

	$\begin{array}{c} \mathbf{x}_1 \mathbf{x}_2 \\ \mathbf{t}_1: \boldsymbol{\omega}_0 \mathbf{f}_2: \boldsymbol{\omega}_0 \\ \mathbf{f}_3: \boldsymbol{\omega}_1 \\ \mathbf{t}_4: \boldsymbol{\omega}_1 \\ \mathbf{k} \end{array} $
variation (ω) among branches:	approach
Yang, 1998	fixed effects
Bielawski and Yang, 2003	fixed effects
Seo et al. 2004	auto-correlated rates
Kosakovsky Pond and Frost, 2005	genetic algorithm
Dutheil et al. 2012	clustering algorithm

	GTG CTG TCT CCT GCC GAC AAG ACC AAC GT 	C AAG GCC GCC TGG GGC AAG GTT GGC GCC CAC
variation (ω) among sites:		approach
Yang and Swanson, 2002		fixed effects (ML)
Bao, Gu and Bielawski, 2006	6	fixed effects (ML)
Massingham and Goldman	, 2005	site wise (LRT)
Kosakovsky Pond and Frost,	2005	site wise (LRT)
Nielsen and Yang, 1998		mixture model (ML)
Kosakovsky Pond, Frost and	Muse, 2005	mixture model (ML)
Huelsenbeck and Dyer, 200	4; Huelsenbeck et al. 2006	mixture (Bayesian)
Rubenstein et al. 2011		mixture model (ML)
Bao, Gu, Dunn and Bielaws	ki 2008 & 2011	mixture (LiBaC/MBC)
Murell et al. 2013		mixture (Bayesian)

variation (ω) among branches & sites:	approach
Yang and Nielsen, 2002	fixed+mixture (ML)
Forsberg and Christiansen, 2003	fixed+mixture (ML)
Bielawski and Yang, 2004	fixed+mixture (ML)
Giundon et al., 2004	switching (ML)
Zhang et al. 2005	fixed+mixture (ML)
Kosakovsky Pond et al. 2011, 2012	full mixture (ML)
* these methods can be useful when select time at just a fraction of sites * it can be a challenge to apply these met this later)	tion pressures change over hods properly (more about

evolutionary scenario	LRT: p < 0.05	FDR: q < 0.05
episodic models		
H ₁ : great apes	l gene	0 genes
H ₂ : human-chimp	0 genes	0 genes
H ₃ : humans	4 genes	1 genes
long-term shift		
H ₄ : great apes	10 genes	5 genes
H5: human-chimp	8 genes	5 genes

	evolutionary survey
analysis of	9 NRs
pnase	2: reliability and robustness assessment
1.	alignment (independent evaluations)
2.	recombination
3.	MG94 style codon model
4.	alternative tree topologies
5.	robustness to variation in baseline DNA/RNA rates
6.	bootstrapping

	substitution rates are proportionate of the substitution rates are proportionate to empirical frequency of:
Goldman and Yang 1994 (GY):	target codon
Muse and Gaut 1994 (MG):	target nucleotide
See Rodrique et al. (2008) for a comparison of C style, combined with parameters for codon pref future development.	GY and MG style codon models that suggests the M Terences, might be the most desirable core-model f
The MutSel process (part 1) is inherently a procest	ss whereby the transition probability depends on th

	example	e: A → C		
	AAA –	→ CAA		
	AAA -	→ ACA		
	AAA -	→ AAC		
	Δat	codon po	osition	
	1 ^{s†}	2 nd	3 rd	
GY	π_{CAA}	π_{ACA}	π_{AAC}	
MG	${\pi_{c}}^{1}$	${\pi_c}^2$	π_c^3	

gene	status	note	
ESSRA	excluded	MLE instabilities	
ESSRB	excluded	MLE instabilities	
NR1D1	excluded	MLE instabilities	
NR2E3	excluded	recombination	
RARG	excluded	MLE instabilities	
ESSRB	ranked 4 th		
PGR	ranked 3 rd	NR2C1	
RORA	ranked 2 nd	sity	
NR2C1	ranked 1 st	Den	

	best practices for "genome scans
Phase	1: Large scale survey
1.	Do as much quality control and cross validation in the pipeline as possible. Remove as many poor candidates as possible.
2.	alignment validation
3.	plan your analysis carefully; cover a variety of evolutionary questions; execute that plan
4.	control the false discovery rate: identify "families" of genes which are significantly associated with specific evolutionary scenarios

	best practices for "genome scans"
Phase	2: Robustness analysis
1.	independent alignment validation (possible re- analysis)
2.	test for recombination
3.	re-run the analytical plan using a different formulation of the codon model (e.g., MG vs, GY).
4.	re-run the analytical plan using alternative tree topologies.
5.	bootstrap to assess MLE distributions for instabilities.
6.	smoothed aggregated bootstrap for site-wise inference

