part 3: analysis of natural selection pressure

markov models are good

phenomenological codon models do have many benefits:

o principled framework for statistical inference
o avoiding ad hoc corrections of “counting” methods
o computation of transition probabilities *
o explicit use of phylogeny
o model w variation among sites
o model w variation among branches
o many ofher kinds of models for w
* Computation of transition probabilities accomplishes, in just one step, (1) a proper correction for

multiple substitutions, (2) weighting for alternative pathways between codons and (3) is the basis for
estimating the values of the model parameters from the data in hand.
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two basic types of models
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branch models*

Yang, 1998 fixed effects
Bielawski and Yang, 2003 fixed effects

Seo et al. 2004 auto-correlated rates
Kosakovsky Pond and Frost, 2005 genetic algorithm
Dutheil et al. 2012 clustering algorithm

" these methods can be useful when selection pressure is strongly episodic

site models*

GTG CTG TCT GCC GAC AAG ACC AAC GTC AAG GCC TGG GGC AAG GTT GGC GCG CAC
P I Cee et ii ... ... .GCA..

Yang and Swanson, 2002 fixed effects (ML)
Bao, Gu and Bielawski, 2006 fixed effects (ML)
Massingham and Goldman, 2005 site wise (LRT)
Kosakovsky Pond and Frost, 2005 site wise (LRT)
Nielsen and Yang, 1998 mixture model (ML)
Kosakovsky Pond, Frost and Muse, 2005 mixture model (ML)
Huelsenbeck and Dyer, 2004; Huelsenbeck et al. 2006 mixture (Bayesian)
Rubenstein et al. 2011 mixture model (ML)
Bao, Gu, Dunn and Bielawski 2008 & 2011 mixture (LiBaC/MBC)
Murell et al. 2013 mixture (Bayesian)

« useful when at some sites evolve under diversifying selection pressure over long periods of time

« this is not a comprehensive list




site models: discrete model (M3)

MIXTURE-MODEL LIKELIHOOD 0.8
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conditional likelihood
calculation (see part 1)

interpretation of a sites-model
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models for variation among branches & sites

Wy Wy W Wy W

A A A
r VLT vl \
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branch models site models

(w varies among
branches)

(w varies among sites)

branch-site models
(combines the features of above models)

models for variation among branches & sites

Yang and Nielsen, 2002

Forsberg and Christiansen, 2003
Bielawski and Yang, 2004
Giundon et al., 2004

Zhang et al. 2005

Kosakovsky Pond et al. 2011, 2012

fixed+mixture (ML)
fixed+mixture (ML)
fixed+mixture (ML)
switching (ML)
fixed+mixture (ML)
full mixture (ML)

"these methods can be useful when selection pressures change over

time at just a fraction of sites

*it can be a challenge to apply these methods properly (more about

this later)
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branch-site “Model B”

MIXTURE-MODEL LIKELIHOOD

P(Xh)=2 pP(x, | @)

Foreground

@=0.01

@=0.90 W =555

w for background branches
are from site-classes 1 and 2
(0.01 or 0.90)

two scenarios can yield branch-sites with dN/dS > 1

g-

E/LE/

@®=0.01 @=0.90|

10% of sites have
shifting balance on
a fixed peak
(same function)

episodic adaptive
evolution at 10% of
sites for novel function

— _Jb

branch-site codon
models cannot tell
which scenario is
correct without
external information!

Jones et al (2016) MBE

~
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“OMEGA MODELS”

0 ifiandj differby> 1

7z, for synonymous tv.

model-based inference

k7, for non-synonymous ts.

Goldman and Yang (1994)
Muse and Gaut (1994)

model based inference

3 analytical tasks

task 1. parameter estimation (e.g., w) 4m
task 2. hypothesis testing

task 3. make predictions (e.g., sites having w> 1)




task 1: parameter estimation

f, kK, w = unknown constants estimated by ML

's = empirical [GY: F3x4 or F&1 in Lab]

use a numerical hill-climbing algorithm to
maximize the likelihood function

task 1: parameter estimation

Parameters: t and w

Gene: acetylcholine o
receptor

@ <
S ég
3 N

& <

common
ancestor

InL =-2399
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task 2: statistical significance

task 1. parameter estimation (e.g., w) ¢
task 2. hypothesis testing <4mm LRT

task 3. prediction / site identification

task 2: likelihood ratio test for positive selection

H,: variable selective pressure but NO positive selection (M1)
H,: variable selective pressure with positive selection (M2)

