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Demographic Inference

Table 1 | Software for demographic inferences

Name Data type Inference Notes Refs

STRUCTURE Unlinked multi-allelic 
genotypes

Population structure, 
admixture

User-friendly GUI; can be computationally demanding 32

FRAPPE Unlinked bi-allelic SNVs Population structure, 
admixture

Alexander GV|CN�41 argue that convergence is not guaranteed 40

ADMIXTURE Unlinked bi-allelic SNVs Population structure, 
admixture

Estimates the number of populations via cross-validation error 41

fastSTRUCTURE Unlinked bi-allelic SNVs Population structure, 
admixture

Obtains variational Bayesian estimates of posterior probability 
distribution

42

Structurama Unlinked multi-allelic 
genotypes

Population structure, 
admixture

Uses a Dirichlet process to estimate the number of populations 43

HAPMIX Phased haplotypes; 
reference panel

Chromosome painting 4GSWKTGU�RQRWNCVKQPU�VQ�DG�URGEKHKGF�C|RTKQTK 48

fineSTRUCTURE Phased haplotypes Population 
structure, admixture, 
chromosome painting

Can be used to identify the number and identity of populations 49

GLOBETROTTER Phased haplotypes Population 
structure, admixture, 
chromosome painting

Extends the fineSTRUCTURE approach to estimate unsampled 
ancestral populations and admixture times

7

LAMP Phased haplotypes; 
reference panel

Chromosome painting Identifies local ancestry in windows, rather than using an HMM, 
so is more discrete than other approaches

52

PCAdmix Phased haplotypes Chromosome painting, 
population structure

Uses PCA in small chunks followed by an HMM to estimate local 
ancestry

53

FCFK Frequency spectrum of 
unlinked bi-allelic SNVs

Demographic history Requires some Python-coding skills; applicable to up to three 
populations

60

Fastsimcoal2 Frequency spectrum of 
unlinked bi-allelic SNVs

Demographic history Can also be used to simulate data under the SMC 62,63

Treemix Frequencies of unlinked 
bi-allelic SNVs

Admixture graph Highly multimodal likelihood surface and heuristic search; redo 
inference from many starting points

64

fastNeutrino Frequency spectrum of 
unlinked bi-allelic SNVs

Demographic history Applicable only to a single population; designed specifically for 
extremely large sample sizes

65

DoRIS Lengths of IBD blocks 
between pairs of individuals

Demographic history IBD must be inferred (for example, using Beagle or GERMLINE); 
specification of lower cut-off minimizes false-negative IBD tracts

71,72

IBS tract 
inference

Lengths of IBS blocks 
between pairs of individuals

Demographic IBS can easily be confounded by missing data and/or sequencing 
errors

76

PSMC Diploid genotypes from one 
individual

Demographic history Best used in MSMC’s PSMC mode, which uses the SMC to 
more accurately model recombination than the original PSMC; 
applicable to a single population

78

MSMC Whole genome, phased 
haplotypes

Demographic history Requires large amounts of RAM; cross-coalescence rate should 
not be interpreted as migration rate

82

CoalHMM Whole genome, phased 
haplotypes

Demographic history Multiple applications, including inference of population sizes, 
migration rates and incomplete lineage sorting

83–87

diCal Medium-length, phased 
haplotypes

Demographic history Uses shorter sequences than MSMC, but can be applied to 
multiple individuals in complex demographic models; infers 
explicit population genetic parameters for migration rates

89,92

LAMARC Short, phased haplotypes Demographic history Requires Monte Carlo sampling of coalescent genealogies; very 
flexible

93

BEAST Short, phased haplotypes Species trees, effective 
population sizes

Used mainly as a method of phylogenetic inference. Can also 
infer population size history

94

MCMCcoal Short, phased haplotypes Divergence times 
between populations

Now incorporated into the software BPP131 95

G-PhoCS Short, (un)phased 
haplotypes

Demographic history Incorporates migration into the MCMCcoal framework. Averages 
over unphased haplotypes

96

Exact likelihoods 
using generating 
functions

Short, phased haplotypes Demographic history Implemented in Mathematica; applicable only to specific classes 
of multi-population models

97,98
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HMM, hidden Markov model; IBD, identity by descent; IBS, identity by state; LAMARC, likelihood analysis with metropolis algorithm using random coalescence; LAMP, 
local ancestry in admixed populations; MCMC, Markov chain Monte Carlo; MSMC, multiple SMC; PCA, principal components analysis; PSMC, pairwise SMC; RAM, 
random access memory; SMC, sequentially Markov coalescent; SNVs, single nucleotide variants.
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Why model demographic history?

• Essentially, all models are wrong,  
but some are useful.  
             — George Box

Table 1 | Software for demographic inferences

Name Data type Inference Notes Refs

STRUCTURE Unlinked multi-allelic 
genotypes

Population structure, 
admixture

User-friendly GUI; can be computationally demanding 32

FRAPPE Unlinked bi-allelic SNVs Population structure, 
admixture

Alexander GV|CN�41 argue that convergence is not guaranteed 40

ADMIXTURE Unlinked bi-allelic SNVs Population structure, 
admixture

Estimates the number of populations via cross-validation error 41

fastSTRUCTURE Unlinked bi-allelic SNVs Population structure, 
admixture

Obtains variational Bayesian estimates of posterior probability 
distribution

42

Structurama Unlinked multi-allelic 
genotypes

Population structure, 
admixture

Uses a Dirichlet process to estimate the number of populations 43

HAPMIX Phased haplotypes; 
reference panel

Chromosome painting 4GSWKTGU�RQRWNCVKQPU�VQ�DG�URGEKHKGF�C|RTKQTK 48

fineSTRUCTURE Phased haplotypes Population 
structure, admixture, 
chromosome painting

Can be used to identify the number and identity of populations 49

GLOBETROTTER Phased haplotypes Population 
structure, admixture, 
chromosome painting

Extends the fineSTRUCTURE approach to estimate unsampled 
ancestral populations and admixture times

7

LAMP Phased haplotypes; 
reference panel

Chromosome painting Identifies local ancestry in windows, rather than using an HMM, 
so is more discrete than other approaches

52

PCAdmix Phased haplotypes Chromosome painting, 
population structure

Uses PCA in small chunks followed by an HMM to estimate local 
ancestry

53

FCFK Frequency spectrum of 
unlinked bi-allelic SNVs

Demographic history Requires some Python-coding skills; applicable to up to three 
populations

60

Fastsimcoal2 Frequency spectrum of 
unlinked bi-allelic SNVs

Demographic history Can also be used to simulate data under the SMC 62,63

Treemix Frequencies of unlinked 
bi-allelic SNVs

Admixture graph Highly multimodal likelihood surface and heuristic search; redo 
inference from many starting points

64

fastNeutrino Frequency spectrum of 
unlinked bi-allelic SNVs

Demographic history Applicable only to a single population; designed specifically for 
extremely large sample sizes

65

DoRIS Lengths of IBD blocks 
between pairs of individuals

Demographic history IBD must be inferred (for example, using Beagle or GERMLINE); 
specification of lower cut-off minimizes false-negative IBD tracts

71,72

IBS tract 
inference

Lengths of IBS blocks 
between pairs of individuals

Demographic IBS can easily be confounded by missing data and/or sequencing 
errors

76

PSMC Diploid genotypes from one 
individual

Demographic history Best used in MSMC’s PSMC mode, which uses the SMC to 
more accurately model recombination than the original PSMC; 
applicable to a single population

78

MSMC Whole genome, phased 
haplotypes

Demographic history Requires large amounts of RAM; cross-coalescence rate should 
not be interpreted as migration rate

82

CoalHMM Whole genome, phased 
haplotypes

Demographic history Multiple applications, including inference of population sizes, 
migration rates and incomplete lineage sorting

83–87

diCal Medium-length, phased 
haplotypes

Demographic history Uses shorter sequences than MSMC, but can be applied to 
multiple individuals in complex demographic models; infers 
explicit population genetic parameters for migration rates

89,92

LAMARC Short, phased haplotypes Demographic history Requires Monte Carlo sampling of coalescent genealogies; very 
flexible

93

BEAST Short, phased haplotypes Species trees, effective 
population sizes

Used mainly as a method of phylogenetic inference. Can also 
infer population size history

94

MCMCcoal Short, phased haplotypes Divergence times 
between populations

Now incorporated into the software BPP131 95

G-PhoCS Short, (un)phased 
haplotypes

Demographic history Incorporates migration into the MCMCcoal framework. Averages 
over unphased haplotypes

96

Exact likelihoods 
using generating 
functions

Short, phased haplotypes Demographic history Implemented in Mathematica; applicable only to specific classes 
of multi-population models

97,98
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Why model demographic history?

• Understand population history 
Bottlenecks, gene flow, etc.



Why model demographic history?

• Conservation 
Present versus historical genetic diversity

is associated with human neurodegenerative diseases such as Gaucher’s,
Sandhoff’s, Tay-Sachs, and metachromatic leukodystrophy. Variation
in lipid metabolism may have affected neurological evolution among
primates, and diversity of diets and life history strategies, as apes—
especially orang-utans—have slower rates of reproduction and drama-
tically lower energy usage than other primates and mammals1.

Ancestral orang-utan species ranged broadly across southeast Asia,
including the mainland, while modern species are geographically
restricted to their respective islands owing to environmental forces
and human population expansion. Historically, protein markers,
restriction fragment length polymorphisms, and small sets of mito-
chondrial and nuclear markers have been used to estimate the diver-
gence and diversity of orang-utan species. We used short read
sequencing to address this question from a genome-wide perspective.
We first estimated average Bornean/Sumatran nucleotide identity gen-
ome-wide (99.68%) based on the alignment of 20-fold coverage of
short read data from a Bornean individual to the Sumatran reference
(Supplementary Information section 16). We then called single nuc-
leotide polymorphisms (SNPs) from the alignment of all short read
data from 10 individuals (five Bornean, including the 20-fold coverage
mentioned above, and five Sumatran) (Supplementary Information
section 4). We analysed each species separately using a Bayesian
approach with 92% power to detect SNPs (Supplementary Inform-
ation section 20). Because of relatively deep sequencing, allele frequency
spectra were estimated accurately, but with an overestimation of
singletons compared to other allele frequency categories of approxi-
mately 7.8% based on re-sequencing a subset of SNPs (n 5 108) (Sup-
plementary Information section 20). This level of error had only a
marginal effect on downstream population genetic analyses (Sup-
plementary Information section 21). Overall, 99.0% (931/940) of geno-
types were accurately called within the re-sequenced subset of SNPs.

In total, we identified 13.2 3 106 putative SNPs across 1.96 Gb of the
genome, or 1 SNP every 149 base pair (bp) on average. Within the
Bornean and Sumatran groups we detected 6.69 3106 (3.80 3106

Bornean-exclusive) and 8.96 3106 (5.19 3106 Sumatran-exclusive)
SNPs, respectively (Fig. 5). Observing 36% more SNPs among
Sumatran individuals strongly supports a larger Ne. In addition, inde-
pendent analysis of 85 polymorphic retroelement loci among 37 indivi-
duals (19 Sumatran, 18 Bornean) also showed more complex Sumatran
population structure (Supplementary Information section 19). Using
Watterson’s approach24, we estimated nucleotide diversity from the
SNP data as hW 5 1.21 and hW 5 1.62 per kb for the Bornean and
Sumatran species, respectively, and hW 5 1.89 per kb for the orang-utan
species combined, roughly twice the diversity of modern humans25.

The modal category of SNPs were singletons, with 2.03106 and
3.7 3106 SNPs observed as single heterozygous sites in a Bornean or
Sumatran individual, consistent with the expectation that most genetic
variation for an outcrossing population ought to be rare due to mutation-
drift equilibrium. We observed little correlation between Bornean and
Sumatran SNPs in the allele frequency spectra (that is, the ‘heat’ of the
map is not along the diagonal as expected for populations with similar
allele frequencies, but rather along the edges) (Fig. 5b). This was further
supported by principal component analysis, in which PC1 corresponded
to the Bornean/Sumatran population label and explained 36% of the
variance (Supplementary Information section 20).

On the basis of these data, our demographic model consisted of a
two-population model with divergence and potential migration, growth
and difference in population size (Supplementary Information section
21). Among several models tested, we found very strong statistical
support (105 log-likelihood units) for the most complex model, which
included a split with growth and subsequent low-level migration. We
estimated a relative Ne of 210% for Sumatran orang-utans relative to the
ancestral and 49% for Bornean orang-utans, noting a fourfold differ-
ence for the derived populations (Fig. 5c). Assuming a mutation rate of
2.0 3 1028 and 20 years per generation, we estimated an ancestral Ne of
17,900 and a split time of 400,000 years ago.

Parallel to the SNP-based effort, we employed a coalescent hidden
Markov model (coal-HMM) approach to estimate speciation time,
recombination rate and ancestral Ne from the alignment of 20-fold
coverage of a Bornean individual to the Sumatran reference
(Supplementary Information section 17). This method also supported
a relatively recent Bornean/Sumatran speciation time (334 6 145 kyr
ago), and estimated a recombination rate of 0.95 6 0.72 cM Mb21. We
independently estimated the ancestral Ne of the autosomes
(26,800 6 6,700) and the X chromosome (20,400 6 7,400), which
was consistent with the theoretical 3/4 effective population size of X
chromosomes compared to autosomes. The Bornean and Sumatran X
chromosome thus diverged as expected, in contrast to the human–
chimpanzee speciation process26,27.

The orang-utan story is thus a tale of two islands with distinct
evolutionary histories. Our high-resolution population studies
explored the counter-intuitive nature of orang-utan diversity—greater
variation among Sumatran orang-utans than their Bornean counter-
parts despite a smaller population size (approximately sevenfold lower
by recent estimates). Further dissection of the orang-utan speciation
process will require a broader survey, incorporating representatives
from additional orang-utan subpopulations.

Finally, even though we found deep diversity in both Bornean and
Sumatran populations, it is not clear whether this diversity will be main-
tained with continued habitat loss and population fragmentation.
Evidence from other species suggests fragmentation is not the death
knell of diversity28, but their slow reproduction rate and arboreal lifestyle
may leave orang-utan species especially vulnerable to rapid dramatic
environmental change. It is our hope that the genome assembly and
population variation data presented here provide a valuable resource to
the community to aid the preservation of these precious species.
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Figure 5 | Orang-utan population genetics and demographics. a, Site-
frequency spectra for 13.2 3 106 Bornean (red) and Sumatran (blue) SNPs are
shown based on the ascertainment of 10 chromosomes per species; note the
enrichment of low-frequency SNPs among Sumatran individuals. b, The
majority of SNPs were restricted to their respective island populations as the
‘heat’ of the two-dimensional site-frequency spectra, representing high allele
counts, lay along the axes. c, Our demographic model estimated that the
ancestral orang-utan population (Ne 5 17,900) split approximately 400,000
years ago, followed by exponential expansion of Sumatran Ne and a decline of
Bornean Ne, culminating in higher diversity among modern Sumatran orang-
utans despite a lower census population size. The model also supported low-
level gene flow (,1 individual per generation), indicated by arrows.
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Why model demographic history?

