
Multiple Sequence Alignment
Rosa Fernández, Lisa Pokorny & Marina Marcet-Houben



Multiple Sequence Alignment (MSA)

Fig. 9.1. Warnow. 2017. Computational Phylogenomics. An introduction to designing methods for phylogeny estimation. UIUC.



Multiple Seq Alignment (MSA)

Standard two-phase approach: 1st ALIGNMENT (positional homology)

2nd TREE BUILDING

Fig. 9.1. Warnow. 2017. Computational Phylogenomics. An introduction to designing methods for phylogeny estimation. UIUC.



MSA Methods (MSAMs)

➔ Sum-of-Pairs Alignment (SOP)
➔ Tree Alignment and Generalized Tree Alignment
➔ Sequence Profiles
➔ Profile Hidden Markov Models (HMM)
➔ Reference-based Alignments
➔ Template-based Methods
➔ Seed Alignment Methods
➔ Weighted-Homology Pair Methods
➔ Progressive Methods
➔ Divide-and-Conquer Methods
➔ Co-estimation of Alignments and Trees
➔ Structure Informed Methods, etc.



Comparing MSAMs

Blackburne & Whelan. 2013. Mol. Biol. Evol. 30(3):642–653.



Mean Distance between MSAMs

Fig. 1. Blackburne & Whelan. 2013. Mol. Biol. Evol. 30(3):642–653.



Distances btw. Tree Estimates from ≠ MSAMs

Fig. 2. Blackburne & Whelan. 2013. Mol. Biol. Evol. 30(3):642–653.



Even more MSAMs comparisons

Fig. 4. Liu et al. 2013. Syst. Biol. 61(1):90–106.







PASTA

PASTA estimates alignments and ML trees from unaligned sequences using an iterative approach. In 
each iteration, it first estimates a multiple sequence alignment using the current tree as a guide and then 
estimates a ML tree on (a masked version of) the alignment. By default, PASTA performs 3 iterations, but 
a host of options enable changing that behavior. In each iteration, a divide-and-conquer strategy is 
used for estimating the alignment. The set of sequences is divided into smaller subsets, each of which 
is aligned using an external alignment tool (default is MAFFT). These subset alignments are then 
pairwise merged (by default using Opal) and finally the pairwise merged alignments are merged into 
a final alignment using a transitivity merge technique. The division of the dataset into smaller subsets 
and selecting which alignments should be pairwise merged is guided by the tree from the previous 
iteration. The first step therefore needs an initial tree.

Acknowledgment: The current PASTA code is heavily based on the SATé code developed by Mark Holder's group at KU.

https://github.com/smirarab/pasta/blob/master/pasta-doc/pasta-tutorial.md



PASTA

Fig. 1. Mirarab et al. 2015. J. Comp. Biol. 22(5):377–386.



PASTA

Fig. 2. Mirarab et al. 2015. J. Comp. Biol. 22(5):377–386.



Running PASTA (from Command-line)

If your installation is successful, you should be able to run PASTA by running the following command from any location. 
Open up a terminal window and type:

run_pasta.py --help

Running PASTA with the --help option produces the list of options available in PASTA. PASTA automatically picks its 
algorithmic settings based on your input, so you can ignore most of these options (but -d is essential if you have anything 
other than DNA sequences). The basic command-line usage you need to know is:

run_pasta.py -i input_fasta_file

https://github.com/smirarab/pasta/blob/master/pasta-doc/pasta-tutorial.md



Running PASTA (from Command-line)

The -i option is used to specify the input sequence file. The input file needs to be in the relaxed FASTA format. This 
command will start PASTA and will run it on your input file.