Compare 2Al = 2(I, - I;) with a x2 distribution

Model 1a Model 2a
0.7 1
06 pope
0.5 0:7
0.4 0.6
0.5
0.3 0.4
0.2 0.3
o1 0.2
0.1
(1) 0
@®=05 (0=1) ®=05 (w=1) @ =325




task 2: likelihood ratio test for positive selection

H,: Beta distributed variable selective pressure (M7)
H,: Beta plus positive selection (M8)

Compare 24l = 2(1, - I,) with a x2 distribution

M7: beta M8: beta & w

sites
sites

0 020406081 0 02040608 1>1

w ratio o ratio

task 3: identify the selected sites

task 1. parameter estimation (e.g., w) ¢/

task 2. hypothesis testing ¢/

task 3. prediction / site identification 4mmBayes' rule

2017-01-21
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task 3: which sites have dN/dS > 1

0.8

model: 32
9% have w> 1

04

AN

y GTG CTG TCT GCC GAC AAG ACC AAC GTCAAG TGG GGC AAG GTT GGC GCG CAC
Bayes'rule: 000 e T T e
Ha A 192 12 e e e ’l' A
S”e4’]2&]3 P o .ATA.AA.A.A. ... AL . . .T .GC ..T
.c ..T........TC....G..A T . ..G ..A .GC ...
structure:

sites are in contact

Bayes’ rule: yet another (silly) example

Suppose that a population consists of 60% males and 40%
females, and a disease occurs at the rate 1% in males and
0.1% in females.

Q,: What is the probability that any
individual carries the disease?

A;: 0.6 x0.01 +0.4 x0.001 =0.0064

P(D) = P(M)P(D|M) + P(F)P(D|F)

See Yang and Bielawski (2000) TREE 15:496-503 for a detailed presentation of this example

2017-01-21

11



Bayes' rule: yet another (silly) example

Q,: Given that an individual carries the disease,
what is the probability that it is a male?

A,: 0.6 x 0.01/0.0064 = 0.94

P(M) P(DIM)

P(MI|D) = D)

See Yang and Bielawski (2000) TREE 15:496-503 for a detailed presentation of this example

review the mixture likelihood

0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1

"
~

Px,)=Y p@)Px,lo,)
i=0

Total Prior Likelihood
probability

0,=0.03 ©=040 w,=14.1
P=0.85 p=0.10 p,=0.05
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Bayes’ rule for identifying selected sites

.03, 85% of codon sites
B Site class 1: w, = .40, 10% of codon sites
? Il Site class 2: w, =14, 05% of codon sites

] Site class 0: wy,

Prior probability of hypothesis (w,) Likelihood of hypothesis (w,)

\ /
P(w, | x,)= Kﬁ(wz P (%, 1:)

EP(a)i)P(xh lw,)

Posterior probability of Marginal probability (Total
hypothesis (w,) probability) of the data

Posterior probability

task 3: Bayes rule for which sites have dN/dS > 1

Rapidly evolving region Conserved region

[~
%o

e
Y

14
=

[
~

1 6 11 16 21 26 31 36 41 46 51 56 61 66 71 76 81 8 91 96 101 106 111 116 121 126 131 136 141 146 151 156 161 166 171 176 181 186 191 196 201

[ Site class 0: w, = .03 (strong purifying selection)
B Site class 1: w, = .40 (weak purifying selection)

Il Ssite class 2: w, = 14 (positive selection)

NOTE: The posterior probability should NOT be interpreted as a “P-value”; it can be interpreted
as a measure of relative support, although there is rarely any attempt at “calibration”.
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task 3: Bayes rule for which sites have dN/dS > 1

empirical Bayes

1

NEB

!