• Selection  
Demographic history sets neutral background

Yi et al. (2010) Science



Workflow

Korneliussen et al. BMC Bioinformatics 2014, 15:356 Page 6 of 13
http://www.biomedcentral.com/1471-2105/15/356
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Figure 2 1D SFS for different GL models. SFS estimation based on a 170 megabase region from chromosome 1 using 12 CEU samples A) and 14
YRI samples B)” from the 1000 genomes project. The analysis was performed for both the GATK GL model (green, light brown) and SAMtools GL
(yellow,dark brown). Notice the difference in estimated variability (proportion of variable sites) for the two GL models, with GATK GL based analyses
inferring more variable sites and an associated larger proportion of low-frequency alleles. The two categories of invariable sites have been removed
and the distributions have been normalized so that the frequencies of all categories sum to one for each method.

an EM algorithm (equation 1) by evoking the following
command:
./realSFS 2dsfs ceu.gl2.saf yri.gl2.saf
24 28 -P 30 >ceu.yri.sfs.
The result is shown on Figure 3. Unlike joint SFS based

on SNP chip data (e.g. [27]), where most SNPs are poly-
morphic in both African and Europeans, this plot shows
that most derived alleles are private to one of the popula-
tions. This is also observed between Chinese and Africans
[28] and the difference between the SNP chip data and
the sequencing data is caused by ascertainment biases
in the chip data where SNPs are often chosen because
they are common in populations such as European [27].
We have also performed a proper simulation study by
simulating genotypes for two populations that follows a
demographic pattern similar to European and African
populations, assuming realistic recombination and muta-
tion rates for humans. We simulated genotypes corre-
sponding to a 10 Mb region using MSMS [29], and based
on the genotypes we calculated genotype likelihoods using
the method described in [12]. This was done by assum-
ing a mean sequencing depth of 2X and an error rate
of 0.2%. The true spectrum is visualized as a heat map
in Additional file 1: Figure S1, and our estimated spec-
trum in Additional file 2: Figure S2 and Additional file 3:
Figure S3.

ABBA-BABA
To illustrate the use of the ABBA-BABA analyses [18,24]
we demonstrate two analyses: (1) an analysis of modern
human samples, and (2) a comparison of modern human
sequences and ancient DNA from theDenisovan hominin.
For the modern individuals we tested a European
(French), a Native American (Karitiana), a Papuan
(Papuan1), a Han Chinese and an African (Yoruba)
[30]. The ANGSD command used in the first analysis
was

./angsd -doAbbababa 1 -bam modern.ind
-out modern -doCounts 1 -anc
chimpHG19.fa -minMapQ 30 -minQ 30
-blockSize 5000000
Rscript R/jackKnife.R
file=modern.abbababa
indNames=modern.indnames

The ABBA-BABA test is based on a sample of counts
of bases (-doCount 1), an outgroup (-anc ), which in this
case is the chimpanzee, 5 Mb block size (-blockSize), and
a strict filtering of bases based on quality scores (-minQ
30) and mapping quality (-minMapQ 30). A small Rscript
is used to perform a blocked (uneven m-delete) jack knife
procedure to obtain standard deviations and resulting the
Z-scores. The results are shown in Table 2. The results

Beware: Almost all inference tools assume data is clean!



Modeling workflow
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Ne: Effective population size

• The size of an idealized population (in individuals) that 
would give the same behavior in some regard as the real 
population of interest.	

• Most commonly, variance effective population size, the 
population size in a Wright-Fisher model that has variance in 
allele frequencies over time equal to that of the real 
population.	

• Almost always, Ne is less than the census size.	

• Ne is affected by breeding ratio, historical demography, etc.	

• Other definitions of Ne are possible.	

• Arguably, in some populations (Drosophila), variation may be 
more strongly influenced by selection than drift.



Simulation via coalescent

• Developed in the early 1980s, principally by Kingman.	

• Approach is to model the genealogy of sampled sequences.	

• Rate of coalescence is proportional to 1/Ne.	

• Simulators first sample genealogies consistent with specified 
demographic history.	

• To generate sampled sequences, mutations are then added to 
the genealogy via a Poisson process.	

• Can model recombination with the Ancestral Recombination 
Graph. But selection is extremely challenging.
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BACTERIAL CONJUGATION

Genetic recombination in
prokaryotes that is mediated
through direct transfer of DNA
from a donor to a recipient cell.

the randomness of genealogies and of mutations. For
example, to decide if the data in the previous paragraph
are unusual, we might make assumptions about the
process that gave rise to those data, and imagine many
random repetitions of the evolutionary process. If the
fraction of the random genealogical and mutational his-
tories that could have given rise to the observed data is
small, we can conclude that the assumptions cannot
explain the pattern. To consider genealogies that might
be found in different runs of evolution, we need models
that allow us to construct random genealogies, and the
coalescent is one such model.

Effects of recombination. Recombination can be readily
incorporated into the genealogical framework. The
principle is the same as in traditional pedigree studies9.
Recombination in a chromosomal segment means that
it had two parental segments. So, the lineage of the seg-
ment splits in two, but precisely how the splitting occurs
depends on the recombination process — for example,
BACTERIAL CONJUGATION and meiotic crossing over have dif-
ferent effects on genealogies because, in the process of
bacterial conjugation, the chromosome is necessarily
broken in two places, whereas crossing over involves
only a single break.

The main effect of recombination is that it allows
linked sites to have different genealogical trees. To
observe this, it is better to view recombination from a
spatial rather than a temporal perspective. The geneal-
ogy of a sample of recombining sequences can be 
considered as a “walk through tree space”10 — as we
proceed from one end of the sequence to the other, the
tree changes, but only gradually as each recombination
event affects only a subset of the branches (FIG. 3). So, the
extent to which the histories of different sites are corre-
lated depends on the recombinational distance between
them — as recombination approaches infinity, the
genealogies of unlinked loci are conditionally indepen-
dent, given the historical demography of the group
under consideration. Because the pattern of polymor-
phism reflects the underlying genealogical trees, allele
frequencies at linked sites in general cannot be indepen-
dent. An important consequence of this dependency is
linkage disequilibrium — the non-random association
of alleles in haplotypes11.

Recombination is very important to evolutionary
inference, because unlinked or loosely linked loci can
often be viewed as independent replicates of the evolu-
tionary process. In the absence of recombination, the
entire genome would correspond to a single genealogi-
cal tree, and we would never have more than a single
independent replicate. So, the statistical benefits pro-
vided by recombination are substantial. As discussed
below, the precision of evolutionary-inference methods
increases rapidly with the number of genes studied, and
very slowly with the number of sampled individuals.

What is the coalescent?
So far, we have used only the basic principles of
Mendelian genetics to understand how genetic poly-
morphism data reflect the history of coalescence,

be no polymorphism — as well as the genealogy of
sampled sequences. To model the genealogy, we need to
consider the recombination and coalescence of lineages.

Coalescence and mutation. Consider a particular site in
the genome of a species. All existing copies of this site
must be related to each other and to a most recent com-
mon ancestor (MRCA) through some form of
genealogical tree. Polymorphism at the site is due to
mutations that occurred along the branches of this tree,
and the frequency of each sequence variant is deter-
mined by the fraction of branches that inherits the vari-
ant (FIG. 1). The pattern of polymorphism therefore
reflects both the history of the coalescence of lineages,
which gives rise to the tree, and the mutational history.

To observe the effect of history on data analysis,
imagine that we sequence a 10-kb region in 30 ran-
domly chosen individuals and, surprisingly, find no
polymorphisms. We might interpret this observation as
evidence for selective constraint in this region.
Alternatively, it might be that the individuals chosen for
the comparison are unusually closely related. So,
the interpretation depends on the genealogy of the
sequences, which is not known.

To deal with this uncertainty, we treat the genealogy
as random, in the same way that we treat mutation as
random. Just as mutations occur differently across runs
of evolution1, if evolution were repeated, samples from
different ‘runs’ of evolution would have different
genealogical trees (FIG. 2). It is necessary to incorporate
both of these sources of variation into data analysis —

G T

MRCA

G T T TG G GGGG

Figure 1 | The source of genetic variation. Polymorphism at
a particular site results from mutations (shown here as G→T)
along branches of the genealogical tree, which connects
sampled copies of the site to their most recent common
ancestor (MRCA).

Figure 2 | Random genealogical trees. The trees were generated using the same model — 
the standard coalescent for sample of size ten. Therefore, the variation among the trees reflects
chance alone.

© 2002 Nature Publishing Group

Rosenberg and Nordborg 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Simulation via diffusion

• Developed by Fisher and others in 
the 1930s. Further developed by 
Kimura in the 1960s.	

• Approach is to model the 
distribution of allele frequencies in 
the population(s).	

• Approximating allele frequencies as 
continuous allows partial 
differential equations to be applied.	

• Simulation of selection is 
straightforward. Linkage is very 
challenging.

Kimura 
(1964) J Applied Prob



Comparing model and data

• Likelihood: Probability of the data given the model 
(with specified parameter values).	

• Frequentist approach: Maximize likelihood to find 
best-fit parameters, estimate confidence intervals, 
perform hypothesis tests.	

• Bayesian approach: Sample posterior distribution of 
parameters based on likelihood function and prior 
distribution over parameters.



Composite likelihoods

• Often in population genetics, we can’t calculate the 
likelihood of our data.	

• But we can often calculate the likelihood for a single site.	

• The composite likelihood function is the product of the 
likelihoods over all sites, implicitly assuming that sites 
evolve independently.	

• Under neutrality, it can be shown that the composite 
likelihood approximation does not bias inferred 
parameters (Wiuf (2006) J Theor Biol).	

• But composite likelihood does mean that many standard 
statistical inference approaches will be too liberal, because 
they effectively overestimate the amount of data.



Approximate Bayesian Computation
• Seminal work by Tavare et al. (1997) Genetics	

• Simulate data by sampling from the prior distribution	

• Calculate summary statistics from the simulation, and 
compare with summary statistics from the data.	

• Accept the sampled parameter set if “distance” between 
summary statistics is less than some small threshold.	

• The set of sampled parameters is an approximation to 
posterior distribution.	

• Very computationally intensive, but very flexible, 
approach to model fitting, because you can chose 
summary statistics that are most sensitive to your 
particular problem.



Demographic Inference Methods

• Many approaches	

• My overview will be 
somewhat selective 
and historical	

• See Schraiber and 
Akey (2015) Nat Rev 
Genet for a recent 
review.

Table 1 | Software for demographic inferences

Name Data type Inference Notes Refs

STRUCTURE Unlinked multi-allelic 
genotypes

Population structure, 
admixture

User-friendly GUI; can be computationally demanding 32

FRAPPE Unlinked bi-allelic SNVs Population structure, 
admixture

Alexander GV|CN�41 argue that convergence is not guaranteed 40

ADMIXTURE Unlinked bi-allelic SNVs Population structure, 
admixture

Estimates the number of populations via cross-validation error 41

fastSTRUCTURE Unlinked bi-allelic SNVs Population structure, 
admixture

Obtains variational Bayesian estimates of posterior probability 
distribution

42

Structurama Unlinked multi-allelic 
genotypes

Population structure, 
admixture

Uses a Dirichlet process to estimate the number of populations 43

HAPMIX Phased haplotypes; 
reference panel

Chromosome painting 4GSWKTGU�RQRWNCVKQPU�VQ�DG�URGEKHKGF�C|RTKQTK 48

fineSTRUCTURE Phased haplotypes Population 
structure, admixture, 
chromosome painting

Can be used to identify the number and identity of populations 49

GLOBETROTTER Phased haplotypes Population 
structure, admixture, 
chromosome painting

Extends the fineSTRUCTURE approach to estimate unsampled 
ancestral populations and admixture times

7

LAMP Phased haplotypes; 
reference panel

Chromosome painting Identifies local ancestry in windows, rather than using an HMM, 
so is more discrete than other approaches

52

PCAdmix Phased haplotypes Chromosome painting, 
population structure

Uses PCA in small chunks followed by an HMM to estimate local 
ancestry

53

FCFK Frequency spectrum of 
unlinked bi-allelic SNVs

Demographic history Requires some Python-coding skills; applicable to up to three 
populations

60

Fastsimcoal2 Frequency spectrum of 
unlinked bi-allelic SNVs

Demographic history Can also be used to simulate data under the SMC 62,63

Treemix Frequencies of unlinked 
bi-allelic SNVs

Admixture graph Highly multimodal likelihood surface and heuristic search; redo 
inference from many starting points

64

fastNeutrino Frequency spectrum of 
unlinked bi-allelic SNVs

Demographic history Applicable only to a single population; designed specifically for 
extremely large sample sizes

65

DoRIS Lengths of IBD blocks 
between pairs of individuals

Demographic history IBD must be inferred (for example, using Beagle or GERMLINE); 
specification of lower cut-off minimizes false-negative IBD tracts

71,72

IBS tract 
inference

Lengths of IBS blocks 
between pairs of individuals

Demographic IBS can easily be confounded by missing data and/or sequencing 
errors

76

PSMC Diploid genotypes from one 
individual

Demographic history Best used in MSMC’s PSMC mode, which uses the SMC to 
more accurately model recombination than the original PSMC; 
applicable to a single population

78

MSMC Whole genome, phased 
haplotypes

Demographic history Requires large amounts of RAM; cross-coalescence rate should 
not be interpreted as migration rate

82

CoalHMM Whole genome, phased 
haplotypes

Demographic history Multiple applications, including inference of population sizes, 
migration rates and incomplete lineage sorting

83–87

diCal Medium-length, phased 
haplotypes

Demographic history Uses shorter sequences than MSMC, but can be applied to 
multiple individuals in complex demographic models; infers 
explicit population genetic parameters for migration rates

89,92

LAMARC Short, phased haplotypes Demographic history Requires Monte Carlo sampling of coalescent genealogies; very 
flexible

93

BEAST Short, phased haplotypes Species trees, effective 
population sizes

Used mainly as a method of phylogenetic inference. Can also 
infer population size history

94

MCMCcoal Short, phased haplotypes Divergence times 
between populations

Now incorporated into the software BPP131 95

G-PhoCS Short, (un)phased 
haplotypes

Demographic history Incorporates migration into the MCMCcoal framework. Averages 
over unphased haplotypes

96

Exact likelihoods 
using generating 
functions

Short, phased haplotypes Demographic history Implemented in Mathematica; applicable only to specific classes 
of multi-population models

97,98

$'#56��$C[GUKCP�GXQNWVKQPCT[�CPCN[UKU�D[�UCORNKPI�VTGGU��$22��$C[GUKCP�RJ[NQIGPGVKEU�CPF�RJ[NQIGQITCRJ[��%QCN*//�|EQCNGUEGPV�*//� dadi, diffusion approximations 
HQT�FGOQITCRJKE�KPHGTGPEG��FK%CN�|FGOQITCRJKE�KPHGTGPEG�WUKPI�EQORQUKVG�CRRTQZKOCVG�NKMGNKJQQF��&Q4+5�|FGOQITCRJKE�TGEQPUVTWEVKQP�XKC�+$&�UJCTKPI��
)�2JQ%5�|IGPGTCNK\GF�RJ[NQIGPGVKE�EQCNGUEGPV�UCORNGT��)'4/.+0'�|IGPGVKE�GTTQT�VQNGTCPV�TGIKQPCN�OCVEJKPI�YKVJ�NKPGCT�VKOG�GZVGPUKQP��)7+��ITCRJKECN�WUGT�KPVGTHCEG��
HMM, hidden Markov model; IBD, identity by descent; IBS, identity by state; LAMARC, likelihood analysis with metropolis algorithm using random coalescence; LAMP, 
local ancestry in admixed populations; MCMC, Markov chain Monte Carlo; MSMC, multiple SMC; PCA, principal components analysis; PSMC, pairwise SMC; RAM, 
random access memory; SMC, sequentially Markov coalescent; SNVs, single nucleotide variants.
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IM/IMa/IMa2

• Uses coalescent simulation to 
calculate the full likelihood of 
the data given the model, for 
non-recombining regions 
(mitochondria, Y chromosome, 
small autosomal regions).	

• Bayesian inference based on 
MCMC walk through 
parameter space, can be 
computationally expensive.	

• Handles arbitrary number of 
populations.

Hey and Nielsen (2004) Genetics 
Hey (2010) Mol Biol Evol

abundance, as well as some kind of representation of the
population phylogeny. Figure 1 shows an IM model for
three sampled populations in which sampled popula-
tions 1 and 2 are more recently diverged from each other
than either are with respect to population 3. In figure 1
and throughout this paper, the populations in a model
with k sampled populations are numbered first from 1
through k, for the sampled populations, and then from
k þ 1 (for the most recent ancestral population) to 2k "
1 (for the oldest ancestral population at the root of the
phylogeny).