For a test run, use the cd command to go to the data directory under your PASTA installation directory. From there, run

run_pasta.py -i small.fasta

This will start PASTA and will finish quickly (30 seconds to 5 minutes based on your machine). Read PASTA output and 
make sure it finishes without producing any errors. If PASTA runs successfully, it produces a multiple sequence alignment 
and a tree, which we will explore in the next step.

https://github.com/smirarab/pasta/blob/master/pasta-doc/pasta-tutorial.md



Inspecting the Output of PASTA

The two main outputs of PASTA are an alignment and a tree. The tree is saved in a file called [jobname].tre and the 
alignment file is named [jobname].marker001.small.aln. The [jobname] is a prefix which is by default set to pastajob, but 
can be changed by the user (see option -j below). When you start PASTA, if your output directory (which is by default 
where your input sequences are) already contains some files with the pastajob prefix, then the pastajob1 prefix is used, 
and if that exists, pastajob2 is used, and so forth. Thus the existing files are never overwritten. The name of your job and 
therefore the prefix used for output files can be controlled using the - j argument for command-line or the "Job Name" field 
on the GUI.

Tree viewing software → https://en.wikipedia.org/wiki/List_of_phylogenetic_tree_visualization_software

Alignment viewing software, e.g., http://doua.prabi.fr/software/seaview

https://github.com/smirarab/pasta/blob/master/pasta-doc/pasta-tutorial.md

https://en.wikipedia.org/wiki/List_of_phylogenetic_tree_visualization_software
http://doua.prabi.fr/software/seaview


Running PASTA (from Command-line)

You can script a while loop in bash to run PASTA on multiple fasta files. First open a text editor

nano pasta_loop.sh

Write your bash script

#!/bin/bash
while read targetname; 
    do
        python ABSOLUTE_PATH_HERE/run_pasta.py -i "$targetname".fasta -j $targetname
    done < targetlist.txt

Close CTRL+x and save your script. This script assumes all target files are in the same folder in fasta format. It also 
assumes that folder contains a text file listing all targets. From there, run

bash pasta_loop.sh



Understanding and Using PASTA Options

The command line allows you to alter the behavior of the algorithm using a variety of configuration options. Running PASTA 
with the -h option lists all the options that can be provided to the command-line (see below for the most important ones). In 
addition to the command-line itself, PASTA can read the options from one or more configuration files. The configuration 
files have the following format:

[commandline]

option-name = value

[sate]

option-name = value

Note that as mentioned before, with every run, PASTA saves the configuration file for that run as a temporary file called 
[jobname]_temp_pasta_config.txt in your output directory. You can view one of these files in a Text editor for better 
understanding the format of the configuration file.

https://github.com/smirarab/pasta/blob/master/pasta-doc/pasta-tutorial.md



Understanding and Using PASTA Options

PASTA can read multiple configuration. Configuration files are read in the order they occur as arguments (with values in 
later files replacing previously read values). Options specified in the command line are read last. Thus these values 
"overwrite" any settings from the configuration files.

The following is a list of important options used by PASTA. Note that by default PASTA picks these parameters for you, 
and thus you might not need to ever change these (with the important exception of the -d option):

● Initial tree: As mentioned before, PASTA needs an initial tree for doing the first round of the alignment. Here is how 
the initial tree is picked.

○ If a starting tree is provided using the -t option, then that tree is used.

run_pasta.py -i small.fasta -t small.tree

https://github.com/smirarab/pasta/blob/master/pasta-doc/pasta-tutorial.md



Understanding and Using PASTA Options

PASTA can read multiple configuration. Configuration files are read in the order they occur as arguments (with values in 
later files replacing previously read values). Options specified in the command line are read last. Thus these values 
"overwrite" any settings from the configuration files.

The following is a list of important options used by PASTA. Note that by default PASTA picks these parameters for you, 
and thus you might not need to ever change these (with the important exception of the -d option):

● Initial tree: As mentioned before, PASTA needs an initial tree for doing the first round of the alignment. Here is how 
the initial tree is picked.