Bayes’ rule ——-1
;

bootstrap

SBA

Naive Empirical Bayes
* Nielsen and Yang, 1998

* assumes no MLE errors

Bayes Empirical Bayes
¢ Yang et al., 2005

« accommodate MLE errors
for some model parameters
via uniform priors

Smoothed bootstrap
aggregation

* Mingrone et al., MBE,
33:2976-2989

* accommodate MLE errors
via bootstrapping

* ameliorates biases and
MLE instabilities with kernel
smoothing and aggregation

critical question:

Have the requirements for maximum likelihood
inference been metz¢

(rarely addressed in real data analyses)

2017-01-21
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regularity conditions have been met

KS

2%
20

15
10 15

10

o o

Pus1 w>1

— T — T
0.00 o.10 0.20 3 4 5 6 7 8

Normal MLE uncertainty (M2a)

* large sample size with regularity

conditions

*  MLEs approximately unbiased and

minimum variance

6~ N(@,I(é)")

regularity conditions have NOT been met

-

60 80
100 150

40

20
50

bootstrapping can be
used to diagnose this
problem:

Bielawski et al. (2016)
Curr. Protoc. Bioinf.
56:6.15.

Mingrone et al., MBE,

33:2976-2989
.

v,

\ . -pm>1 w>1

MLE instabilities (M2a)

+ small sample sizes and 8 on boundary

« continuous @ has been discretized (e.g.,

M2a)

+ non-Gaussian, over-dispersed, divergence

among datasets

2017-01-21
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multi-gene evolutionary survey
(& experimental validation)

evolutionary survey

“ldentification and assessment of NR2C1 (TR2) as a
modulator of pluripotentiality during hominid evolution”

Baker et al. (2016) Genetics, 203:905-922

v g
£ £ £ I-E Experimental

assessment of
evolutionary
change in
pluripotentiality

Sample, process, and
align 48 nuclear (1) evolutionary survey
receptors (2) rank candidates

16
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evolutionary survey
nuclear receptor (NR) family

reproduction, .
deve?opmen’r cirl hormones & behavior

Intracellular tfranscription factors regulate gene expression

evolutionary survey
analysis of 48 primate NRs

Phase 1:

1. processing and Q.C.
2. structurally-aware modelling of codon evolution
3. test each gene for 5 different evolutionary scenarios

4. use "FDR confrol” to identify families of genes

associated with different evolutionary scenarios

17



episodic Human

models S

Orangutan
Baboon
Macaque
Mamoset
Bushbaby
Rat
Mouse
Dog

Cow

1A) Hy: Wy # Wea = Wy = Wy

long-term Human
shift models EHingsasss
Gerilla
Orangutan
Baboon
Macaque
Marmoset
Bushbaby
Rat
Mouse
Dog
Cow

1D) H,: wy # wea = Wy

Human
Chimpanzee
Gorilla
Orangatan
Baboon
Macague
Marmaset
Bushbaby
Rat

Mouse

Dog

ow

1B) Hy: wy = wgp # Wye = Wy

Human
Chimpanzee
Gorilla
Orangutan
Baboon
Macague
Marmoset
Bushbaby
Rat
Mouse
Dog

Cow

1E) Hs: wy = wea # Wye

evolutionary survey

Human
Chimparzee
Gorilla
Orangutan
Baboon
Macaque
Marmoset
— Bushbaby
= Rat
e Mouse
Dog
Cow

1C) Hy: wy = Wep = Wye # Wy

KEY

Wn: Whiammal
WeA* WareatApe
WHC * WHyman-Chimpanzee

WH ' WHuman

phase 1: analysis of 48 NRs

evolutionary survey

evolutionary scenario LRT: p <0.05 FDR: g <0.05
episodic models
H,: great apes 1 gene 0 genes
H,: human-chimp 0 genes 0 genes
Hs: humans 4 genes 1 genes
long-term shift
H,: great apes 10 genes 5 genes
Hs: human-chimp 8 genes 5 genes

number of unique candidate genes: 9

2017-01-21
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evolutionary survey

analysis of 9 NRs

phase 2: reliability and robustness assessment

1.

alignment (independent evaluations)
recombination

MG?4 style codon model

alternative tree topologies

robustness to variation in baseline DNA/RNA rates

bootstrapping

nuclear receptor NRID1: positive selection along human lineage
at 1% of sites

1. alignment assessment ¢

2. no evidence of recombination ¢/
3. alternate framework (MG9%4): LRTs and MLEs robust

brief detour

2017-01-21
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how to model codon frequencies?