The general k-population model includes the following
assumptions:

# The history of the sampled populations can be repre-
sented by a bifurcating phylogenetic tree.

# The population phylogeny is rooted, and the topology of
the tree and the sequence of splitting events in time is
known.

# Each sampled population, as well as each ancestral
population, is constant in size and follows Fisher–Wright
population assumptions (Ewens 1979).

# Gene flow may have occurred, in either or both directions,
between each pair of populations that coexist over one or
more time intervals.

# No gene flow occurred between unsampled populations
and sampled populations or their ancestors.

The individual loci sampled from these populations are
assumed 1) to not have had recombination since the most
recent common ancestor, 2) to be effectively unlinked from
each other, and 3) to have a history that has not been
shaped by natural selection (Hey and Nielsen 2004).

As in the case of a two-population IM model, multipo-
pulation models have three main types of unknown, each
of which is scaled by the rate of neutral mutations per gen-
eration, u (Hey and Nielsen 2004). Every population has
a population mutation rate, h or 4Niu (Ni is the effective
population size for population i), as well as a rate of mu-
tation-scaled migration to each population with which it
coexists in timem5M/u (M is the migration rate per gen-
eration per gene copy). The root population at the base of
the population tree has a population size parameter but no
migration parameters because there is only one population
in the model at that point in time. In addition to popula-
tion size and migration parameters, we have for every in-
ternal node of the population tree a population splitting
time, t 5 Tu, where T is the time since common ancestry
in generations.

A k-population IM model will have k " 1 splitting
events and a total of 2k-1 populations (i.e., k sampled pop-
ulations plus k " 1 ancestral populations). The splitting
events are numbered beginning with the most recent, as
are the time intervals, or periods, such that period i ex-
tends between ti-1 and ti. In the case of time period 1,
the interval extends from the time of sampling to t1
and in the case of time period k, the interval extends from
tk-1 to infinity.

The number of distinct migration parameters can be
found by considering that the model will have two migra-
tion rates for every distinct pair of populations that coexist
during at least one time period. During period 1, when
there are k populations, there will be kðk" 1Þ migration
rates. Moving down the tree to period 2, two populations
merge to form an ancestral population and so, of the
kðk" 1Þ migration rates in period 1, only
ðk" 2Þðk" 3Þ also apply over period 2. However, for pe-
riod 2, we also need to consider the migration rates be-
tween the ancestral population that first appears in
period 2 and the other populations that are present at that
time. Therefore, for period i, where i . 1, we need to in-
troduce 2ðk" iÞmigration parameters to the model. Sum-
ming the count for period 1 to the sum over periods 2
through k " 1, we find the total number of migration pa-
rameters to be

kðk " 1Þ þ
Xk" 1

i5 2

2ðk " iÞ5 2ðk " 1Þ2: ð1Þ

Unlike the count of population size parameters, which
increases by only two for every additional sampled popu-
lation added to the model, the number of migration
parameters goes up rather quickly with increasing k. For
k 5 3, expression (1) yields 8; for k 5 4, it is 18; and
for k 5 10, the IM model described here will have 162 mi-
gration parameters. There are various ways to simplify the
model, with regard to migration, that will reduce this total.
For example, it can be assumed that migration rates are
equal in both directions between populations, which will
reduce the number of parameters by a factor of two.

FIG. 1. An isolation-with-migration model for three sampled
populations.
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Allele Frequency Spectrum

• In a population of constant 
size (the Standard Neutral 
Model), expectation number 
of SNPs at frequency i is 
proportional to 1/i.	

• Population growth creates 
an excess of low-frequency 
alleles.	

• Commonly quantified by 
Tajima’s D.	

• Selection generates a similar 
signal.

SMC’
A modification to the 
sequential Markov coalescent 
(SMC) that allows for hidden 
recombination events that do 
not change the local genealogy.

When the sequences under consideration may have 
experienced one or more recombination events, it 
becomes necessary to average over the possible recom-
bination histories that may have shaped the observed 
haplotypes. Inspired by the work of Wiuf and Hein67, 
who showed how to model the coalescent with recom-
bination as a stochastic process along a DNA sequence, 
McVean and Cardin74 introduced the sequentially 
Markov coalescent (SMC) to make calculations with 
recombination simpler. In brief, the SMC approximates 
the full coalescent with recombination by assuming 
that, when a recombination event occurs, the geneal-
ogy at the site to the right of the recombination event 
depends only on the genealogy at the site to the left of 
the recombination event. This assumption eliminates 
long-range correlations in genealogies that generally 
have very little effect on the data. A modified SMC, 
called the SMC’ (REF. 75), increases the accuracy of the 
approximation substantially; most current inference 
strategies make use of the SMC’.

Using the SMC’ approximation, Harris and Nielsen76 
developed a method similar to DoRIS that fits the dis-
tribution of IBS lengths to infer demographic history. 
In contrast to inference based on IBD segments, IBS 
tracts are, in principle, directly observable in the data. 
However, sequencing errors and missing data can make 
calling IBS tracts more difficult than naively expected. 
Nevertheless, this method has been used to analyse data 
from a diverse range of species, including humans and 
polar bears77.

Li and Durbin78 introduced one of the most popular 
methods that leverage the SMC to perform demographic 
inference, which is called pairwise SMC (PSMC). PSMC 
is directly applicable to whole-genome data from a sin-
gle diploid individual without the need for phasing. 
Moreover, this method is capable of averaging over 
missing data, which helps it deal with the fact that many 
regions of the genome present difficulties for read map-
ping owing to repetitive elements and structural varia-
tion. PSMC is a HMM that moves along the sequence, 
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Figure 3 | The effect of demographic perturbations on gene 
genealogies and the SFS. Four simple population demographic models 
are shown: constant model, bottleneck model, expansion model and 
structured population model. Below each model schematic, we show 
average gene genealogies from five sampled lineages obtained  
by coalescent simulations and stylized site frequency spectrum  
(SFS; plotted on a logarithmic scale) generated from each model.  

The SFS from the constant-sized population model is shown in red on 
each subsequent plot to facilitate comparison among models. 
Demographic events influence the shape and structure of the 
genealogies, which in turn influence patterns of genetic variation, 
such as the SFS. Many popular methods leverage the SFS for inferring 
population demographic history. The double-ended arrow indicates 
bidirectional migration.
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SMC’
A modification to the 
sequential Markov coalescent 
(SMC) that allows for hidden 
recombination events that do 
not change the local genealogy.

When the sequences under consideration may have 
experienced one or more recombination events, it 
becomes necessary to average over the possible recom-
bination histories that may have shaped the observed 
haplotypes. Inspired by the work of Wiuf and Hein67, 
who showed how to model the coalescent with recom-
bination as a stochastic process along a DNA sequence, 
McVean and Cardin74 introduced the sequentially 
Markov coalescent (SMC) to make calculations with 
recombination simpler. In brief, the SMC approximates 
the full coalescent with recombination by assuming 
that, when a recombination event occurs, the geneal-
ogy at the site to the right of the recombination event 
depends only on the genealogy at the site to the left of 
the recombination event. This assumption eliminates 
long-range correlations in genealogies that generally 
have very little effect on the data. A modified SMC, 
called the SMC’ (REF. 75), increases the accuracy of the 
approximation substantially; most current inference 
strategies make use of the SMC’.

Using the SMC’ approximation, Harris and Nielsen76 
developed a method similar to DoRIS that fits the dis-
tribution of IBS lengths to infer demographic history. 
In contrast to inference based on IBD segments, IBS 
tracts are, in principle, directly observable in the data. 
However, sequencing errors and missing data can make 
calling IBS tracts more difficult than naively expected. 
Nevertheless, this method has been used to analyse data 
from a diverse range of species, including humans and 
polar bears77.

Li and Durbin78 introduced one of the most popular 
methods that leverage the SMC to perform demographic 
inference, which is called pairwise SMC (PSMC). PSMC 
is directly applicable to whole-genome data from a sin-
gle diploid individual without the need for phasing. 
Moreover, this method is capable of averaging over 
missing data, which helps it deal with the fact that many 
regions of the genome present difficulties for read map-
ping owing to repetitive elements and structural varia-
tion. PSMC is a HMM that moves along the sequence, 
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Figure 3 | The effect of demographic perturbations on gene 
genealogies and the SFS. Four simple population demographic models 
are shown: constant model, bottleneck model, expansion model and 
structured population model. Below each model schematic, we show 
average gene genealogies from five sampled lineages obtained  
by coalescent simulations and stylized site frequency spectrum  
(SFS; plotted on a logarithmic scale) generated from each model.  

The SFS from the constant-sized population model is shown in red on 
each subsequent plot to facilitate comparison among models. 
Demographic events influence the shape and structure of the 
genealogies, which in turn influence patterns of genetic variation, 
such as the SFS. Many popular methods leverage the SFS for inferring 
population demographic history. The double-ended arrow indicates 
bidirectional migration.
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Schaffner et al. (2005) Genome Research

• Fit model to Africa, Asian, 
and European human data by 
using coalescent simulations 
to match several summary 
statistics (single-population 
frequency spectra, FST, and 
LD decay).	

• Today, this would be called 
ABC.	

• Still no packaged methods 
that integrate both allele 
frequencies and LD.

rate in the model was tuned to match the observed heterozygos-
ity (see Methods) (Sachidanandam et al. 2001).

We then turned to the recombination model. In order to
generate the considerable extent of LD seen in empirical data, we
held the demographic parameters fixed and introduced variation
in recombination rates, first by including observed large-scale
variation, as measured in the deCODE genetic map (Kong et al.
2002), and then by adding fine-scale variation, including local-
ized hotspots of recombination. The need for non-uniform re-
combination to obtain sufficient extent of LD is consistent with
a range of observations indicating non-uniform recombination
in the human genome (Jeffreys et al. 2001; Cullen et al. 2002;
May et al. 2002; Reich et al. 2002; Kauppi et al. 2003; Wall and
Pritchard 2003a,b; Crawford et al. 2004; McVean et al. 2004).

In total, approximately 2 billion coalescent trees were gen-
erated in the fitting process. The best-fitting set of parameters
(Table 1; Fig. 2) yielded good agreement with all aspects of the
observed data listed above. Agreement was not perfect: The RMSE
between predicted values and the mean empirical values was on
average 1.35 (that is, the disagreement was 35% larger than what
would be seen solely based on random sampling of the empirical
data). The agreement was, however, far superior to the discrep-
ancy of 4.7 found with the standard neutral model. We explored
the effects of re-estimating the parameters once all had been
added to the model (i.e., iterating the fit); we found further im-
provements of the fit to be negligible. To our knowledge, this is
the first time population genetic simulations have produced data
that agree with multiple aspects of empirical data from multiple
parts of the genome and in more than one population sample.

Having tuned our simulation, we next examined how well it
predicted aspects of the data not used in the tuning process. First,
we used the model to generate predictions for the same measures
as above, but for the X-chromosome instead of the autosomes.
We compared the results to an X-chromosome data set, derived
from the same population samples as the autosomal data. Results

for both our best-fitting model and the standard neutral model
are shown in Figure 4. The statistical power of this data set for
evaluating simulations is limited, but it is sufficient to demon-
strate that the calibrated model does perform visibly better than
the standard neutral model (RMSE = 0.97 for the best-fit model
vs. 1.51 for the standard neutral model). The smaller effective
population size of the X-chromosome (three-quarters that of the
autosomes) makes it a useful test of how well the simulation
models genetic drift, which is dependent on population size: The
effect of the smaller population can be clearly seen in the larger
genetic distances and the high fraction of X-linked markers that
are monomorphic. Second, we looked at how well the calibrated
model simulated haplotype blocks, contiguous stretches of chro-
mosome observed to have very low rates of historical recombi-
nation and low haplotype diversity (Fig. 4L,M). Again the model
performed very well (within the statistical limits of our ability to
measure it), and much better than the standard neutral model
(Phillips et al. 2003).

Finally, we show in Figure 5 an application of our calibrated
model to a study of human genetic variation, a search for evi-
dence of positive selection in a set of ∼100 genes (Walsh et al.
2005). The empirical data consisted of SNPs in and near genes
with a density of 1 per 4 kb, genotyped in samples from three
populations; since the three populations were similar to those
used in calibrating our model, simulation results could be com-
pared directly with data. Several statistics were calculated from
the genotype data as possible indicators for the occurrence of
selective sweeps around the genes; shown are the mean FST and
the mean heterozygosity for each population. While the distri-
butions differ between populations, in all three cases the agree-
ment with simulation is excellent. Since this is a neutral simula-
tion, there appears to be no need to invoke selective explanations
even for the outliers, at least for these statistics.

Discussion
We have described the development of a particular calibrated
model. Since this was not an exhaustive survey, it is certain that

Table 1. Parameters of best-fitting model

Variable parameters Best-fit model

Ne (ancestral) 12,500
Ne (African) 24,000
Ne (non-African) 7700
T (African expansion) (gens) 17,000
OoA bottleneck (F) 0.085
Asian bottleneck (F) 0.067
European bottleneck (F) 0.020
African bottleneck (F) 0.008
Africa ↔ Europe migration rate (per chromosome) 3.2 ! 10"5

Africa ↔ Asia migration rate (per chromosome) 0.8 ! 10"5

Recombination hotspot spacing (bp) 8500
Hotspot spacing shape parameter 0.35
Fraction of recombination in hotspots 88%
Gene conversion (initiation prob/bp) 4.5 ! 10"9

Fixed parameters

Mutation rate (per base pair per generation) 1.5 ! 10"8

Ne (post-agriculture) 100,000
T (out of Africa) (gens) 3500
T (Eur/Asia split) (gens) 2000
T (Asian agriculture) (gens) 400
T (European agriculture) (gens) 350
T (African agriculture) (gens) 200

Figure 3. Demographic model. N1: ancestral population size. (N2) Af-
rican population size. (N3) non-African population size. (Texp) Time of
ancestral population expansion (if any). Bottlenecks are indicated by con-
strictions. (Not shown: recurring migration between African and Euro-
pean populations, and between Asian and African populations.)

Calibrating a human coalescent simulation

Genome Research 1579
www.genome.org

 Cold Spring Harbor Laboratory Press on January 28, 2016 - Published by genome.cshlp.orgDownloaded from 

nation rate variation. Since the potential search space among
many parameters is large, we took a stepwise approach: first
choosing a set of parameters to add to the model, optimizing
them by minimizing the RMSE, and then iterating the procedure
by adding further parameters until the model fit was acceptable.
At each step, fitting first used coarse step sizes (e.g., !2000 for
population sizes), and then finer ones, in an effort to avoid local
minima.

Beginning with the base model described above, we first
altered parameters that affect single-locus features of the data,
which are influenced only by demography (not recombination):
specifically, heterozygosity, allele frequency spectrum, fraction
of ancestral/chimpanzee alleles, and FST. Of these, we first fit the

West African allele frequency spectrum, since it is generally ac-
cepted that the human population originated in Africa, finding
that models with a historical population expansion resulted in an
improved fit to the data by increasing the fraction of low-
frequency alleles. Next, we considered the remaining single-locus
measures, and successively added parameters (primarily popula-
tion bottlenecks, but also small amounts of continuing migration
between populations, which served to reduce the genetic dis-
tances between populations) until the RMSE for the single-locus
measures was 1.15. That is, based solely on the characteristics of
single markers, the model fit the data nearly as well as the sam-
pling error within the empirical observations, and much better
than our base, standard neutral, model. Finally, the mutation

Figure 2. Comparison of best-fit model with empirical data, autosomes. Error bars represent one standard error. (A,B,C) Allele frequency spectrum.
(White) Data; (black) model. (A) West African. (B) East Asian. (C) European sample. (D,E,F) Fraction of alleles that are ancestral/chimpanzee, binned by
allele frequency. (White) Data; (black) model. (D) West African. (E) East Asian. (F) European. (G,H,I) Linkage disequilibrium (r2) versus physical distance.
(Points) Data; (line) model. (G) West African. (H) East Asian. (I) European. (J,K,L) Fraction of marker pairs with perfect LD (D" = 1.0) versus genetic
distance. (J) West African. (K) East Asian. (L) European. (M) Genetic distance (FST). (White) Data; (black) model.
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Inference from the AFS

• Marth et al. (2004) Genetics 
calculated expected frequency 
spectrum under piecewise constant 
histories using (big) summation 
formulas.	