○ If a starting tree is provided using the -t option, then that tree is used.
○ If the input sequence file is already aligned and --aligned option is provided, then PASTA computes a ML 

tree on the input alignment and uses that as the starting tree.
■ If the input sequences are not aligned (or if they are aligned and --aligned is not given), PASTA uses 

the following procedure for estimating the starting alignment and tree. It 1) randomly selects a subset of 
100 sequences, 2) estimates an alignment on the subset using the subset alignment tool (default 
MAFFT-l-insi), 3) builds a HMMER model on this "backbone" alignment, 4) uses hmmalign to align the 
remaining sequences into the backbone alignment, 5) runs FastTree on the alignment obtained in the 
previous step.

https://github.com/smirarab/pasta/blob/master/pasta-doc/pasta-tutorial.md



Understanding and Using PASTA Options

● Data type: PASTA does not automatically detect your data type. Unless your data is DNA, you need to set the data 
type using -d command. Your options are DNA, RNA, and PROTEIN.

run_pasta.py -i BBA0067-half.input.fasta -t BBA0067-half.startingtree.tre -d PROTEIN

https://github.com/smirarab/pasta/blob/master/pasta-doc/pasta-tutorial.md



Understanding and Using PASTA Options

● Data type: PASTA does not automatically detect your data type. Unless your data is DNA, you need to set the data 
type using -d command. Your options are DNA, RNA, and PROTEIN.

● Tree estimation tool: the default tool used for estimating the phylogenetic tree in PASTA is FastTree. The only 
other option currently available is RAxML. You can set the tree estimator to RAxML using the --tree-estimator 
option. However, Be aware that RAxML takes much longer than FastTree. If you really want to have a RAxML tree, 
we suggest obtaining one by running it on the final PASTA alignment. You can change the model used by FastTree 
(default: -nt -gtr -gamma for nt and -wag -gamma for aa) or RAxML (default GTRGAMMA for nt and PROTWAGCAT for AA) 
by updating the [model] parameter under [FastTree] or [RAxML] header in the input configuration file. The model 
cannot be currently updated in the command line directly as an option.

● Subset alignment tool: the default tool used for aligning subsets is MAFFT, but you can change it using the 
--aligner option. We strongly suggest alignment subset size should always be no more than 200 sequences, 
because for subsets that are larger than 200, the most accurate version of MAFFT (-linsi) is not used.

● Pairwise merge tool: the default merger too is Opal. You can change it using --merger option. If you have trouble 
with Opal (java version, memory, etc.) using Muscle should solve your problem and in our experience, it doesn't 
really affect the accuracy by a large margin.

https://github.com/smirarab/pasta/blob/master/pasta-doc/pasta-tutorial.md



Understanding and Using PASTA Options

● CPUs: PASTA tries to use all the available cpus by default. You can use --num_cpus to adjust the number of threads 
used.

run_pasta.py -i small.fasta --num_cpus 1

https://github.com/smirarab/pasta/blob/master/pasta-doc/pasta-tutorial.md



Understanding and Using PASTA Options

● CPUs: PASTA tries to use all the available cpus by default. You can use --num_cpus to adjust the number of threads 
used.

● Number of iterations: the simplest option that can be used to set the number of iterations is --iter-limit, which 
sets the number of iterations PASTA should run for. You can also set a time limit using --time-limit, in which case, 
PASTA runs until the time limit is reached, and then continues to run until the current iteration is finished, and then 
stops. If both options are set, PASTA stops after the first limit is reached. The remaining options for setting iteration 
limits are legacies of SATé and are not recommended.

