K4me3 overlap with LDL **SNPs**

wellcome trust

Mucosa, Stomach Rectal Smooth Muscle Mucosa, Rectum Mucosa, Duodenum Smooth Muscle, Colon

LDL – SORT1 locus

- SNP closest to H3K4me3 liver specific peak is rs12740374 (87 bp away from the summit)
- <u>Known</u> functional variant! (Musunuru et al. *Nature* 2010)

RA: CD4+ cells

Smooth Muscle, Colon

RA – IL2/IL21 locus

- Reported associated rs13119723 SNP is within *KIAA1109*
- LD block of over 500-kb
- rs13140464, 116 bp from the summit of the peak highly specific to the T-reg cells, located between *IL2* and *IL21* genes

Chr4 (q27)

123.3

123.4

123.5 (Mb)

123.2

123.1

RA – IL2/IL21 locus

- Reported associated rs13119723 SNP is within *KIAA1109*
- LD block of over 500-kb
- rs13140464, 116 bp from the summit of the peak highly specific to the Treg cells, located between *IL2* and *IL21* genes

Chr4 (q27)

RA – IL2/IL21 locus

- Reported associated rs13119723 SNP is within *KIAA1109*
- LD block of over 500-kb
- rs13140464, 116 bp from the summit of the peak highly specific to the Treg cells, located between *IL2* and *IL21* genes

Statistical refinement of association signals improves tissue specific signal

Trynka and Raychaudhuri, Curr Opin Genet Dev 2013

The role of CD4+ subsets in autoimmune diseases

T1D variants implicate a limited set of cell types

Predicting Cell Types and Genetic Variations Contributing to Disease by Combining GWAS and **Epigenetic Data**

Anna Gerasimova*, Lukas Chavez, Bin Li, Gregory Seumois, Jason Greenbaum, Anjana Rao, Pandurangan Vijayanand, Bjoern Peters

La Jolla Institute for Allergy and Immunology, La Jolla, California, United States of America

Breast cancer risk-associated SNPs modulate the affinity of chromatin for FOXA1 and alter gene expression Open Chromatin Guide the Functional Follow-Richard Cowper-Sal·lari^{1,2,7}, Xiaoyang Zhang^{1,2,7}, Jason B Wright¹, Swneke D Bailey^{3,4}, Up of Genome-Wide Association Signals: Application to

Jerome Eeckhoute^{5,6}, Jason H Moore^{1,2} & Mathieu Lupien^{3,4} **Hematological Traits**

Systematic functional regulatory assessment of R Consortium¹, Berthold Göttgens^{2,5}, Nicole disease-associated variants

doi:10.103

Dirk C. Daul¹*, James P. Nichet¹, Teun De Vang¹, Stuart Meacham^{1,2,3}, Augusto Rendon^{2,3,4}, Katta

Konrad J. Karczewski^{a,b,1}, Joel T. Dudley^{a,c,1,2}, Kimberly R. Kukurba^b, Rong Chen^c, Atul J. Butte^c, Stephen B. Montgomerv^{b,d}, and Michael Snyder^{b,3}

Linking disease associations with regulatory information in the human genome

Marc A. Schaub,¹ Alan P. Boyle,² Anshul Kundaje,¹ Serafim Batz

An integrated encyclopedia of DNA elements in the human genome

Systematic Localization of Common **Disease-Associated Variation in Regulatory DNA**

Matthew T. Maurano,^{1*} Richard Humbert,^{1*} Eric Rynes,^{1*} Robert E. Thurman,¹ Eric Haugen,¹ Hao Wang,¹ Alex P. Reynolds,¹ Richard Sandstrom,¹ Hongzhu Qu,^{1,2} Jennifer Brody,³ Anthony Shafer,¹ Fidencio Neri,¹ Kristen Lee,¹ Tanya Kutyavin,¹ Sandra Stehling-Sun,¹ Audra K. Johnson,¹ Theresa K. Canfield,¹ Erika Giste,¹ Morgan Diegel,¹ Daniel Bates,¹ R. Scott Hansen,⁴ Shane Neph,¹ Peter J. Sabo,¹ Shelly Heimfeld,⁵ Antony Raubitschek,⁶ Steven Ziegler,⁶ Chris Cotsapas,^{7,8} Nona Sotoodehnia,^{3,9} Ian Glass,¹⁰ Shamil R. Sunyaev,¹¹ Rajinder Kaul,⁴ John A. Stamatoyannopoulos^{1,12}+

The ENCODE Project Consortium*

GWAS variants and enrichment across a range of genomic annotations

 A robust test to assess enrichment of disease SNPs with any genomic annotation

Caveats in enrichment testing

 Matching based enrichment tests can be biased – require a prior knowledge of relevant matching parameters

Distinct properties at GWAS associated loci

Distinct properties at GWAS associated loci

Matched Random

Genomic Annotation Shifter (GoShifter)