Goldman and Yang 1994 (GY):

Muse and Gaut 1994 (MG):

substitution rates are proportional
to empirical frequency of:

tfarget codon

target nucleotide

See Rodrique et al. (2008) for a comparison of GY and MG style codon models that suggests the MG
style, combined with parameters for codon preferences, might be the most desirable core-model for

future development.

The MutSel process (part 1) is inherently a process whereby the transition probability depends on the

target nucleotide (MG).

how to model codon frequencies?

example: A— C

AAA — CAA
AAA — ACA
AAA — AAC

A at codon position

1 st 2nd 3rd
GY caa Taca Tanc
1 2 3
MG n-C n-C n-C

2017-01-21
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nuclear receptor NRID1: positive selection along human lineage
at 1% of sites

1.
2
3
4.
5

6.

alignment assessment ¢

no evidence of recombination v/

alternate framework (MG94): LRTs

alternate tree topology: LRTs

ust v/

robust ¢/

variation in baselin D“A e of evolution: v/
bootstrap “

Density

o>

—/

nstabilities tn

the MLEs

gene status note
ESSRA excluded MLE instabilities
ESSRB excluded MLE instabilities
NR1D1 excluded MLE instabilities
NR2E3 excluded recombination
RARG excluded MLE instabilities
ESSRB ranked 4th
PGR ranked 3rd NR2¢1
RORA ranked 2nd g
NR2C1 ranked 1¢ §

Pshier

2017-01-21
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What is the function of NR2C17?

What is a stem cell?
replicate itself, or...

A single cell that can
Ny

differentiate into many
cell types.

2

image: C. Tworney

e Prefrontal cortex

* Embryonic stem cell
maintenance

* Neuronal
differentiation

IV. Ancestral gene reconstruction

Oct4 & Nanog

\) CD u —> OCT4 & Nanog

/d:\
9$ }a@
7 / \\

OCT4 & Nanog are
essential for maintaining
the self-renewing
undifferentiated state of

embryonic stem cells

image: White 2015
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IV. Ancestral gene reconstruction

Oct4 & Nanog

\g_)) SN O —— 0Cma& Nanog
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image: White 2015

IV. Ancestral gene reconstruction

Oct4 & Nanog
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image: White 2015
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@ Oct4 expression A

@ Nanog expression W

® colony size A

@ PEPCK promoter activity W

NTD: N terminal domain (A/B)
DBD: DNA binding domain (C)
Hinge: flexible hinge domain (D)
LBD: Ligand binding domain (E)

aNR2C1
NR2C1 Human substitutions NR2C1 Chimpanzee substitutions
Substitution Domain Substitution Domain

$101-102INDEL H37R
V242M N38T
T254A L94M
S274N S148A
G514S T225A
hNR2C1 cNR2C1

@ Oct4 expression ¥

@ Nanog expression ¥

@ colony size ¥

@ PEPCK promoter activity A\

@ Oct4 expression ¥

@ Nanog expression ¥

@ colony size ¥

@ PEPCK promoter activity A

best practices in large-scale
(genomic) surveys

2017-01-21
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best practices for *genome scans”

Phase 1: Large scale survey

Do as much quality control and cross validation in
the pipeline as possible. Remove as many poor
candidates as possible.

alignment validation

plan your analysis carefully; cover a variety of
evolutionary questions; execute that plan

control the false discovery rate: identify “families”
of genes which are significantly associated with
specific evolutionary scenarios

1

best practices for *genome scans’

Phase 2: Robustness analysis

1.

independent alignment validation (possible re-
analysis)

test for recombination

re-run the analytical plan using a different
formulation of the codon model (e.g., MG vs,
GY).

re-run the analytical plan using alternative free
topologies.

bootstrap to assess MLE distributions for
instabilities.

smoothed aggregated bootsirap for site-wise
inference

2017-01-21
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best practices for *genome scans”

for further discussion of best practices see ...

* Baker et al. (2016) Genetics, 203:905-922
+ Bielawski et al. (2016) Curr. Protoc. Bioinf., 56: Unit 6.15

« Mingrone et al. (2016) MBE, 33:2976-2989
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