● Masking: Since PASTA can produce very gappy alignments, it is a good idea to remove sites that are almost 
exclusively gaps before running the ML tree estimation. By default, PASTA removes sites that are more than 99.9% 
gaps. You can change that using the --mask-gappy-sites option. For example, using --mask-gappy-sites 10 would 
remove sites that are gaps for all sequences except for (at most) 10 sequences. Increasing the masking can make 
PASTA a bit faster and can potentially reduce the memory usage. But it could also have a small effect on the final 
tree. If unsure, leave the option unchanged. Note that the final alignment outputted by PASTA is NOT masked, but 
masked versions of the output are also saved as temporary files (see below).

https://github.com/smirarab/pasta/blob/master/pasta-doc/pasta-tutorial.md



Running PASTA Using Configuration Files

The configurations used for running PASTA are all saved to a configuration file, and also, PASTA can be run using a 
configuration file. These configuration files are useful for multiple purposes. For example, if you want to reproduce a PASTA 
run, or if you want to report the exact configurations used. Always make sure to keep the produced configuration files for 
future reference. Note however, that configuration files can be used as input only using command-line.

Let's open myjob_temp_pasta_config.txt under the data directory and take a look at it. Notice that the options we referred 
to are all mentioned here.

Now imagine that we wanted to instruct PASTA to use the JTT model instead of WAG for a protein run. Here is how we can 
accomplish that. Copy the myjob_temp_pasta_config.txt file as a new file (e.g. cp myjob_temp_pasta_config.txt 
jtt_config.txt). Then open jtt_config.txt using a text editor of your choice. Find model = -wag -gamma -fastest under 
the [FastTree] header. Remove the -wag option and save the config file. Note that the default model in FastTree is JTT, 
and therefore, when the -wag is removed, it automatically switches to using JTT. To run PASTA using this new 
configuration file, run:

run_pasta.py  jtt_config.txt

https://github.com/smirarab/pasta/blob/master/pasta-doc/pasta-tutorial.md



Running PASTA Using Configuration Files

Adding custom parameters to aligners: It is also possible to add custom parameters to alignment and merge tools. To do 
so, you need to use the config file. Under each alignment tool in the config file, you can add an args attribute and list all the 
attributes you want to pass to that tool. For example, to run Mafft with your choice of gap penalty value, edit the config file 
under the [mafft] heading to something like:

[mafft]

path = [there will be a path here to your pasta directory]/bin/mafft

args = --op 0.2 --ep 0.2

and use this config file to run PASTA.

Note that PASTA does not try to understand these extra parameters you pass to external tools. It simply appends these 
parameters to the end of the command it executes.

https://github.com/smirarab/pasta/blob/master/pasta-doc/pasta-tutorial.md



Running PASTA with your own data

At this stage, if you have input files that you like to have analyzed, you know enough to start doing that.

Email: pasta-users@googlegroups.com for all issues.

https://github.com/smirarab/pasta/blob/master/pasta-doc/pasta-tutorial.md



Trimming
Rosa Fernández, Lisa Pokorny & Marina Marcet-Houben









There are multiple programs to trim a MSA



http://trimal.cgenomics.org

Current stable version is 1.3 but version 1.4 
contains a lot of new options so you may want to 
use that.

http://trimal.cgenomics.org
http://trimal.cgenomics.org


What can trimAl do?

1.- It allows the user to trim user-defined columns or sequences

2.- It allowed the user to define some thresholds and trim the alignment according to those 
thresholds:

A.- Gap thresholds
B.- Similarity threshold
C.- Consistency threshold - Needs multiple alignments

3.- It allows the user to define a minimum percentage of alignment that has to be retained after 
trimming (Conservation score).

4.- It implements several automated methods that will chose the best trimming strategy based 
on the alignment.



Automated methods:



Gappy-out + trimming by similarity scores → they will only delete blocks of data so if one column has 
been marked to be deleted but it is surrounded by non-marked columns it will be kept in the alignment. 
The two methods differ on how they define the block size.



Will use a decision tree in order to 
choose which of the two methods will 
work best on the alignment.



Additional utilities implemented in trimAl

2.- You can delete a set of columns and obtain the alignment of the columns you have removed. 
(i.e. Keep only those columns that have at least one mutation)

1.- Transform your amino acid alignment to a codon based alignment.

3.- Delete gaps



http://trimal.cgenomics.org

http://trimal.cgenomics.org
http://trimal.cgenomics.org




readAl: Reformatting MSAs
One of the main problems of alignments is the fact that different formats exist, and there may not be a 
match between the output format of an alignment program and the input format the next program 
needs.