• Implemented projection of data 
down to smaller sample size (for 
handling incomplete calling) and 
correction for ascertainment bias 
(for handling genotype data).	

• Fit growth and bottleneck models to 
human populations from Africa, 
Europe, and Asia.

356 G. T. Marth et al.

the attempted sample sizes are different. In such cases
one selects a target sample size and applies the reduc-
tion procedure to transform allele counts observed at
higher sample sizes to the equivalent counts at this lower
target sample size. It is then possible to fit the resulting
single AFS containing the contribution of all available
data instead of fitting multiple, often sparse spectra,
one for each sample size present in the data.

Minor allele frequency spectra observed in samples
representing different world populations show differen-
tial demographic histories: The SNP Consortium (http://
snp.cshl.org), an organization formed primarily for the
discovery of a large set of human SNPs, has made well

Figure 1.—Example of a three-epoch, piecewise constant, over 1 million polymorphic sites available in the public
bottleneck-shaped population history profile. The ancestral domain (Sachidanandam et al. 2001). Most of theseeffective population size (N3) is followed by an instant reduc-

SNPs were discovered by comparing sequencing read frag-tion of effective size (N2). The duration of this epoch is T2
ments from multi-ethnic, anonymous, whole-genomegenerations. This is followed by a stepwise increase of effective

population size to N1, T1 generations before the present. shotgun subclone libraries to the public genome refer-
ence sequence (Sachidanandam et al. 2001); i.e., the
vast majority of the SNPs were found in a discovery size

gies’s consequent effect on SNP population frequency of two chromosomes (k ! 2). Quasi-random subsets of
(methods). We illustrate the effect of this bias under these candidate sites were then selected for frequency
different values of ascertainment sample size (Figure characterization in samples representing European-
2a). As expected, the bias toward sample enrichment American, African-American, and East Asian populations
for common polymorphisms is strongest when SNPs are (for sample identifiers see http://snp.cshl.org/allele_
discovered in a pair of chromosomes, and it gradually frequency_project/panels.shtml). In this study, we
disappears as discovery sample size increases. Under a chose the largest data set of allele frequency counts
stationary population history, the folded spectrum un- resulting from genotypes provided by Orchid Biosci-
der ascertainment in two chromosomes is a constant ences, of 42 individuals (84 chromosomes) drawn from
function of frequency (methods), and deviations from each of the three populations (http://snp.cshl.org/
a horizontal line signal a nonstationary history that is allele_frequency_project/). Experimental results were
easy to detect and interpret. In Figure 2b, we contrast reported for 33,538 sites. For a significant fraction of
the ascertainment bias-corrected, minor allele fre- the sites genotyping was unsuccessful for one or more
quency spectra for notable, competing scenarios of de- of the populations attempted. In some other cases, al-
mographic history. When a population expands, an in- though genotyping was successful, all samples carried
creasing number of chromosomes simultaneously incur the same allele and hence the site could not be con-
new mutations, which results in an overabundance of firmed as polymorphic. For the purpose of our study,
rare alleles in the spectrum. Conversely, a population we restricted our attention to those sites where (1) geno-
collapse is a rapid loss of chromosomes, and the alleles typing from each of the three sample groups was success-
present at high frequency are more likely to be carried ful (genotyping for a given population was considered
by surviving chromosomes than are their rare counter- successful if genotype data were obtained for at least
parts. For that reason a collapse generates an overrepre- half the population samples, i.e., 21 individuals, even
sentation of common alleles. Finally, AFS under a bottle- if only one of the alternative alleles was seen in that
neck history (a reduction of effective size followed by population) and (2) the site was polymorphic within at
a phase of recovery) carries the signature of both the least one of the three population samples. Of the total
phase of collapse (a valley at intermediate frequencies) 21,407 sites that were successfully genotyped in all three
and that of growth (elevated signal at low frequencies). populations the European samples were polymorphic

We report a procedure to transform allele counts at 18,660 sites, the African samples at 20,587 sites, and
at a given sample size to a lower, target sample size the Asian samples at 17,369 sites. At a given site, the
(methods). Using this equivalence sample size reduction total number of alleles counted varied between 42 (the
procedure, allele count observations at all sites can be minimum number possible, in case only 21 diploid indi-
reduced to the equivalent counts at a lower, “common viduals were successfully genotyped within a popula-
denominator” sample size, as illustrated in Figure 3. tion) and 84, the maximum possible if all 42 individuals
This procedure is useful for analyzing allele counts at within a population sample were successfully genotyped.
sites where the number of available genotypes is variable To use all the data available, we have applied our equiva-
either because a fraction of attempted genotyping ex- lence sample size reduction procedure (methods) to

convert the allele count data to a common denominatorperiments failed or when merging data sets in which



Parameter identifiability

• Often the likelihood surface has “ridges”, correlated 
sets of parameters that give very similar high 
likelihoods.	

• For example, depth and duration of bottleneck.
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Figure 5.—Bottleneck size and duration in the European samples. The probability surface of the effective size and the duration
of a bottleneck are shown. Size of the ancestral epoch is fixed at N3 ! 10,000, size of the present epoch is fixed at 20,000, and
the duration of the present epoch is fixed at T1 ! 3000. Parameter regions indicated by shading fall into the same bin of
significance. Note that the P values indicated are the direct "2 probabilities (i.e., 1 minus the tail probability).

resented a 2- to 3-fold decline for 600–1000 generations neck severity index (in our notation T2/N2) and consider
moderate bottlenecks where the expansion ratio is 20(12–20 KY), followed by 5- to 8-fold growth starting

3000–4200 generations (60–84 KY) ago. The best-fitting and the severity index is in the range of 0.25 and 4.0. Our
own estimates (expansion ratio 5–20 for Europeans, 5–8models for the African-American data represent unin-

terrupted growth of effective population size, with the for Asians, and severity index of !0.2 for both popula-
tions) are in general agreement with these values andexpansion clearly starting earlier than is evident in our

European or the Asian data. signify bottlenecks on the less severe end of the spec-
trum. Our estimates for the start of the recovery phaseEarlier mitochondrial and microsatellite studies re-

port data that are predominantly consistent with expan- (54–86 KYA for Europeans, 60–84 KYA for Asians) are
well within the range of the mitochondrial and microsa-sion-type histories of effective population size. The main

evidence that points to expansion is negative values of tellite estimates. The fact that our best-fitting two-epoch
models indicate expansion-type histories for all threeTajima’s D and an excess of low-frequency alleles. The

start of such expansion is estimated between 30 and 130 populations we examined is also consistent with conclu-
sions from mitochondrial and microsatellite data. A val-KYA (Harpending and Rogers 2000). Nuclear data,

especially in samples of non-African origin, seem to uable reality check of an inferred demographic model
is its implied pairwise nucleotide diversity value, #. Al-show a different pattern, an excess of common variants

(Hey 1997; Clark et al. 1998; Reich et al. 2001, 2002). though our data-fitting analysis of the relative spectrum
does not provide absolute estimates for #, these valuesSimulation results have suggested that a bottleneck-

shaped history of effective population size consisting of can be obtained on the basis of the best-fitting models
by fixing the ancestral size N3 and mutation rate $.a phase of collapse followed by a recent phase of size

recovery can reconcile this seeming contradiction be- For each of the three populations, we use a common
ancestral effective size of 10,000 and common mutationtween observations from different mutation systems

(Fay and Wu 1999; Hey and Harris 1999). These stud- rate of 2 % 10&8 [a value that lies between recent, promi-
nent estimates for average per-nucleotide, per-genera-ies characterize bottleneck-shaped histories by a size

expansion ratio (in our notation N1/N2) and a bottle- tion human mutation rate (Nachman and Crowell 2000;

Marth et al. (2004) Genetics



Absolute limits to inference
• Myers, Fefferman, and 

Patterson (2008)  Theor Pop 
Biol	

• Can show analytically that 
even an infinite amount of 
frequency spectrum data 
does not uniquely 
determine population 
history.	

• Recent results from Song 
show that can uniquely 
determine piecewise 
constant histories.

Author's personal copy

S. Myers et al. / Theoretical Population Biology 73 (2008) 342–348 347

Fig. 3. In the top figure we show population size for a history corresponding

to Ñ (⌃ ) of Fig. 2. Most of the interesting structure is for relatively small times,

and so we also show an expansion of the figure for time t ⌅ 3.5.

practice we anticipate that only a limited number of coefficients

{di } are likely to strongly contribute to the observed spectrum.

This suggests a natural way to perform inference about

history based on the frequency spectrum, concentrating on

that component of past ancestry about which the data provide

information. We might consider only histories expressible in

terms of an orthonormal basis (in the L
2

norm) of functions,

constructed from the original basis above. Such an approach

would be sensible in cases where limited prior knowledge about

population history exists, or to enable inference that does not

depend on specific assumptions about historical events.

Our frequency spectrum findings relate only to the use of

unlinked neutral loci to infer population histories. Unlinked

markers might at first appear to be most informative (because

each marker contributes independent information), but in

fact the correlation between linked loci provides additional

information in inferring population size histories. Indeed, if it

were possible to observe full genealogies at many loci rather

than just SNP frequencies, we believe it would in theory be

possible to accurately reconstruct such histories. Although we

cannot directly observe a genealogy, this does suggest that

utilizing joint variation patterns at groups of tightly linked

markers will substantially improve ancestry inference, at the

cost of introducing additional methodological challenges.

Appendix

Theorem 1. Let a > 0 and

X (a) =
⌦ ⌦

0

e�t
cos(a2/t)

t
1

2

dt.

Then

X (a) = ⌘
⇧ exp(�a

⌘
2) cos(a

⌘
2).

Proof. We need the following lemma:

Lemma 1. Let a > 0, u ⇧ 0 and define

V (a, u) =
⌦ ⌦

0

e�t

t
1

2

exp(�ua2/t) exp(ia2/t)dt

so that X (a) is the real part of V (a, 0). Then

V (a, u) = ⌘
⇧ exp(�2a

⌘
u � i)

where on taking square roots we choose the root with positive
real part.

Proof. Assume u > 0. Define for s > 0

V̂ (s, u) =
⌦ ⌦

0

as�1V (a, u)da. (A.1)

This is the Mellin transform of V . We will need repeatedly the

standard integral

⌦ ⌦

0

x p�1e�zx dx = � (p)

z p (A.2)

valid for the real part of z being > 0, which is the integral

yielding the characteristic function of the gamma distribution.

Now

V̂ (s, u) =
⌦ ⌦

0

as�1

⌦ ⌦

0

e�t

t
1

2

exp(�ua2/t) exp(ia2/t)dtda.

The integral is absolutely convergent and so by Fubini’s

theorem we can interchange the order of integration. Thus

V̂ (s, u) =
⌦ ⌦

0

e�t

t
1

2

⌦ ⌦

0

as�1

exp(�ua2/t) exp(a2i/t)dadt

=
⌦ ⌦

0

e�t

2t
1

2

⌦ ⌦

0

bs/2�1

exp(�ub/t) exp(ib/t)dbdt

=
⌦ ⌦

0

e�t� (s/2)t s/2

t
1

2 (u � i)s/2

dt

= � (s/2)� ((s + 1)/2)

2(u � i)s/2

where we apply Eq. (A.2) to evaluate the inner integral, then

recognize the outer integral as the standard Gamma integral.

Now we apply the Legendre duplication formula

� (2z) = 1⌘
2⇧

� (z)� (z + 1

2

)22z� 1

2

to obtain:

V̂ (s, u) = ⌘
⇧

� (s)
2

s(u � i)s/2

.
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∂a∂i: Diffusion Approximations 
for Demographic Inference

• Up to three interacting populations, with arbitrary 
parameter time courses	

• 1 pop, 20 samples, ~3 params: ~1 minute to fit  
2 pops, 20 samples each, ~6 params: ~10 minutes to fit  
3 pops, 20 samples each, ~12 params: ~3 hours to fit	

• Computational cost independent of SNP count, but 
exponential in number of populations.

Gutenkunst et al.	
PLoS Genet (2009)



Figure 4. Demographic models of four human populations. A: Simple model of African American (ASW) admixture supposed to have
occurred 16 generations ago, with contributions from 3 potential sources (Europeans : CEU; Yoruba: YRI; Luhya: LWK. The European population is
assumed to have diverged 2000 generations ago (50 Kya, [28]) from Africa. B1: More realistic demographic scenario (dark grey) of African American
admixture and population differentiation, based on continent-island models used to depict spatially arranged populations after range expansions
[see e.g. 47]. B2: same as B1 but with an additional possible admixture of Luhya from an unsampled (possibly East African) population. The extra
parameters and population of model B2 are shown with a lighter shade of gray and with dashed arrows, respectively. The models and their
parameters are further described in the Material and Methods section.
doi:10.1371/journal.pgen.1003905.g004

Table 1. Inferred parameters of human demography under model B1 and B2 defined in Figure 4B.

Model B1 Model B2

Point estimation 95% CIa
Point estimation 95% CIa

Parameters Lower bound Upper bound Lower bound Upper bound

NANC 13405 12075 15923 12386 10986 14875

NAFR 27519 23246 38250 25536 22054 35939

NASW 38287 10470 41812 9219 9906 44026

NCEU 27070 3673 44075 38623 8842 43883

NLWK 26793 15395 44540 10711 13288 41103

NYRI 6635 5546 12003 22835 14809 44010

NEUR 16689 12818 40709 14530 11792 25615

IBEUR
b 0.432 0.395 0.472 0.418 0.375 0.450

NNC 164535 41032 401691 56697 33872 414434

IBNC
b 0.026 0.019 0.071 0.027 0.011 0.040

2NmC 2.08 0.03 13.56 0.05 0.04 26.57

2NmY 8.66 0.04 19.37 0.52 0.04 22.83

2NmL 10.93 0.03 29.40 5.18 0.03 35.68

TNC 793 567 1814 797 509 1981

TBOT 10059 8526 12932 9971 8900 12834

aE 0.16 0.15 0.18 0.17 0.16 0.18

NEA 228516 95844 451516

TEA 2230 1479 3386

aEA 0.17 0.08 0.19

aParametric bootstrap estimates obtained by parameter estimation from data sets simulated according to CML estimates shown in the point estimation column.
bBottleneck intensity is equal to bottleneck duration (100 generations) divided by the bottleneck population size (NBEUR or NBNC).
Conditions for fastsimcoal2 point estimations were: 50–250,000 simulations per likelihood estimation (-n50000, -N250000), 30 ECM cycles (-L30), 50 runs per data set.
Conditions for fastsimcoal2 CI estimations were: 100,000 simulations per likelihood estimation (-N100000), 30 ECM cycles (-L30), 10 runs per data set.
doi:10.1371/journal.pgen.1003905.t001

Demographic Inference from Genomic and SNP Data

PLOS Genetics | www.plosgenetics.org 5 October 2013 | Volume 9 | Issue 10 | e1003905

fastsimcoal2

• Estimate pairwise joint 
frequency spectra using 
coalescent simulations.	

• Scales to arbitrary number 
of populations.	

• Estimate parameters by 
maximum composite 
likelihood.	

• Optimization may be more 
robust than ∂a∂i.

Excoffier et al.	
PLoS Genet (2013)



Jaatha

• Partition joint AFS into 23 
distinct regions and use 
simulations to fit to these 
summary statistics.	

• Recently applied to 
simultaneously infer 
demography and selection.  
(Mathew and Jensen (2015) 
Frontiers Genet).

Naduvilezhath et al.	
(2011) Molec Ecol

S ¼ (S1,…,S23) depend on the model parameters. In the
estimation phase, we follow a composite-likelihood
approach. That is, we apply maximum-likelihood
parameter estimation in a model in which the observed
values of S1,…,S23 are independently Poisson distrib-
uted. As parameters for the Poisson distributions, we
use the results of the training phase. The Poisson
approximation corresponds to treating all SNPs as if
they were independent. Consequently, sequences from
different genomic regions of the same individual can be
concatenated before proceeding with Jaatha.