Simulate GWAS results

Simulate GWAS results

Test for enrichment

Assumption

 <u>Promoter</u> catalogs should <u>enrich</u> for DHS peaks

 Intron catalogs should <u>not</u> enrich for DHS peaks

Dataset

 DHS peaks from the ENCODE and Roadmap Epigenomics Projects

- DNase hypersensitivity data from:
 - 217 cell and tissue samples
 - 1,376,301 distinct DHS positions
 - Collectively spanning 16.4% of the genome

Interpretation of the results

Standard matching on GEN, MAF and TSS

Promoter

Standard matching on GEN, MAF and TSS

Promoter

Intron

Interpretation of the results

Benchmarking enrichment methods using simulated sets of SNPs

Functional model

0.00 0.25 0.50 0.75 1.00 0 10 20

Proportion of significant SNP sets Delta-overlap

30

Benchmarking enrichment methods using simulated sets of SNPs

Benchmarking enrichment methods using simulated sets of SNPs

Caveats in enrichment testing

 Matching based enrichment tests can be biased – require a prior knowledge of relevant matching parameters

loci overlap X

Genomic annotations colocalize

Differentiating effects of colocalizing annotations

C) Test significance of overlap with annotation X conditioning on Y

eQTLs are independently enriched for DHS and 3'UTR

Trynka et al. AJHG, 2015

eQTLs are independently enriched for DHS and 3'UTR

Trynka et al. AJHG, 2015

With 30 SNPs GoShifter has 80% power to detect significant enrichment

wellcome trust

RA variants are not enriched in raw H3K4me3 peaks in CD4+ memory cells

Restricting chromatin peaks to summit regions

Summits of H3K4me3 peaks better capture cell type specific signatures

Disease enrichment at the summits of celltype specific histone marks

Breast cancer SNPs are enriched in the summits of H3K4me1 peaks of mammary epithelial cells (vHMEC)

Stratified analysis distinguishes relevant cell types for height

5C 10-4 Embryonic Stem Cell (H1-hESC) CD3+ Cells Grouping **Fested annotation** Cell line P-value Fetal Brain 10⁻³ CD3+ Cells 0.08 10 Fetal Endocrine 10⁻³ Fetal Gastrointestinal Fetal Heart and Lungs Embryonic Stem 10⁻² 10⁻² 10^{-4} Cell (H1-hESC) Fetal Kidney P-value 10-5 Fetal Muscle Lympho-hematopoietic None Embryonic Stem Cell (H1-hESC) CD3+ Cells 10-1 Stratified on

Tissue

Gene pathways represent cell type specific modules of gene expression

 If disease variants act through regulation of genes in specific pathways, stratifying enrichment within histone marks on disease pathway could improve identification of disease relevant cell types

Linking disease variants to pathways and causal cell types

Assign SNPs to genes and test for association assuming pathway enrichment

Dataset

3,149 coeliac disease cases

Test for enrichment 3159 candidate pathways from 8 pathway databases

6,325 controls Dubois et al. Nat Genet 2010

wellcome trust

Most pathways show low evidence for enrichment

Enriched pathways (Bayes factor > 10,000)

- Expression of chemokine receptors
- IL12 signaling
- Cytokine-cytokine
 receptor
- E-cadherin adherens junction
- Th1/Th2 differentiation

Ranking doesn't tell the full story

				Bayes
enriched pathway	database	source genes	SNPs	factor
Expr of chemokine receptors	BioCarta	BioCarta 29	887	6.6e7
IL-12 signaling	PID	BioSystems 62	2,087	1.8 e6
Cytokine-cytokine receptor	KEGG	BioSystems 265	8,190	1.8 e5
IL-12 signaling	PID	PC 113	4,915	1.2e5
E-cadherin adherens junction	PID	BioSystems 40	2,114	4.2e4
Th1/Th2 differentiation	BioCarta	BioCarta 19	771	1.7e4

Bayes

factor	enriched pathway(s)	
8.5e11	Expr of chemokine	+
8.7e10	IL-12 signaling	+
6.8e10	Cytokine-cytokine	+

- E-cadherin adherens junction
 - E-cadherin adherens junction
 - E-cadherin adherens junction

Prioritize variants within the enriched pathways

pathway

Prioritisation of SNPs in enriched pathways increases support for risk factors at many loci

posterior probability when no pathways are enriched

887 SNPs map to chemokine receptor

 2,113 SNPs in adherens junction pathway

Linking pathways to effector cell types

SNPs with posterior probability > 0.01

- 77 SNPs assigned to chemokine receptor pathway
- 114 SNPs assigned to adherens junction pathway
- 158 SNPs under null of no pathway enrichment

• Total of 118 cell types assayed for H3K4me3

Pathway prioritise variants point to functional effects in specific cell types

Distinct pathways point to activity in different cell types

Adherens junction could point towards impaired epithelial gut barrier

sanger institute

Cisca Wijmenga Groningen University, Netherlands

Peter Carbonetto

AncestryDNA, San Francisco

Soumya

Raychaudhuri

Brigham and Women's Hospital Broad Institute

Matthew Stephens

University of Chicago