NEXUS format FASTA format PHYLIP format



readAl: Reformatting MSAs

readAl is a sister program to trimAl that allows us to convert alignment between each other.

                 readal -in [input file] -format -out [output file]

Input file → Alignment file

Output file → Resulting file

Format → Can be any of the formats that readAl has and that you wish to use as output:
Fasta, phylip, mega, nexus, clustal,...



readAl: Colouring MSAs



statAl: Obtaining alignment statistics

While trimAl offers most of these options, this is a standalone program that will only give 
back some statistics of your alignment.



All the exercises can be found in the folder named: trimal_tutorial. At the beginning of each exercise 
a tag will let you know in which subfolder you should be.
1.- [example_readal] Open the alignment file and check in which format it has been generated. Now 
use readal to (make sure each result is in a different file):

- Change the format of the current alignment to fasta format
- Change the format of the current alignment to nexus format
- Change the format of the current alignment to clustal format
- Use the -onlyseqs option

Open the different files and notice the differences between the alignment formats.

Tip: readal is run like this:

readal -in alignment_file -out trimmed_alignment_file -format FORMAT_NAME

You can check out all the formats supported by readal by typing: readal -h  



2.- [example_trimal] Use trimAl to trim the alignments according to a gap threshold using the following parameters:

- A gap threshold of 0.1 (-gt 0.1)
- A gap threshold of 0.5 (-gt 0.5)
- A gap threshold of 0.9 (-gt 0.9)

Make sure that the output of your alignment is in phylip format. Now you can visualize each alignment either using a 
text editor or using seaview. Which of the previous commands deletes the largest amount of columns?

3.- [example_trimal] Now use the -gt 0.5 command but add a conservation score of different values: 30, 50 and 80 
(-cons option). Again make sure that your output alignment is in phylip format. Which effect does it have on the trimmed 
alignment?

4.- [example_trimal] Now instead of using the gap threshold, we’ll be using the similarity threshold (-st). Repeat the 
trimming of the original alignment using different similarity thresholds (0.1, 0.5 and 0.9). Again, how does the alignment 
trimming vary? Which approach is more aggressive? How can you make sure you don’t loose all the alignment?



6.- [example_trimal] Now we are going to use the automated trimming methods. Trim your alignment using:

- Use the different automated trimming methods: -gappyout, -strict, -strictplus, -automated1
- Use the more radical methods to delete all the columns with gaps in your alignment: -nogaps

Of all the trimming strategies you’ve tried, which is the best one? Can you know?

7.- [example_consistency] You will see seven different alignments in there and a file called paths. Each alignment has 
been generated in a different way and we want to trim one of them based on the consistency score. Run this command:

trimal  -compareset Phy007LWVO_COFCA.paths  -forceselect Phy007LWVO_COFCA.alg.metalig  -out 
Phy007LWVO_COFCA.alg.clean -phylip -ct 0.1667

This command will trim an alignment based on a set of alternative alignments. The -ct score will trim out columns that 
are inconsistent in the dataset. Which advantage do you think this kind of trimming has over the others we’ve seen?



8.- [example_backtranslate] Backtranslate protein alignment into CDS. In order to do this you need to use the 
-backtrans option:

trimal -in Phy007LWVO_COFCA.alg -out example.cds -backtrans Phy007LWVO_COFCA.cds

You can join this command with your preferred trimming methods. 