The run-time for the estimation phase of Jaatha is
£ 15 s. The training phase takes up to 5 days on a mod-
ern desktop PC, using a single processor kernel. If more
processors kernels are available, it is straightforward to
parallelize the training phase. The results of the training
phase can be reused for data sets with similar parame-
ter ranges and sample sizes. This is especially advanta-
geous when simulation studies or bootstrap methods
are applied to assess estimation accuracy (Efron & Tib-
shirani 1993).

Joint site frequency spectrum and summary statistics. Our
23 summary statistics S ¼ (S1,…,S23) form a coarsening
of the joint site frequency spectrum (JSFS), which is
defined as follows: Let m and n be the numbers of
sequences sampled from P1 and P2, and A ¼
{0,…,m} · {0,…,n}\{(0,0), (m,n)}. The JSFS assigns to each
(a,b) 2 A the number of polymorphisms Ja,b for which
the derived state at this position is observed in exactly
a sequences sampled from P1 and b sequences sampled
from P2. We partition A into 23 disjoint subsets A1,…,
A23 as shown in Fig. 3 and define each summary statis-

tic Si by summing up the JSFS within Ai: Si ¼P
(a,b) 2 Ai

Ja,b. Other summations of the JSFS are also
possible and are compared by Tellier et al. (2011).

Training phase. We use the parameter space of the
Growth Model as an example to describe the training
phase. Let y be the numbers of polymorphisms
observed in the data and y¢ the number of polymor-
phisms in a simulation with parameter values
h01; s

0;m0 and q0. For fixed values s¢, m¢ and q¢, we esti-
mate h1 by h01 "y=y0. Thus, we separate the estimation of
h1 from the estimation of the other parameters. Jaatha
generates training data for each parameter combination
on a 40 · 40 · 40 grid in the parameter space
P ¼ ½smin; smax$ % ½mmin;mmax$ % ½qmin; qmax$. For a
higher resolution in the lower parameter ranges, the
grid is uniform on the log-scaled parameter space. The
log transformation is given by

d : P! ½1; 40$ % ½1; 40$ % ½1; 40$
ðs;m; qÞ7!ðds; dm; dqÞ ¼ ðlogzs

ðs=smaxÞ
þ 1; logzm

ðm=mmaxÞ þ 1; logzq
ðq=qmaxÞ þ 1Þ;

where zp ¼ 39
ffiffiffiffiffiffiffi
pmin

pmax

q
for each parameter p 2 {s,m,q}. The

inverse transformations are given by p ¼ pmax "z
dp)1
p .

The grid consists of all integer triples
(ds,dm,dq) 2 {1,2,…,40}3 * [1,40]3 in the log-scaled
parameter space. For each of the 64,000 parameter com-
binations (s,m,q) corresponding to grid points, Jaatha
calls the program ms (Hudson 2002) to simulate 10
independent data sets with 7 loci (1 kb long) and h1 ¼
5 per locus. The recombination rate is set to 20 with
1000 possible recombination points per locus. Increasing
the recombination rate would make the method more
precise but would also result in longer run-times of ms.

To fit log-linear generalized linear models (GLMs) of
type Poisson to the summary statistics, we divide the
log-scaled parameter space into bins. In each dimen-
sion, the range [1, 40] is divided into eight intervals [1,
5.5], (5.5, 10.5], (10.5, 15.5], …, (35.5, 40], where (a, b]
denotes the interval {x: a < x £ b}. We chose these grid
and bin sizes because they provide a reasonable com-
promise between accuracy and run-time but they can
be changed by the user. Each of the 83 ¼ 512 bins con-
tains 125 (¼53) grid points. For each bin and for each of
the 23 summary statistics Si, we fit a Poisson GLM to
the simulated data to estimate how Si depends on ds,
dm and dq within the range of this bin. For any bin (as,
bs] · (am,bm] · (aq,bq], we take simulated data from grid
points in the range (as ) 3, bs + 3] · (am ) 3, bm + 3] ·
(aq ) 3, bq + 3] into account, whereas in the fitting pro-
cedure, we give lower weights to the points outside the
bin. This leads to 512 (¼83) parameter combinations at
the edges of the parameter space and up to 1331 (¼113)
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Fig. 3 Partition of domain of the joint site frequency spectrum
(JSFS) for two populations where m and n denote the number
of sampled alleles per locus of each population. Entries of the
JSFS are summed up to result in 23 summary statistics.
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MOMI

• Kamm, Terhorst, and Song (2015) arXiv	

• Use coalescent theory to calculate expected joint 
frequency spectra for arbitrary number of populations 
and demography that piecewise constant or 
exponential. 	

• Should be faster and more numerically stable than 
diffusion or coalescent simulation methods.	

• Software forthcoming.



Sequentially Markovian Coalescent

• Introduced by McVean and Cardin (2005) Phil Trans R 
Soc B as approximation to standard coalescent with 
recombination.	

• Essential assumption is that when recombination 
occurs the genealogy to the right of the 
recombination event depends only on the genealogy 
to the left of the event. (Hence the name Sequentially 
Markovian Coalescent.)	

• Often an excellent approximation to the full 
coalescent, while being much faster to computer, and 
more amenable to analysis.



and finite chromosome length. Since a full coalescent treat-
ment of these effects is computationally prohibitive (Griffiths
and Marjoram 1996), we simplify the model to consider only
the demography of our samples up to the first migration
event, T generations ago. We label generations s 2 {0, 1,
2, . . ., T 2 1}, and the total fraction of the population m(s)
that is replaced by migrants in a generation s can be sub-
divided in contributions mp(s) from M migrant populations:
p 2 {1, . . ., M}. We treat the replacement fraction mp(t) as
deterministic, while the replaced individuals are selected at
random (see Figure 2). Generations follow a Wright–Fisher
model with random mating in a population with 2N genome
copies, each with K finite chromosomes of morgan length
{Li}i=1. . ., K. We consider two different variations of the
Wright–Fisher model with recombination.

The first variation (model 1) is meant to be the most
biologically motivated and will be used for all simulations.
Starting from a finite parental diploid population of size N,
we first replace m(s)N randomly selected individuals with
diploid migrants. Diploid offspring are generated by draw-
ing one gamete from each of two randomly selected diploid
parents. Gamete formation is a Markov path with transition
rate of one transition per morgan across the two parental
chromosomes (see Figure 2B).

Model 1 results in long-range, non-Markovian correla-
tions along the genome. This complicates the modeling
without necessarily having a large effect on most global
statistics. We therefore also consider a more tractable model
(model 2) in which gametes are drawn from the migrant
populations with probability m(s) and are otherwise gener-
ated by following a Markov path along all nonmigrant pa-
rental gametes (see Figure 2). The reason for singling out
new migrants is that it is possible to generate their gametes
as in the more realistic model 1, without sacrificing tracta-
bility. Model 2 may not capture all long-range correlations in
ancestry but it has the correct distribution of crossovers and

for small portions of the chromosomes is very similar to
model 1: the only difference is that each draw from the
parental gamete pool is independent in model 2, whereas
the fact that a diploid individual can have multiple off-
spring induces a small degree of correlation between
draws in model 1. Unless otherwise stated, we calculate
all population-wide statistics after the migration step, but
before gamete generation.

Model 2 is reminiscent of the Li and Stephens (2003)
copying model used in HAPMIX (Price et al. 2009), as it also
neglects back-and-forth recombinations due to multiple
crossovers during a single meiosis. The purpose of the mod-
els are different, in that the current Markov models attempt
to simulate gamete formation from parental chromosomes
and represent evolution in time, whereas the Li and Stephens
model attempts to simulate an unobserved haplotype on the
basis of haplotypes from the same generation. The Markov
ancestry transition model used in HAPMIX (and many other
local ancestry inference software) corresponds to a special
case of model 2 when each population contributes migrants
at a single generation.

Local ancestry patterns are sensitive to the three stochastic
processes of migration, recombination, and random genetic
drift. Where possible, we take all three effects into account.
By contrast, we do not model the effects of population
structure, of selection, and of population size fluctuations.
We derive our results under the assumption that local
ancestries can be determined exactly; the effects of mis-
identification are discussed throughout, together with
possible correction strategies.

Given a history of migrations, it is relatively straight-
forward to calculate the expected population averages for
ancestry proportions and tract lengths. If m(s) is the total
fraction of the population that is replaced by migrants, s
generations ago, with mi(s) from population i, the expected
ancestry from population i at a time t in the past is the sum

Figure 2 (A) Illustration of an admixture model starting at generation T 2 1, where the admixed population (purple) receiving mi(t) migrants from
diverged red (i ¼ 1) and blue (i ¼ 2) source populations at generation t. If these are statistically distinct enough, it is possible to infer the ancestry along
the admixed chromosomes. Independent of our statistical power to infer this detailed local ancestry, the mosaic pattern may leave distinct traces in
genome-wide statistics, such as global ancestry or linkage patterns. (B) Gamete formation in two versions of the Wright–Fisher model with recombi-
nation. In model 1, diploid individuals are generated by randomly selecting two parents and generating gametes by following a Markov paths along the
parental chromosomes. In model 2, gametes are generated by following a Markovian path across the parental allele pool. Both models have the same
distribution of crossover numbers and are equivalent for genomic regions small enough that multiple crossovers are unlikely. Model 1 is more
biologically realistic and is used in the simulations, whereas model 2 is more tractable and is used for inference and analytic derivations.

Genetic Models of Local Ancestry 609

Haplotype lengths

• The genomes of admixed individuals will be mosaics of 
the source populations.	

• As time passes since admixture, recombination breaks 
up admixture tracts.	

• TRACTS infers admixture times 
(potentially multiple pulses) and  
proportions from the spectrum 
of haplotype lengths.

Gravel et al.	
Genetics (2012)



IBS tracts

• Sequences that are Identical 
By State (IBS) with and 
between populations are 
informative about 
demographic history.	

• Calculate expected spectrum 
of IBS tract lengths using 
coalescent theory.	

• Can fit very complex models.

Harris and Nielsen	
(2013) PLoS Genet

sufficient data, this subsampling should not bias our results, though
it may reduce our power to describe the very recent past.

To illustrate the power of our method, we use it to infer a joint
history of Europeans and Africans from the high coverage 1000
Genomes trio parents. Previous analyses agree that Europeans
experienced an out-of-Africa bottleneck and recent population
growth, but other aspects of the divergence are contested [47]. In
one analysis, Li and Durbin separately estimate population
histories of Europeans, Asians, and Africans and observe that
the African and non-African histories begin to look different from
each other about 100,000–120,000 years ago; at the same time,
they argue that substantial migration between Africa and Eurasia
occurred as recently as 20,000 years ago and that the out-of-Africa
bottleneck occurred near the end of the migration period, about
20,000–40,000 years ago. In contrast, Gronau, et al. use a
likelihood analysis of many short loci to infer a Eurasian-African
split that is recent enough (50 kya) to coincide with the start of the
out of Africa bottleneck, detecting no evidence of recent gene flow
between Africans and non-Africans [14]. The older Schaffner, et
al. demographic model contains no recent European-African gene
flow either [48], but Gutenkunst, et al. and Gravel, et al. use SFS
data to infer divergence times and gene flow levels that are
intermediate between these two extremes [22,49]. We aim to
contribute to this discourse by using IBS tract lengths to study the
same class of complex demographic models employed by
Gutenkunst, et al. and Gronau, et al., models that have only been
previously used to study allele frequencies and short haplotypes
that are assumed not to recombine. Our method is the first to use
these models in conjunction with haplotype-sharing information
similar to what is used by the PSMC and other coalescent HMMs,
fitting complex, high-resolution demographic models to an equally
high-resolution summary of genetic data.

Results

An accurate analytic IBS tract length distribution
In the methods section, we derive a formula for the expected

length distribution of IBS tracts shared between two DNA
sequences from the same population, as well as the length
distribution of tracts shared between sequences from diverging
populations. Our formula approximates the distribution expected
under the SMC’ model of Marjoram and Wall [46], which in turn
approximates the coalescent with recombination. We evaluate the
accuracy of the approximation by simulating data under the full
coalescent with recombination and comparing the results to our

analytical predictions. In general, we find that the approximations
are very accurate as illustrated for two example histories in
Figures 2 and 3. To create each plot in Figure 2, we simulated
several gigabases of pairwise alignment between populations that
split apart 2,000 generations ago and experienced a 5% strength
pulse of recent admixture, plotting the IBS tract spectrum of the
alignment (for more details, see section 2 of Text S1). Figure 3 was
generated by simulating population bottlenecks of varying
duration and intensity. In both of these scenarios the analytical
approximations closely follow the distributions obtained from full
coalescent simulations.

If we wish to infer demography from IBS tract lengths, the
following must be true: 1) IBS tract length distributions must differ
significantly between data sets simulated under coalescent histories
we hope to distinguish, and 2) these differences must be
predictable within our theoretical framework. Figures 2 and 3
provide evidence for both of these claims. For populations that
diverged 2,000 generations ago, 5% admixture is detectible if it
occurred less than 1,000 generations ago, late enough for the
admixed material to significantly diverge from the recipient
population. Likewise, two population bottlenecks with the same
strength-to-duration ratio appear distinguishable if their popula-
tion sizes differ by at least a factor of two during the bottleneck. As
expected, longer IBS tracts are shared between populations that
exchanged DNA more recently, suggesting that IBS tracts are
highly informative about past admixture times and motivating the
development of a statistical demographic inference method.

Estimates from simulated data
Inferring simulated population histories. Figures 2 and 3

suggest that by numerically minimizing the distance between
observed and expected IBS tract spectra, we should be able to
infer demographic parameters. We accomplish this by maximizing
a Poisson composite likelihood function formed by multiplying the
likelihoods of individual IBS tracts. Maximization is done
numerically using the BFGS algorithm [50].

To assess the power and accuracy of the method, we simulated
100 replicate datasets for each of two histories with different
admixture times. From each dataset, we jointly inferred four
parameters: admixture time, split time, admixture fraction, and
effective population size. We obtained estimates that are extremely
accurate and low-variance (see Table 1); supplementary Figures S1
and S2 show the full distributions of estimated parameter values.

Comparison to LaLi. We compared the new method to the
method implemented in LaLi, which can evaluate demographic

Figure 1. An eight base-pair tract of identity by state (IBS).
doi:10.1371/journal.pgen.1003521.g001
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fit significantly worse than the maximum likelihood model, with a
composite log likelihood ratio of {11796. When we simulated
data under the restricted model and inferred a full set of 14
parameters from the simulated data, these included a ghost
admixture fraction of 0.01, the smallest fraction permitted by the
optimization bounds.

Given that models inferred from site frequency spectra do not fit
the IBS tracts in human data, we simulated site frequency data
under our inferred demographic model to see whether the reverse
was true. The resulting spectrum had more population-private
alleles than the NIEHS frequency spectrum previously analyzed
by Gutenkunst, et al (see Section 4.2 of Text S1 and Supplemen-
tary Figure S11). The discrepancy might result from biased

population size estimates or from differences in the effects of errors
on IBS tract and SFS data.

Discussion

IBS tracts shared between diverging populations contain a lot of
information about split times and subsequent gene flow; we can
distinguish not only between instantaneous isolation and isolation
with subsequent migration, but between recent admixture events
that occur at modestly different times. We can accurately estimate
the times of simulated admixture events that occurred hundreds of
generations ago, too old for migrant tracts to be identified as IBD
with tracts from a foreign population. In addition, we can

Figure 7. A history inferred from IBS sharing in Europeans and Yorubans. This is the simplest history we found to satisfactorily explain IBS
tract sharing in the 1000 Genomes trio data. It includes ancient ancestral population size changes, an out-of-African bottleneck in Europeans, ghost
admixture into Europe from an ancestral hominid, and a long period of gene flow between the diverging populations.
doi:10.1371/journal.pgen.1003521.g007
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Same model, same data,  
different summary, different results

• Fit IBS tract lengths, predict AFS	

• Fit AFS, predict IBS tract lengths

agreement seen is notable because our demographic inference
used no LD information in building and fitting the model. This
LD comparison thus serves as independent validation of both our
model and bootstrap simulations. We also asked whether the
likelihood L found in the real data fit is atypical of fits to simulated
data. Out of fits to 100 simulated data sets, 2 produced a smaller
likelihood (worse fit) than the real data fit (Figure 2E), yielding a p-
value of <0.02. One can craft examples in which a likelihood-
based goodness-of-fit test fails to exclude very poor models [50].
Thus we also applied Pearson’s x2 goodness-of-fit test, a more
robust and standard method for data that is in Poisson-distributed
bins, such as the AFS [36]. In our case, we must use our
parametric bootstraps to assess the significance of the sum-of-
squared-residuals test statistic X 2, because many entries in the
AFS are small and because they are not strictly independent.
Figure 2E shows the bootstrap-derived empirical distribution of
X 2. Two of the bootstraps yielded a larger X 2 (worse fit) than the
real data fit, giving a p-value of <0.02, identical to that from the
likelihood-based test. (The two simulations that yield a higher X 2

than the real fit are not the same two that yield a lower L,
suggesting that these tests are somewhat independent.) In some
cases specific frequency classes of SNPs, such as rare alleles, may
be of particular interest. In Supplementary Table 5 in Text S1, we
provide comparisons of the joint distribution of rare alleles seen in
the data with that from our simulations. These comparisons
indicate that our model also reproduces well this interesting region
of the frequency spectrum. Finally, in Figure 4 we compare the
model and data using larger bins of SNPs specific to particular
populations or segregating at high or low frequency. In all cases
the model agrees within the uncertainty of the bootstrapped data.
Taken together, these tests suggest that our model provides a

reasonable, though not complete, explanation of the data, lending
credence to our demographic estimates.

The inferred contemporary migration parameters (mAF{EU ,
mAF{AS and mEU{AS ) are small, raising the question as to
whether they are statistically distinguishable from zero. Figure 2F
shows that the improvement in fit to the real data upon adding
contemporary migration to the model is much larger than would
be expected if there were no such migration, implying that the
contemporary migration we infer is highly statistically significant.
Omitting ancient migration (mAF{B) reduced fit quality even
more, indicating that the data also demand substantial ancient
migration (data not shown).

Settling the New World
To study the settlement of the Americas, we used the previously

considered 22 CEU and 12 CHB individuals, plus an additional
22 individuals of Mexican descent sampled in Los Angeles (MXL).
Data were processed as in our Out of Africa analysis, yielding
13,290 segregating SNPs from effectively 4.22 Mb of sequence.
Figure 3A shows the resulting AFS, while Figure 3C shows the
marginal spectra.

A model in which the CEU and CHB diverge from an
equilibrium population did not reproduce the AFS well (Supple-
mentary Figure 13 in Text S1). Interestingly, a model allowing a
prior size change in the ancestral population better fit the AFS but
very poorly fit the observed LD decay (Supplementary Figure 13
in Text S1). Thus, reproducing the AFS does not guarantee
reproduction of LD, at least given a historically unrealistic model.
To develop a more realistic model, we endeavored to include the
effects of Eurasian divergence from and migration with the African
population. Computational limits precluded us from considering

Figure 2. Out of Africa analysis. (A) AFS for the YRI, CEU, and CHB populations. The color scale is as in (C). (B) Illustration of the model we fit, with
the 14 free parameters labeled. (C) Marginal spectra for each pair of populations. The top row is the data, and the second is the maximum-likelihood
model. The third row shows the Anscombe residuals [61] between model and data. Red or blue residuals indicate that the model predicts too many
or too few alleles in a given cell, respectively. (D) The observed decay of linkage disequilibrium (black lines) is qualitatively well-matched by our
simulated data sets (colored lines). (E) Goodness-of-fit tests based on the likelihood L and Pearson’s X 2 statistic both indicate that our model is a
reasonable, though incomplete description of the data. In both plots, the red line results from fitting the real data and the histogram from fits to
simulated data. Poorer fits lie to the right (lower L and higher X 2). (F) The improvement in likelihood from including contemporary migration in the
real data fit (red line) is much greater than expected from fits to simulated data generated without contemporary migration (histogram). This
indicates that the data contain a strong signal of contemporary migration.
doi:10.1371/journal.pgen.1000695.g002
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agreement seen is notable because our demographic inference
used no LD information in building and fitting the model. This
LD comparison thus serves as independent validation of both our
model and bootstrap simulations. We also asked whether the
likelihood L found in the real data fit is atypical of fits to simulated
data. Out of fits to 100 simulated data sets, 2 produced a smaller
likelihood (worse fit) than the real data fit (Figure 2E), yielding a p-
value of <0.02. One can craft examples in which a likelihood-
based goodness-of-fit test fails to exclude very poor models [50].
Thus we also applied Pearson’s x2 goodness-of-fit test, a more
robust and standard method for data that is in Poisson-distributed
bins, such as the AFS [36]. In our case, we must use our
parametric bootstraps to assess the significance of the sum-of-
squared-residuals test statistic X 2, because many entries in the
AFS are small and because they are not strictly independent.
Figure 2E shows the bootstrap-derived empirical distribution of
X 2. Two of the bootstraps yielded a larger X 2 (worse fit) than the
real data fit, giving a p-value of <0.02, identical to that from the
likelihood-based test. (The two simulations that yield a higher X 2

than the real fit are not the same two that yield a lower L,
suggesting that these tests are somewhat independent.) In some
cases specific frequency classes of SNPs, such as rare alleles, may
be of particular interest. In Supplementary Table 5 in Text S1, we
provide comparisons of the joint distribution of rare alleles seen in
the data with that from our simulations. These comparisons
indicate that our model also reproduces well this interesting region
of the frequency spectrum. Finally, in Figure 4 we compare the
model and data using larger bins of SNPs specific to particular
populations or segregating at high or low frequency. In all cases
the model agrees within the uncertainty of the bootstrapped data.
Taken together, these tests suggest that our model provides a

reasonable, though not complete, explanation of the data, lending
credence to our demographic estimates.

The inferred contemporary migration parameters (mAF{EU ,
mAF{AS and mEU{AS ) are small, raising the question as to
whether they are statistically distinguishable from zero. Figure 2F
shows that the improvement in fit to the real data upon adding
contemporary migration to the model is much larger than would
be expected if there were no such migration, implying that the
contemporary migration we infer is highly statistically significant.
Omitting ancient migration (mAF{B) reduced fit quality even
more, indicating that the data also demand substantial ancient
migration (data not shown).

Settling the New World
To study the settlement of the Americas, we used the previously

considered 22 CEU and 12 CHB individuals, plus an additional
22 individuals of Mexican descent sampled in Los Angeles (MXL).
Data were processed as in our Out of Africa analysis, yielding
13,290 segregating SNPs from effectively 4.22 Mb of sequence.
Figure 3A shows the resulting AFS, while Figure 3C shows the
marginal spectra.

A model in which the CEU and CHB diverge from an
equilibrium population did not reproduce the AFS well (Supple-
mentary Figure 13 in Text S1). Interestingly, a model allowing a
prior size change in the ancestral population better fit the AFS but
very poorly fit the observed LD decay (Supplementary Figure 13
in Text S1). Thus, reproducing the AFS does not guarantee
reproduction of LD, at least given a historically unrealistic model.
To develop a more realistic model, we endeavored to include the
effects of Eurasian divergence from and migration with the African
population. Computational limits precluded us from considering

Figure 2. Out of Africa analysis. (A) AFS for the YRI, CEU, and CHB populations. The color scale is as in (C). (B) Illustration of the model we fit, with
the 14 free parameters labeled. (C) Marginal spectra for each pair of populations. The top row is the data, and the second is the maximum-likelihood
model. The third row shows the Anscombe residuals [61] between model and data. Red or blue residuals indicate that the model predicts too many
or too few alleles in a given cell, respectively. (D) The observed decay of linkage disequilibrium (black lines) is qualitatively well-matched by our
simulated data sets (colored lines). (E) Goodness-of-fit tests based on the likelihood L and Pearson’s X 2 statistic both indicate that our model is a
reasonable, though incomplete description of the data. In both plots, the red line results from fitting the real data and the histogram from fits to
simulated data. Poorer fits lie to the right (lower L and higher X 2). (F) The improvement in likelihood from including contemporary migration in the
real data fit (red line) is much greater than expected from fits to simulated data generated without contemporary migration (histogram). This
indicates that the data contain a strong signal of contemporary migration.
doi:10.1371/journal.pgen.1000695.g002
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tracts. The results, plotted in Figure 6A, show no significant
difference between the average recombination rate within long
IBS tracts versus short ones. If recombination hotspots significantly
reduced the frequency of long IBS tracts compared to what we
would expect under the assumption of constant recombination
rate, then the longest observed IBS tracts should span regions of
lower-than-average recombination rate; conversely, if recombina-
tion hotspots significantly increased the frequency of short IBS
tracts, we would expect to see short tracts concentrated in regions
of higher-than-average recombination rate. We observed neither
of these patterns and therefore made no special effort to correct for
recombination rate variation. Li and Durbin made a similar
decision with regard to the PSMC, which can accurately infer past
population sizes from data with simulated recombination hotspots.

To judge whether non-uniformity of the mutation rate was
biasing the IBS tract spectrum, we computed the frequency of
human/chimp fixed differences within IBS tracts of length L. We
observed that short IBS tracts of v100 bp are concentrated in
regions with elevated rates of human-chimp substitution, suggest-
ing that mutation rate variation has a significant impact on this
part of the IBS tract spectrum. IBS tracts shorter than 5 base pairs
long are dispersed fairly evenly throughout the genome, but
human-chimp fixed differences cover more than 10% of the sites
they span (see Figure 6B) as opposed to 1% of the genome overall.

In Hodgkinson, et al.’s study of cryptic human mutation rate
variation, they estimated that the rate of coincidence between
human and chimp polymorphisms could be explained by 0.1% of
sites having a mutation rate that was 33 times the mutation rate at
other sites [52]. We modified our method to reflect this correction
when analyzing real human data, assuming that a uniformly
distributed 0.1% of sites have a scaled mutation rate of h’~0:033,
elevated above a baseline value of h~0:001. We also excluded IBS
tracts shorter than 100 base pairs from all computed likelihood
functions (see Methods for more detail).

Human demography and the migration out of Africa
Previously published models of human demography. After

generating spectra of empirical IBS tract sharing in the 1000
Genomes trios, we simulated IBS tract data under several

conflicting models of human evolution that have been proposed in
recent years. Two of these models were obtained from SFS data
using the method LaLi of Gutenkunst, et al.; these models are
identically parameterized but differ in specific parameter estimates,
which were inferred from different datasets. One model was fit to
the SFS of the National Institute of Environmental and Health
Sciences (NIEHS) Environmental Genome Project data, a collec-
tion of 219 noncoding genic regions [24]; the other was fit by

Table 1. Inferring the parameters of a simple admixture
scenario.

ta (gens) ts (gens) f N

True value: 400 2,000 0.05 10,000

Mean: 431 1,990 0.0505 9,806

Std dev: 51 41 0.00652 27

Bias: 31 210 0.0005 2194

Mean squared error: 3280 1781 4:27|10{5 3:84|104

True value: 200 2,000 0.05 10,000

Mean: 220 1,983 0.0499 10,003

Std dev: 28 39 0.00328 287

Bias: 20 217 20.0001 23

Mean squared error: 1184 1810 1:08|10{5 8:23|104

Using MS, we simulated 200 replicates of the admixture scenario depicted in
Figure 2B. In 100 replicates, the gene flow occurred 400 generations ago, while
in the other 100 replicates it occurred 200 generations ago. Our estimates of the
four parameters ta,ts,f ,N are consistently close to the true values, showing that
we are able distinguish the two histories by numerically optimizing the
likelihood function.
doi:10.1371/journal.pgen.1003521.t001

Figure 4. Frequencies of IBS tracts shared between the 1000
Genomes trio parental haplotypes. Each plot records the number
of L-base IBS tracts observed per base pair of sequence alignment. The
red spectrum records tract frequencies compiled from the entire
alignment, while the blue spectra result from 100 repetitions of block
bootstrap resampling. A slight upward concavity around 104 base pairs
is the signature of the out of Africa bottleneck in Europeans.
doi:10.1371/journal.pgen.1003521.g004
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PSMC

• Estimate effective population size over time from a 
single unphased genome.	

• No parametric model (e.g. exponential growth) 
assumed.

We applied the PSMC model to real data from recently published
genome sequences (see Table 1, which defines the acronyms for sam-
ples used elsewhere in the text and figures). Figure 3a shows that all
populations are very similar in their estimated Ne history between 150
and 1,500 kyr ago. The Yoruba (YRI) genome differentiates from non-
African populations around 100–120 kyr ago (at 110 kyr ago,
Ne

YRI 5 15,313 6 559 and Ne
CHN 5 12,829 6 485). This evidence of

early population differentiation is potentially consistent with the
archaeological evidence of anatomically modern humans found in
the Near East around 100 kyr ago12. European and East Asian popula-
tions are nearly identical in estimated Ne before 11 kyr ago. From a
peak of 13,500 at 150 kyr ago, the Ne dropped by a factor of ten to 1,200
between 40 and 20 kyr ago, before a sharp increase, the precise mag-
nitude of which we do not have the power to measure. We also
observed a less marked bottleneck in YRI from a peak of 16,100 around
100–150 kyr ago to 5,700 at 50 kyr ago, recovering earlier16 than the
out-of-Africa populations, with an increase back to 8,700 by 20 kyr

ago, coinciding with the Last Glacial Maximum. All populations showed
increased Ne between 60 and 200 kyr ago, about the time of origin of
anatomically modern humans17. An alternative to an increase in actual
population size during this time would be that there was population
structure involving separation and admixture11,16 (Supplementary Fig 5).

We also saw an increase in estimated Ne before 1 million years (Myr)
ago in all populations, with a sharp increase before 3 Myr ago. Although
it is tempting to read into this the transition from the previously esti-
mated larger Ne at the time of the split from the chimpanzee18, our
method may also be subject to artefacts in this region, due to regions
of balancing selection or to clustered false heterozygotes related to
segmental duplications (Supplementary Fig. 3).