9.- Trim all the alignments found in a folder. In this case you’ll have to use a bit of bash programming:

- Create a new folder called trimmed_alignments
- Now move to the folder where you have all your alignments
- for fileName in $(ls *); do trimal -in $fileName -out ../trimmed_alignments/$fileName -gt 0.1;done

                       (This will be needed in the main exercises after the explanations)



Raw reads Sanitize Filter Assemble Translate
Reduce 

reduncancy

Download 

DE 
NOVO

DATABASES (Ensembl, UNIPROT, SRA…) 

Orthology inference Alignment Trimming / Masking

Concatenation Infer & compare 
Individual gene trees

(Transcriptomics)

Evolutionary relationships
Gene family evolution
Prediction of function

HGT / ILS / DL

1:1 orthologs orthologs and/or paralogs

Analyses
Gene tree/species tree reconciliation, 

gene duplic./loss, gene transfer, selection,etc.

Analyses
Matrix construction, Model selection, ML, BI,

molecular dating, ancestral reconstruction, etc.



Raw reads Sanitize Filter Assemble Translate
Reduce 

reduncancy

Download 

DE 
NOVO

DATABASES (Ensembl, UNIPROT, SRA…) 

Orthology inference Alignment Trimming / Masking

Concatenation Infer & compare 
Individual gene trees

(Transcriptomics)

Evolutionary relationships
Gene family evolution
Prediction of function

HGT / ILS / DL

1:1 orthologs orthologs and/or paralogs

Analyses
Gene tree/species tree reconciliation, 

gene duplic./loss, gene transfer, selection,etc.

Analyses
Matrix construction, Model selection, ML, BI,

molecular dating, ancestral reconstruction, etc.



Raw reads Sanitize Filter Assemble Translate
Reduce 

reduncancy

Download 

DE 
NOVO

DATABASES (Ensembl, UNIPROT, SRA…) 

Orthology inference Alignment Trimming / Masking

Concatenation Infer & compare 
Individual gene trees

(Transcriptomics)

Evolutionary relationships
Gene family evolution
Prediction of function

HGT / ILS / DL

1:1 orthologs orthologs and/or paralogs

Analyses
Gene tree/species tree reconciliation, 

gene duplic./loss, gene transfer, selection,etc.

Analyses
Matrix construction, Model selection, ML, BI,

molecular dating, ancestral reconstruction, etc.



Concatenation & Partition Files
Rosa Fernández, Lisa Pokorny & Marina Marcet-Houben



   Concatenation vs. Coalescence in Phylogenomics

Fig. 1. Liu et al. 2015. Ann. N.Y. Acad. Sci. 0:1–18.



   Concatenation vs. Coalescence in Phylogenomics

Fig. 1. Liu et al. 2015. Ann. N.Y. Acad. Sci. 0:1–18.



   Concatenation vs. Coalescence in Phylogenomics

Fig. 1. Liu et al. 2015. Ann. N.Y. Acad. Sci. 0:1–18.



To concatenate or not to concatenate? 
That is the question...



To concatenate or not to concatenate? 
That is the question...



To concatenate or not to concatenate? 
That is the question...

LAB: TECHNIQUES FOR 
GENERATING PHYLOGENOMIC 

DATA MATRICES
Toni / Marina / Rosa, 30 Jan



To concatenate or not to concatenate? 
That is the question...

LAB: TECHNIQUES FOR 
GENERATING PHYLOGENOMIC 

DATA MATRICES
Toni / Marina / Rosa, 30 Jan

Species-tree estimation
Laura Kubatko, 31 Jan





a) Concatenate the ortholog genes:

phyutility -concat -in INPUT_FILES -out OUTPUT_FILE

The output file will be in nexus format. It will include a block 
showing where each gene starts and ends. 



a) Concatenate the ortholog genes:

phyutility -concat -in INPUT_FILES -out OUTPUT_FILE

The output file will be in nexus format. It will include a block 
showing where each gene starts and ends. 

b) Create a partition file (command line with VIM). 



Tutorial: Concatenation with Phyutility
1) Phyutility is a command line program written in Java. We’ll concatenate the same genes 

that were aligned with Pasta and trimmed with trimAl.

If you had problems, you can use the pre-aligned genes in the folder 
‘~/workshop_materials/orthologs_concatenation/*.aligned.fa’.