Analysis of a European female X chromosome (EUR3.X) yielded a
history similar to that from autosomes scaled by 0.75, as expected
for the X chromosome (Fig. 3b). We did not observe a more severe

Table 1 | Properties of the input sequences
Label Description Coverage Number of

called bases (bp)
Number of

heterozygotes (bp)
Heterozygosity

(31,000)

YRI1.A (ref. 10) NA18507 autosomes 340 2.14 3 109 2.17 3 106 1.013
YRI2.A (ref. 9) NA19239 autosomes 329 2.11 3 109 2.21 3 106 1.051
EUR1.A (ref. 8) Venter autosomes 39 2.13 3 109 1.23 3 106 0.578
EUR2.A (ref. 9) NA12891 autosomes 338 2.11 3 109 1.67 3 106 0.791
KOR.A (ref. 7) SJK autosomes 320 2.13 3 109 1.47 3 106 0.690
CHN.A (ref. 6) YH autosomes 330 2.19 3 109 1.52 3 106 0.694
YRI3.X (ref. 9) NA19240 X chromosome 338 1.06 3 108 7.16 3 104 0.673
EUR3.X (ref. 9) NA12878 X chromosome 335 1.10 3 108 4.80 3 104 0.436
KOR–CHN.X SJK–YH combined X chromosome - 1.02 3 108 3.97 3 104 0.390
YRI1–EUR1.X NA18507–Venter combined X chromosome - 0.83 3 108 5.56 3 104 0.670
YRI1–KOR.X NA18507–KOR combined X chromosome - 1.00 3 108 6.69 3 104 0.669
YRI1–CHN.X NA18507–YH combined X chromosome - 1.06 3 108 6.95 3 104 0.657

Coverage equals the average number of reads covering HapMap3 loci. A base is said to be called if it passes all filters described (see Methods). The relatively lower coverage for EUR1.A leads to higher sampling bias
at heterozygotes, which leads to underestimated heterozygosity, but this can be corrected by adjusting the neutral mutation rate in scaling (Supplementary Information, section 1.2).
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Figure 2 | PSMC estimate on simulated data. a, PSMC estimate on data
simulated by msHOT. The blue curve is the population-size history used in
simulation; the red curve is the PSMC estimate on the originally simulated
sequence; the 100 thin green curves are the PSMC estimates on 100 sequences
randomly resampled from the original sequence. b, PSMC estimate on data with
a variable mutation rate or with hotspots. g, generation time; m, mutation rate.
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Figure 3 | PSMC estimate on real data. a, Population sizes inferred from
autosomes of six individuals. 5%, 10% and 29% of heterozygotes are assumed to
be missing in CHN.A, KOR.A and EUR1.A, respectively. b, Population sizes
inferred from male-combined X chromosomes and the simulated African–
Asian combined sequences from the best-fit model in ref. 21. Sizes inferred
from X-chromosome data are scaled by 4/3. The neutral mutation rate on X,
which is used in time-scaling, is estimated with the ratio of male-to-female
mutation rate, a, equal to 2 (see Methods).
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MSMC

• SMC model for multiple phased sequences	

• Inferences of population sizes for more recent times 
than PSMC.	

• Inferences of cross-coalescent rates between 
populations, which are indicative of population 
divergence and migration. Schiffels and Durbin	
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and CEU ancestors after 50,000 years ago are probably confounded 
by more recent admixture from non-African populations back into 
East African populations, including the Maasai30,31.

Divergences outside Africa
As expected, the oldest split among out-of-Africa populations was 
between European and East Asian (CHB and MXL) populations, most 
of which occurred between 20,000 and 40,000 years ago (Fig. 4b). 
Intriguingly, there might be a small component (10% or less) of this 
separation extending much further back toward 100,000 years ago, 
which is not compatible with a single out-of-Africa event around 
50,000 years ago. Next oldest was a separation between Asian (CHB 
and GIH) and American (MXL) populations around 20,000 years 
ago. This was the most rapid separation we saw, compatible with a 
clean split. Passing over the GIH separations for now, we found in  
eight-haplotype analyses separations between the JPT and CHB 
ancestors around 8,000–9,000 years ago, which is compatible with the 
divergence in population size history described above, and between 
the CEU and TSI ancestors around 5,000–6,000 years ago, both also 
relatively sharp. Four-haplotype analyses of the same separations are 
shown in Supplementary Figure 9.

The pattern of divergence of the North Indian ancestors (GIH) 
from East Asian and European ancestors was more complex. We 
observed continued genetic exchange between the GIH ancestors 
and both of these groups until about 15,000 years ago, suggesting 
that, even though East Asians and Europeans separated earlier, there 
was contact between both of these populations and the GIH ancestors 
after this separation or, equivalently, that there was ancient admix-
ture in the ancestry of North Indians. This deviation from a tree-
like separation pattern was independently confirmed by D statistics  
from an ABBA-BABA test32 (Online Methods and Supplementary 
Table 2), which also indicated that the GIH population is genetically 
closer to the CEU population than to the CHB and MXL populations. 
This finding is consistent with the slower and later decline in relative 
cross coalescence rate between CEU and GIH populations compared 

to between CEU and CHB populations (Fig. 4b). These results suggest 
that the GIH ancestors remained in close contact with the CEU ances-
tors until about 10,000 years ago but received some historic admixture 
component from East Asian populations, part of which is old enough 
to have occurred before the split with the MXL ancestors.

DISCUSSION
We have presented here both a new method, MSMC, and new insight 
into the demographic history of human populations as they separated 
across the globe. We have shown that MSMC can give accurate infor-
mation about the time dependence of demographic processes within 
and between populations from a small number of individual genome 
sequences. As with PSMC, it does this without requiring a simplified 
model with specific bottlenecks, hard population splits and fixed 
population sizes as are required by previous methods based on allele 
frequencies33–35 or more general summary statistics36–39. However, 
MSMC extends PSMC by an order of magnitude to more recent 
times and also allows us to explicitly model the history of genetic 
separations between populations. Because MSMC measures the time 
to the first coalescence between all pairs of haplotypes, the analyzed 
time range decreases quadratically with the number of haplotypes.  
This should be compared with the more naive approach of com-
bining data from PSMC run on different individuals, which would 
increase information at most linearly, as individuals’ histories are 
not independent.

Although MSMC substantially advances the methodology from 
PSMC to multiple samples and much more recent times, we have 
also seen that its practical application appears to be limited to about 8 
haploid sequences, both because of the approximations involved and 
because of computational complexity (see Supplementary Fig. 2e for 
estimates based on 16 haplotypes). It is intriguing, however, to imag-
ine that larger numbers of samples, in principle, contain information 
about even more recent population history, potentially up until a few 
generations ago. The basic idea of looking at first coalescence events, 
as presented here, may lead to new developments that complement 
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Figure 4 Genetic separation between 
population pairs. (a) Relative cross 
coalescence rates in and out of Africa.  
African–non-African pairs are shown in red, 
and pairs within Africa are shown in purple. 
(b) Relative cross coalescence rates between 
populations outside Africa. European–East 
Asian pairs are shown in blue, Asian-MXL  
pairs are shown in green, and other  
non-African pairs are shown in other  
colors, as indicated. The pairs that include 
MXL are masked to include only the putative 
Native American components. In a and b,  
the most recent population separations 
are inferred from eight haplotypes, that is, 
four haplotypes from each population, and 
corresponding pairs are indicated by a  
cross. (c) Comparison of the African–non-
African split with simulations of clean splits. 
We simulated three scenarios, at split times 
50,000, 100,000 and 150,000 years ago.  
The comparison demonstrates that the history 
of relative cross coalescence rate between 
African and non-African ancestors  
is incompatible with a clean split model  
and suggests it progressively decreased from 
beyond 150,000 years ago to approximately 50,000 years ago. (d) Schematic of population separations. Timings of splits, population separations, 
gene flow and bottleneck are shown along a logarithmic axis of time.
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measure for the genetic separation of populations constituting the 
ratio between the cross-population and within-population coales-
cence rates, which we term the ‘relative cross coalescence rate’. This 
parameterization effectively models population separations and sub-
structure in a simpler way than a standard forward-in-time island 
migration model, which would require a larger state space for struc-
tured genealogies, as shown in ref. 10 (see also the Supplementary 
Note). Although not standard, we suggest that our parameter is a more 
direct measurement of what can be derived about genetic exchange 
between historical populations from modern samples. The relative 
cross coalescence rate should be close to 1 when the two populations 
are well mixed and 0 after they have fully separated. For four and eight 
haplotypes, our MSMC estimates correctly showed this (Fig. 2b),  
although the instantaneous split time in the simulation was spread 
out over an interval around the actual split time. As expected, eight 
haplotypes yielded better estimates for the scenario of a more recent  
split at 10,000 years ago, whereas four haplotypes yielded better  
estimates for the older split at 100,000 years ago.

We also tested a population split with subsequent migration 
(Supplementary Fig. 2c), for which we inferred a higher relative cross 
coalescence rate across the two populations after the split, as would 
be expected. We further tested the robustness of our method under 
changes in population size before and after the split (Supplementary 
Fig. 2d), the consequences of the approximation to the singleton branch 
length (Supplementary Fig. 3 and Supplementary Note) and hetero-
geneities in recombination rate (Online Methods and Supplementary 
Fig. 4), finding no substantial effect on our estimates.

MSMC requires, in principle, fully phased haplotypes as input, 
although we could partially allow for unphased data at a subset of 
sites (see the Online Methods for details). To test the possibilities of 
extending our unphased approximation to entirely unphased samples, 
we simulated data sets for two individuals with one or both unphased. 
Population size estimates based on unphased data were still relatively 
accurate (Supplementary Fig. 5), although biases occurred at the two 
ends of the analyzed time range. Estimation of relative cross coales-
cence rate on the basis of partially or fully unphased data was less 
accurate and more biased in the distant past. Because of this, when 
applying MSMC to real data, we left unphased sites in the analyses of 
population size estimates but remove them from the analyses of the 
population split (Supplementary Fig. 6).

Inference of population size from whole-genome sequences
We applied our model to the genomes from one, two and four indi-
viduals sampled from each of nine extended HapMap populations20: 

YRI (Nigerian), MKK (Kenyan), LWK (Kenyan), CEU (Northern 
and Western European), TSI (Italian), GIH (North Indian), CHB 
(Chinese), JPT (Japanese) and MXL (Mexican admixed with 
European) (details in Supplementary Table 1). We statistically phased 
all genomes using a reference panel (Online Methods) and tested the 
impact of potential switch errors by comparing these sequences with 
family trio–phased sequences that were available for CEU and YRI 
populations (Online Methods and Supplementary Fig. 6).

The results from two individuals (four haplotypes) are shown in 
Figure 3a. In all cases, the inferred population history from four 
haplotypes matched the estimates from two haplotypes where their 
inference range overlapped (60,000–200,000 years ago; see thin lines 
for CEU and YRI in Fig. 3 and Supplementary Fig. 7a). We found 
that all non-African populations that we analyzed showed a remark-
ably similar history of population decline from 200,000 years ago 
until about 50,000 years ago, consistent with a single non-African 
ancestral population that underwent a bottleneck at the time of  
the exodus from Africa around 40,000–60,000 years ago21–23. The 
separation of estimates for non-African and African ancestral  
population sizes began much earlier at 150,000–200,000 years ago, 
clearly preceding this bottleneck, as already observed using PSMC7. 
We quantify this separation further by directly estimating the relative 
cross coalescence rate over time. In contrast, we saw only a mild bot-
tleneck in the African population histories, with an extended period 
of relatively constant population size more recent than 100,000 years 
ago. Between 30,000 and 10,000 years ago, we saw similar expansions 
in population size for the CEU, TSI, GIH and CHB populations. For 
the Mexican ancestors, we saw an extended period of low popula-
tion size after the out-of-Africa bottleneck, with the lowest value 
around 15,000 years ago, which was particularly pronounced when 
we filtered out genomic regions of recent European ancestry due to 
admixture (dashed line in Fig. 3; Online Methods). This extended 
bottleneck is consistent with estimates of the time that the Native 
American ancestors crossed the Bering Strait and moved into the 
Americas21,24–26. We repeated all analyses based on four haplotypes 
on a replicate data set, using sequences for different individuals that 
were available for all populations except MXL. All results were well 
reproduced, and differences were only present in the most recent time 
intervals (Supplementary Fig. 8).

Analyzing eight haplotypes from each population except for  
the MXL and MKK populations (Online Methods), we could 
see recent changes in population size with higher resolution than 
with four haplotypes (Fig. 3b). Results from eight haplotypes were  
compatible to those from four haplotypes beyond 10,000 years ago, 
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a bFigure 2 Testing MSMC on simulated data.  
(a) To test the resolution of MSMC applied to 
two, four and eight haplotypes, we simulated 
a series of exponential population growths and 
declines, each changing the population size by 
a factor of ten. MSMC recovers the resulting 
zigzag pattern (on a double-logarithmic plot)  
in different times, depending on the number  
of haplotypes. With two haplotypes, MSMC 
infers the population history from 40,000 to  
3 million years ago, whereas, with four and  
eight haplotypes, it infers the population  
history from 8,000 to 30,000 years ago  
and from 2,000 to 50,000 years ago, 
respectively. (b) Model estimates from two 
simulated population splits 10,000 and 100,000 years ago. The dotted lines plot the expected relative cross coalescence rate between the two 
populations before and after the splits. Maximum-likelihood estimates are shown in red (four haplotypes) and purple (eight haplotypes). As expected, 
four haplotypes yield good estimates for the older split, whereas eight haplotypes give better estimates for the more recent split.



Demographic Inference Methods

• Many options…	

• For inference from non-recombining regions, IMa2 is 
most powerful.	

• For inference from many short sequences (RAD-seq, 
transcriptomes), frequency spectrum methods are 
most powerful.	

• If you can reliably phase and align your data, haplotype 
methods are very powerful.



Demography and selection 
in orang-utans



Orang-utans

We sequenced the genome of a female Sumatran orang-utan using a
whole-genome shotgun strategy. The assembly provides 5.5-fold cov-
erage on average across 3.08 gigabases (Gb) of ordered and oriented
sequence (Table 1) (Supplementary Information section 1). Accuracy
was assessed by severalmetrics, including comparison to 17megabases
(Mb) of finished bacterial artificial chromosome (BAC) sequences and
a novel method of detecting spurious insertions and deletions
(Supplementary Information section 2). Further validation resulted
from orang-utan–human divergence estimates based on alignment
of whole-genome shotgun reads to the human reference (Hs.35;
Fig. 1, Supplementary Information section 3). We also sequenced
the genomes of 10 additional unrelated wild-caught orang-utans, five
Sumatran and five Bornean, using a short read sequencing platform
(297Gb of data in total; Supplementary Information section 4). The
orang-utan gene set was constructed using a combination of human
gene models and orang-utan complementary DNA data generated for
this project (available at www.ensembl.org/Pongo_pygmaeus/Info/
StatsTable; see also Supplementary Information section 5).
Among hominids, the orang-utan karyotype is the most ancestral6,

and sequencing the orang-utan genome allowed a comprehensive
assessment of conservation among the wide range of rearrangement
types and sequence classes involved in structural variation. We char-
acterized orang-utan synteny breaks in detail cytogenetically in
concert with an in silico approach that precisely tracked rearrange-
ments between primate (human, chimpanzee, orang-utan and rhesus
macaque) and other mammalian assemblies (mouse, rat and dog)
(Supplementary Information section 6). Alignment-level analyses at
100 kilobase (kb) and 5 kb resolution found that the orang-utan
genome underwent fewer rearrangements than the chimpanzee or
human genomes, with a bias for large-scale events (.100 kb) on the
chimpanzee branch (Table 2). Orang-utan large-scale rearrange-
ments were further enriched for segmental duplications (52%) than

for small-scale events (27%), suggesting that mechanisms other than
non-allelic homologous recombination may have made a greater con-
tribution to small rearrangements. Genome-wide, we estimated less
segmental duplication content (3.8% total) in the orang-utan genome
compared to the chimpanzee and human genomes (5%) using equi-
valent methods (Supplementary Information section 11). We also
assessed the rate of turnover within gene families as an additional
measure of genome restructuring (Supplementary Information section
12). Our analysis indicated that the human and chimpanzee lineages,
as well as their shared ancestral lineage after the orang-utan split, had
the highest rates of gene turnover among great apes (0.0058 events per
gene per Myr)—more than twice the rate of the orang-utan and
macaque lineages (0.0027)—even as the nucleotide substitution rate
decreased7. Collectively, these data strongly suggest that structural
evolution proceeded much more slowly along the orang-utan branch,
in sharp contrast to the acceleration of structural variation noted for
the chimpanzee and human genomes8,9.
One structural variant that we characterized in detail was a prev-

iously described polymorphic ‘pericentric inversion’ of orang-utan
chromosome 12 (ref. 10). Surprisingly, both forms of this chromosome
showed no difference in marker order by fluorescence in situ hybrid-
ization (FISH) despite two distinct centromere positions—the hall-
mark of a neocentromere (Fig. 2; Supplementary Information
section 8). Neocentromere function was confirmed by chromatin
immunoprecipitation with antibodies to centromeric proteins
CENP-A and CENP-C and subsequent oligo array hybridization
(ChIP-on-chip), which narrowed the neocentromere to a ,225 kb
gene-free window devoid of a satellite-related sequences. Our
observations bore similarity to a recently described centromere repo-
sitioning event in the horse genome11; however, this is to our know-
ledge the first observation of such a variant among primates, with the
additional complexity of polymorphism in two closely related species.
Potentially related, orang-utan chromosome 12 did not show any
appreciable centromeric alphoid FISH signal in comparison to other
autosomes. The neocentromere most probably arose before the
Bornean/Sumatran split as it is found in both species, and represents
a unique opportunity to study the initial stages of centromere formation

Table 1 | Sumatran orang-utan assembly statistics
Total contig bases 3.09Gb

Total contig bases .Phred Q20 3.05Gb (98.5%)
Ordered/oriented contigs and scaffolds 3.08Gb
Number of contigs .1kb 410,172
N50 contig length 15.5 kb
N50 contig number 55,989
Number of scaffolds .2 kb 77,683
N50 scaffold length 739 kb
N50 scaffold number 1,031
Average read depth 5.533

Q20 refers to a score of 20on thePhred scale of basequality scores; herewepresent the total number of
bases in the assemblywithaPhred score greater than20 (3.05Gb,which is 98.5%of assembledbases).
N50 refers to a length-weighted median such that 50% of the genome is contained in contigs or
scaffolds of the indicated size or greater.