2) Open the terminal. You’ll find the shortcut in the AMI Desktop.

3) Write the following commands:

phyutility -concat -in ~/workshop_materials/orthologs_concatenation/*.aligned.fa -out 
workshop_materials/orthologs_concatenation/concatenated_matrix.nexus

4) concatenated_matrix.nexus is your concatenated matrix in nexus format.

5) Write: vim concatenated_matrix.nexus and inspect the file 
(or nano concatenated_matrix.nexus). 

How many taxa and amino acids does our matrix have?



Tutorial: Partitioning by gene

For most phylogenetics/phylogenomics programs, you’ll want to prepare a partition file. There 
are different ways of partitioning. Let’s first partition by gene. 

Let’s do a file with partitions by gene by using our concatenated matrix (nexus format), as it 
contains a block indicating the starting and ending position of each gene.

1) Open the concatenated matrix with vim:

vim concatenated_matrix.nexus 

2) Select with your mouse the block of partitions. Copy it (right click -> copy).

3) Create a new, empty file called partitions.txt

touch partitions.txt



4) Open the file:

vim partitions.txt   (you can have a look at the Vim cheat sheet here)

5) Click ‘i’ to be able to edit the file. You’ll see that you’re now in INSERT mode.

6) Paste the block that you copied before (right click -> paste).

7) Remove the extension of the files:

:%s/.aligned.fa_//g 

8) Now the names of all the genes are in the same line. Let’s put them in different lines:

:%s/ O/\r/g 

Tutorial: Partitioning by gene

https://www.fprintf.net/vimCheatSheet.html


9) Delete everything but the gene number:

:%s/G.*g/g/g

10) Insert the ‘=’ symbol after the name of each gene:

:%s/ / = /g

11) Add the evolutionary model that you want to apply to each partition (eg., LG4X, WAG, 
etc.). In the new versions of RAxML and in ExaML, there’s the option of automatic selection 
(AUTO).

:%s!^!AUTO, !

12)  Save the file. Just type:
:w

To quit vim, just type :q!

Tutorial: Partitioning by gene



12) CONGRATS!! Your partition file is ready!!

Check the partition file. It should look like this:

You can go to the beginning of the file by typing ‘gg’, 
and to the end of the file with ‘shift + gg’.

Tutorial: Partitioning by gene



Tutorial: Partitioning with PartitionFinder2

Alternatively to partitioning by gene, we can also use some software to find best-fitting partition 
schemes. Let’s try to find them with PartitionFinder2. 

http://www.robertlanfear.com/partitionfinder/assets/Manual_v2.1.x.pdf


Tutorial: Partitioning with PartitionFinder2

Let’s copy the folder from the workshop webpage to your instance in the AMI.

1) Download the program from this link. We’re doing this because it’s not in the instance, so 
you can delete it from your computer after the practice. Also, it’s a good exercise to learn how 
to use the ‘scp’ option to copy files or folders between a local host and a remote host.

http://www.robertlanfear.com/partitionfinder/


Tutorial: Partitioning with PartitionFinder2

Let’s copy the folder from the workshop webpage to your instance in the AMI.

1) Download the program from this link. We’re doing this because it’s not in the instance, so 
you can delete it from your computer after the practice. Also, it’s a good exercise to learn how 
to use the ‘scp’ option to copy files or folders between a local host and a remote host.

2) Open the terminal in your computer. Write the following:

scp -r path_to_folder phylogenomics@your_public_DNS:~/worskhop_materials

It will ask for the password: evomics2017

http://www.robertlanfear.com/partitionfinder/


Tutorial: Partitioning with PartitionFinder2

Let’s copy the folder from the workshop webpage to your instance in the AMI.

1) Download the program from this link. We’re doing this because it’s not in the instance, so 
you can delete it from your computer after the practice. Also, it’s a good exercise to learn how 
to use the ‘scp’ option to copy files or folders between a local host and a remote host.

2) Open the terminal in your computer. Write the following:

scp -r path_to_folder phylogenomics@your_public_DNS:~/worskhop_materials

It will ask for the password: evomics2017

3) Go to your AMI. Open the ‘workshop_material’ folder. Double-click the zip file and extract 
all the folders (or use tar -xzvf partitionfinder-2.1.1.tar.gz from your terminal).

http://www.robertlanfear.com/partitionfinder/


Tutorial: Partitioning with PartitionFinder2

4) Navigate to the extracted folder. You’ll see several python scripts. You’ll need to chose 
the correct one depending on the type of data that you have (morphology, nucleotides or 
amino acids).



Tutorial: Partitioning with PartitionFinder2

4) Navigate to the extracted folder. You’ll see several python scripts. You’ll need to chose 
the correct one depending on the type of data that you have (morphology, nucleotides or 
amino acids).

5) Go to the folder examples -> aminoacids. Open the .cfg file and have a look at it. There’s 
information about each parameter in the documentation.



Tutorial: Partitioning with PartitionFinder2

4) Navigate to the extracted folder. You’ll see several python scripts. You’ll need to chose 
the correct one depending on the type of data that you have (morphology, nucleotides or 
amino acids).

5) Go to the folder examples -> aminoacids. Open the .cfg file and have a look at it. There’s 
information about each parameter in the documentation.

6) Let’s run an example. In your AMI, open a terminal. Go to ‘workshop_materials -> 
partitionfinder_2.1.1”



Tutorial: Partitioning with PartitionFinder2

4) Navigate to the extracted folder. You’ll see several python scripts. You’ll need to chose 
the correct one depending on the type of data that you have (morphology, nucleotides or 
amino acids).

5) Go to the folder examples -> aminoacids. Open the .cfg file and have a look at it. There’s 
information about each parameter in the documentation.

6) Let’s run an example. In your AMI, open a terminal. Go to ‘workshop_materials -> 
partitionfinder_2.1.1”

7) Type the following:

python PartitionFinderProtein.py examples/aminoacid/



Tutorial: Partitioning with PartitionFinder2

4) Navigate to the extracted folder. You’ll see several python scripts. You’ll need to chose 
the correct one depending on the type of data that you have (morphology, nucleotides or 
amino acids).

5) Go to the folder examples -> aminoacids. Open the .cfg file and have a look at it. There’s 
information about each parameter in the documentation.

6) Let’s run an example. In your AMI, open a terminal. Go to ‘workshop_materials -> 
partitionfinder_2.1.1”

7) Type the following:

python PartitionFinderProtein.py examples/aminoacid/

8) Once its finished, go to ‘examples -> aminoacid’ and explore the output: log.txt and a 
folder called analysis.



Tutorial: Partitioning with PartitionFinder2

4) Navigate to the extracted folder. You’ll see several python scripts. You’ll need to chose 
the correct one depending on the type of data that you have (morphology, nucleotides or 
amino acids).

5) Go to the folder examples -> aminoacids. Open the .cfg file and have a look at it. There’s 
information about each parameter in the documentation.

6) Let’s run an example. In your AMI, open a terminal. Go to ‘workshop_materials -> 
partitionfinder_2.1.1”

7) Type the following:

python PartitionFinderProtein.py examples/aminoacid/

8) Once its finished, go to ‘examples -> aminoacid’ and explore the output: log.txt and a 
folder called analysis.

9) In the folder analyses, you have the file best_scheme.txt. Have a look at it.



Putting it all together...



Exercise: alignment, trimming, concatenating, 
creating partition files

In the folder ‘workshop_materials -> ortholog_concatenation’ there are ~ 100 
1:1 orthologs. They’re called OG[NUMBER].fa

Following the same steps that you’ve learned in the labs today
● align them with PASTA
● trim them with trimAL
● create a concatenated matrix
● create a partition-by-gene file, and
● create a best-fit partition file with PartitionFinder2 (you’ll need to change 

to phylip format with SeaView)