Bonobo
Pan paniscus

Chimpanzee
Pan troglodytes

Human
Homo sapiens

Gorilla
Gorilla gorilla

Bornean
orang-utan

Pongo pygmaeus

Sumatran
orang-utan

Pongo abelii

Gibbon
Nomascus
leucogenys

Rhesus
macaque
Macaca
mulatta

0.990
4.5–6 Myr ago

0.974
12–16 Myr ago

0.996 (ref. 29)
~1 Myr ago

0.984 (ref. 30)
6–8 Myr ago

0.971
18–20 Myr ago

0.949
25–33 Myr ago

0.997
~1 Myr ago

The Hominidae (great apes)

Hylobatidae
Small apes

Cercopithecidae
Old World monkeys

Figure 1 | Divergence among great apes, a small
ape, and an Old World monkey with respect to
humans. We estimated nucleotide divergence in
unique gap-free sequence, indicated at each node,
from the alignment of rhesus macaque (yellow),
gibbon (purple), orang-utan (orange), gorilla
(aqua), chimpanzee (green) and human (blue)
whole genome shotgun reads to the human
reference (Hs.35; Supplementary Information
section 3). Note that the Bornean (P. pygmaeus)
and Sumatran (P. abelii) orang-utan species
showed nucleotide identity comparable to that of
bonobo (Pan paniscus) and chimpanzee (Pan
troglodytes). Estimates of divergence time based on
sequence identity are indicated at each node,
,1Myr implies approximately 1Myr or less.
Values taken from refs 29 and 30 where indicated.

Table 2 | Number of genome rearrangements by species
Species Rearrangements.100kb Rearrangements.5kb

Orang-utan 38 861
Chimpanzee 85 (1124%) 1,095 (127%)
Human 54 (142%) 1,238 (44%)

The number in parentheses indicates the percentage change with respect to the orang-utan genome.
Note 40 events.100kb and 532 events.5kb were assigned to the human-chimpanzee ancestor by
ancestral reconstruction (Supplementary Information section 6).
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Population genomic sequencing 
5 Sumatran and 5 Bornean individuals on Illumina GAII  

one Bornean individual to 20-fold, rest to ~8-fold 
~0.3% divergence between Bornean and Sumatran 

Custom Bayesian SNP caller 
overall 99% concordance with Sanger validation 

~8% false positive rate for singletons

Sequencing

Reference genome sequencing 
5.6-fold Sanger coverage of Sumatran female	

~2.5% divergence from human

Locke et al.	
Nature (2011)



Bornean

Sumatran

Demographic inference

11.8 million SNPs	
in folded spectrum
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in wild

Max likelihood 
model

Tsplit more recent than earlier 
estimates, but consistent with 

coalescent HMM inference 
Mailund et al. PLoS Genet (2011)
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Selection against non-synonymous mutations

6,434 synonymous SNPs

4,497 nonsynonymous SNPs

Fit distribution of selection coeff	
for newly arising nonsynon. mutations 

(No clear difference between  
Bornean and Sumatran orangs)
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Ma et al.	
PLoS ONE (2013)



History and selection in African pygmies

Collaborators 
Michael Hammer 

Sarah Tishkoff 
Krishna Veeramah

Ping-Hsun Hsieh



Data and demographic history
Whole Genome Data	

Biaka pygmy: 4 individuals from Hammer lab	
Baka pygmy: 3 individuals from Tishkoff lab  

Yoruba farmer: 9 individuals
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Biaka'
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all'humans'
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all'African'
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Popula9on'
expands'roughly'
200,000'years'ago'

Popula9ons'
diverge'roughly'

100,000'years'ago'

Contact'between'
popula9ons'

resumes'roughly'
50,000'years'ago'

Gene9c'exchange'

Ancestors'of'
all'African'
farmers'

Inferred using ∂a∂i  
Gutenkunst et al.  
(2009) PLoS Genet

Hsieh et al.  
(In press)  

Genome Research



Genomic null model
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Demographic history

Recombination heterogeneity

SNP density heterogeneity

Gene structure

Compare real data with 
neutral simulations to 

test for selection

8. Randomly choose a recombination site on the interval [0, b]
within Ti.

9. A new lineage is extended backward in time from the recom-
bination point by forking off the recombination node and
finding a new edge in G to coalesce to. This new line, which
is labeled with the value i, can coalesce with any existing
lines of ancestry by merging with the existing line at an
earlier point in time (i.e., higher in the graph than the re-
combination point). If there are l remaining lines of ancestry,
then the new lineage coalesces at rate l with a randomly
chosen line. Thus, the waiting time t before coalescence is
exponentially distributed t ∼ exp(l). Note that l changes over
time according to prespecified coalescent and recombination
events since the number of existing edges changes as one
moves up the graph. Traverse all edges that descend from the
recombination point, relabeling each of these edges with the
value i.

10. Define the new local tree Ti within G by labeling appropriate
edges in G as follows: Mark edges with the current local tree
ID i by traversing the edges of G upward from the present
time for each sample until a common ancestor is found given
the two constraints:
(a) The putative common ancestor cannot be lower than any

point on any edge in G labeled with the value i.
(b) When traversing up edges and a recombination node is

encountered (where two edges emerge above it), choose
the edge with the larger tree ID value.

11. Prune any edge with tree ID less than or equal to i – k, where
k is the tree-retention parameter described earlier.

12. Increment the tree ID variable i by 1.
13. Repeat steps 2–12 until the right endpoint (i.e. ,

xprev + xr > 1.0) of the sequenced region is reached. Replace b
in step 3 with br, the total branch length of the ARG consist-
ing of the last k local trees.

14. The algorithm is now complete. The output from step 5
across the entire region constitutes the sequence data, where
0 and 1 represent the ancestral and derived alleles, respec-
tively.

By labeling edges within a graph, we can store a set of local trees
more efficiently than if we were to explicitly store the local trees
separately as required by Hudson’s algo-
rithm (Hudson 2002). However, this
large improvement in memory effi-
ciency is gained at the expense of some
efficiency in speed. By storing informa-
tion in such a data structure, the num-
ber of physical edges that must be tra-
versed to determine a local tree is often
greater than the theoretical value of
n(n ! 1)/2, since edges can be frag-
mented by nodes marking migration
events (under advanced demographic
scenarios) or recombination nodes re-
tained from previous local trees. Due to
this fragmentation, the algorithm be-
comes less efficient, particularly at the
step where edge labels need to be up-
dated to determine the next local tree.

The behavior of our algorithm is il-
lustrated in Figure 2 with a concrete ex-
ample in which three sequences are
simulated with the “tree-retention” pa-
rameter k fixed at 2. The set of thick
dashed lines at the bottom of the figure

is an ideogram of the sequences to be simulated, and the graphs
above the dashed lines indicate the topology of the current state
of the graph at each particular step in our algorithm. We consider
the vertical line immediately above each sequence to be a lin-
eage. For brevity, we present the graph topologies for only the
first two recombination events, along with a pruning event.
Here, each graph vertex (node) with at least two edges represents
either a recombination or coalescent event. Each vertical edge is
labeled according to the identity of the most recent local tree it
was a part of. Since horizontal edges carry no information regard-
ing time between events, they are not labeled in the figure.

1. The first topology shows the graph initialized as a coalescent
tree T0 at the start of the algorithm.

2. The first recombination event occurs at the point along the
sequence indicated by the second topology. The new coalesc-
ing line is labeled with the identity of the new local tree ID
(i.e., 1) as well as any lines that are descendants of the recom-
bination point.

3. A new local tree T1 shown in bold lines is subsequently de-
fined in the third topology by marking the edges to the value
1 according to the marking algorithm described above.

4. The fourth topology shows the second recombination event
followed by a coalescent event above the MRCA. The same
rules described in step 2 apply here.

5. The fifth topology repeats the marking algorithm described
earlier, with edges labeled 2.

6. A pruning event is invoked since k = 2 and the current tree ID
i is equal to 2. Thus, any edges with tree IDs less than or equal
to 0 will be pruned from the graph.

Steps 2–6 may be repeated hundreds of thousands of times when
simulating long chromosomes for large sample sizes.

Variable recombination rates
A set of mappings between the unit interval [0,1] and recombi-
nation rate ratio (cM/Mb) mappings can be provided to MaCS
through a flat file. For example, if a 1-MB region is to be simu-
lated, and the first 100 kB is expected to have twice the base-
line recombination rate across the entire sequence, the first

Figure 2. A demonstration of the algorithm behind MaCS for a sample of three sequences and the
tree-retention parameter set to k = 2. The algorithm proceeds from the left end of the region to be
simulated toward the right end. Vertical edges are labeled to their immediate right with the ID of the
most recent tree that it belongs to.

Chen et al.

140 Genome Research
www.genome.org
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Simulate in MaCS	
Chen, Marjoram & Wall	
(2009) Genome Research

Hsieh et al.  
(In press)  

Genome Research



Scanning for adaptive loci

False Positives	
without Simulation

False Negatives	
without Simulation

Found by 
both approaches

Hsieh et al.  
(In press)  

Genome Research
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Chromosome

Adaptive loci

• Bone synthesis: FLNB, AXDND1,EPHBI, TSPAN5, ZBTB38, GAREM	

• Muscle development: OBSCN, COX10, LARGE	

• Immunity: 3 HLA genes

Hsieh et al.  
(In press)  

Genome Research



Ryan Gutenkunst	
Molecular and Cellular Biology	

University of Arizona	

Demographic Inference

Table 1 | Software for demographic inferences

Name Data type Inference Notes Refs

STRUCTURE Unlinked multi-allelic 
genotypes

Population structure, 
admixture

User-friendly GUI; can be computationally demanding 32

FRAPPE Unlinked bi-allelic SNVs Population structure, 
admixture

Alexander GV|CN�41 argue that convergence is not guaranteed 40

ADMIXTURE Unlinked bi-allelic SNVs Population structure, 
admixture

Estimates the number of populations via cross-validation error 41

fastSTRUCTURE Unlinked bi-allelic SNVs Population structure, 
admixture

Obtains variational Bayesian estimates of posterior probability 
distribution

42

Structurama Unlinked multi-allelic 
genotypes

Population structure, 
admixture

Uses a Dirichlet process to estimate the number of populations 43

HAPMIX Phased haplotypes; 
reference panel

Chromosome painting 4GSWKTGU�RQRWNCVKQPU�VQ�DG�URGEKHKGF�C|RTKQTK 48

fineSTRUCTURE Phased haplotypes Population 
structure, admixture, 
chromosome painting

Can be used to identify the number and identity of populations 49

GLOBETROTTER Phased haplotypes Population 
structure, admixture, 
chromosome painting

Extends the fineSTRUCTURE approach to estimate unsampled 
ancestral populations and admixture times

7

LAMP Phased haplotypes; 
reference panel

Chromosome painting Identifies local ancestry in windows, rather than using an HMM, 
so is more discrete than other approaches

52

PCAdmix Phased haplotypes Chromosome painting, 
population structure

Uses PCA in small chunks followed by an HMM to estimate local 
ancestry

53

FCFK Frequency spectrum of 
unlinked bi-allelic SNVs

Demographic history Requires some Python-coding skills; applicable to up to three 
populations

60

Fastsimcoal2 Frequency spectrum of 
unlinked bi-allelic SNVs

Demographic history Can also be used to simulate data under the SMC 62,63

Treemix Frequencies of unlinked 
bi-allelic SNVs

Admixture graph Highly multimodal likelihood surface and heuristic search; redo 
inference from many starting points

64

fastNeutrino Frequency spectrum of 
unlinked bi-allelic SNVs

Demographic history Applicable only to a single population; designed specifically for 
extremely large sample sizes

65

DoRIS Lengths of IBD blocks 
between pairs of individuals

Demographic history IBD must be inferred (for example, using Beagle or GERMLINE); 
specification of lower cut-off minimizes false-negative IBD tracts

71,72

IBS tract 
inference

Lengths of IBS blocks 
between pairs of individuals

Demographic IBS can easily be confounded by missing data and/or sequencing 
errors

76

PSMC Diploid genotypes from one 
individual

Demographic history Best used in MSMC’s PSMC mode, which uses the SMC to 
more accurately model recombination than the original PSMC; 
applicable to a single population

78

MSMC Whole genome, phased 
haplotypes

Demographic history Requires large amounts of RAM; cross-coalescence rate should 
not be interpreted as migration rate

82

CoalHMM Whole genome, phased 
haplotypes

Demographic history Multiple applications, including inference of population sizes, 
migration rates and incomplete lineage sorting

83–87

diCal Medium-length, phased 
haplotypes

Demographic history Uses shorter sequences than MSMC, but can be applied to 
multiple individuals in complex demographic models; infers 
explicit population genetic parameters for migration rates

89,92

LAMARC Short, phased haplotypes Demographic history Requires Monte Carlo sampling of coalescent genealogies; very 
flexible

93

BEAST Short, phased haplotypes Species trees, effective 
population sizes

Used mainly as a method of phylogenetic inference. Can also 
infer population size history

94

MCMCcoal Short, phased haplotypes Divergence times 
between populations

Now incorporated into the software BPP131 95

G-PhoCS Short, (un)phased 
haplotypes

Demographic history Incorporates migration into the MCMCcoal framework. Averages 
over unphased haplotypes

96

Exact likelihoods 
using generating 
functions

Short, phased haplotypes Demographic history Implemented in Mathematica; applicable only to specific classes 
of multi-population models

97,98

$'#56��$C[GUKCP�GXQNWVKQPCT[�CPCN[UKU�D[�UCORNKPI�VTGGU��$22��$C[GUKCP�RJ[NQIGPGVKEU�CPF�RJ[NQIGQITCRJ[��%QCN*//�|EQCNGUEGPV�*//� dadi, diffusion approximations 
HQT�FGOQITCRJKE�KPHGTGPEG��FK%CN�|FGOQITCRJKE�KPHGTGPEG�WUKPI�EQORQUKVG�CRRTQZKOCVG�NKMGNKJQQF��&Q4+5�|FGOQITCRJKE�TGEQPUVTWEVKQP�XKC�+$&�UJCTKPI��
)�2JQ%5�|IGPGTCNK\GF�RJ[NQIGPGVKE�EQCNGUEGPV�UCORNGT��)'4/.+0'�|IGPGVKE�GTTQT�VQNGTCPV�TGIKQPCN�OCVEJKPI�YKVJ�NKPGCT�VKOG�GZVGPUKQP��)7+��ITCRJKECN�WUGT�KPVGTHCEG��
HMM, hidden Markov model; IBD, identity by descent; IBS, identity by state; LAMARC, likelihood analysis with metropolis algorithm using random coalescence; LAMP, 
local ancestry in admixed populations; MCMC, Markov chain Monte Carlo; MSMC, multiple SMC; PCA, principal components analysis; PSMC, pairwise SMC; RAM, 
random access memory; SMC, sequentially Markov coalescent; SNVs, single nucleotide variants.
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