Table of contents

L]

expected learning outcomes

getting started

RAxML

Exercise R1:
Exercise R2:
Exercise R3:
Exercise R4:

Exercise R5:

PhyML

Exercise P1:
Exercise P2:
Exercise P3:
Exercise P4:
Exercise P5:

Exercise P6:

IQ-TREE

Basic tree search

More thorough tree search
Bootstrap analysis

Partition model and protein data

Web server

Basic tree search

More thorough tree search

Compare PhyML and RAxML

Bootstrap analysis and alternative approaches
Partition model and protein data

Web server

Exercise 11: Basic tree search

Exercise 12: More thorough tree search
Exercise 13: Compare 1Q-TREE with PhyML and RAXML

Exercise 14: Bootstrap analysis and alternative approaches

Exercise 15: Partition model and protein data

Exercise 16: Web server

Expected learning outcomes

The objectivity of this exercise is to help you understand how to infer maximum-likelihood
phylogenetic trees using RAXML, PhyML, and IQ-TREE. You will learn how to conduct both basic
and more thorough tree searches on DNA and protein sequence alignments, obtain support
values using various approaches, and compare the results from multiple independent tree

searches and/or different programs.

Getting started

The data sets we will use in this exercise are taken from a large-scale phylogenomic study of 48
modern birds (Jarvis et al, 2014), including a DNA alignment of the exons of a protein-coding

gene and the corresponding protein alignment.

RAxXML, PhyML, and IQ-TREE differ in their tree search algorithms, functions, command line
parameters, and other aspects. You can read the help message of each program as a quick way
to learn about its usage (invoke the program with the “-h” option to print its help message). For

more details about these programs, the best resources are their own manuals:

RAXML: https://github.com/stamatak/standard-RAxML/blob/master/manual/NewManual.pdf,

PhyML.: https://github.com/stephaneguindon/phyml/blob/master/doc/phyml-manual.pdf
IQ-TREE: http://www.igtree.org/doc/

Along the way, we will explain some important parameters for these programs, but we still

recommend you to read the full description in their manuals.

In this exercise, we will use Phylo.io (http://phylo.io/) to visualize and compare trees. Phylo.io is a
web-based and quite easy to use. On the web page, simply select the desired mode (“View” or
“Compare”), paste your tree(s) in Newick format into the box(es), and then click “Render”. You
can click on branches to reroot the tree or click on internal nodes to swap subtrees. In the

“Compare” mode, you can also use the “reroot” and “reorganize” functions find the best

corresponding visualization of two trees.

https://github.com/stamatak/standard-RAxML/blob/master/manual/NewManual.pdf
https://github.com/stephaneguindon/phyml/blob/master/doc/phyml-manual.pdf
https://github.com/stephaneguindon/phyml/blob/master/doc/phyml-manual.pdf
http://www.iqtree.org/doc/
http://phylo.io/

RAxML

Exercise R1: Basic tree search

To conduct a basic RAXML tree search using parsimony starting tree, run:
raxmIHPC -p $SRANDOM -m GTRGAMMA -# 1 -s exon_10112.dna.phy -n R1

When it finishes, take a look at the output files.

Note: The “-p” option specifies the random number seed (picked by “SRANDOM”) required for
generating the parsimony starting tree. By using different random number seeds, you can start
tree searches from (hopefully) distinct parsimony trees which would allow you to explore different
parts of the tree space. Also, by specifying the same random number seed, you will always start
from the same tree and get exactly the same result. The “-m” option specifies the models; “GTR”
is the only nucleotide substitution model that can be specified via “-m” (check the help message
to find out how to use other models if interested), while for models of rate heterogeneity, you can

choose between the classic “GAMMA” model and the newer “CAT” model.
Exercise R2: More thorough tree search

We will have to tune some RAXML parameters before we conduct a thorough ML analysis.

First, we will choose between the “GAMMA” and “CAT” models for rate heterogeneity. We will run
10 tree searches under each model (remember to use the same random number seed for both

analyses; use “12345” as example here, you can pick your own with “echo $RANDOM”):
raxmIHPC -p 12345 -m GTRGAMMA -# 10 -s exon_10112.dna.phy -n R2.a
raxmIHPC -p 12345 -m GTRCAT -# 10 -s exon_10112.dna.phy -n R2.b

Check the final GAMMA-based likelihood score of the best tree returned by each analysis. We

will choose the model that gives a better score (use “GAMMA” as example here).

Second, we will test if a better tree can be found using the slower but more thorough search

algorithm (again, remember to use the same random number seed):
raxmIHPC -f o0 -p 12345 -m GTRGAMMA -# 10 -s exon_10112.dna.phy -n R2.c
Note: The slower algorithm is turned on using the option “-f 0”.

Check the final GAMMA-based likelihood score of the best tree found by the slower search

algorithm. We will use the algorithm that gives a better score.

Third, we will test if a better tree can be found using randomly generated tree as starting trees:
raxmIHPC -d -p SRANDOM -m GTRGAMMA -# 10 -s exon_10112.dna.phy -n R2.d

Note: The “-d” option instructs RAXML to start from random trees.

Check the final GAMMA-based likelihood score of the best tree found by the analysis using

random starting trees. We will choose the type of starting trees that gives a better score.

Now we are ready to run the thorough search for a ML tree by conducting 20 independent

searches (assume that random starting tree won the battle above):
raxmIHPC -d -p SRANDOM -m GTRGAMMA -# 20 -s exon_10112.dna.phy -n R2.e

What is the final GAMMA-based likelihood score of the best tree found by this analysis? Is it the
best score we have seen so far? Among the 20 searches, how many times have this best tree
being found? In order to answer the last question, we can calculate the distance between the

trees returned by the 20 searches:

cat RAXML_result.R2.e.RUN.{0..19} > R2.e.trees
raxmIHPC f r -z R2.e.trees -m GTRGAMMA -n R2.f

Note: The “-f r” option computes pairwise RF distances between all pairs of trees in a tree file
passed via "-z". The “-m” option has to be provided even though the “GTRGAMMA” model has

nothing to do with this analysis (in fact, “-m” and “-n” are always required by RAxML).

Check the output file (‘“RAXML_info.R2.f") for the RF distances between the best tree and other
trees. If the best tree was found multiple times, it is a good indication that we have conducted
sufficient number of tree searches. Otherwise, we might have to perform additional tree

searches.

Note: This exercise is adapted from Stamatakis, A. 2015. Using RAXML to infer phylogenies.
Curr. Protoc. Bioinform. 51:6.14.1-6.14.14.

Exercise R3: Bootstrap analysis

To perform a standard bootstrap analysis, run:

raxmIHPC -b $RANDOM -p $RANDOM -m GTRGAMMA -# 100 -s exon_10112.phy -n R3.a

Note: The “-b” option specified a random number seed for standard bootstrap analysis. The “-#”
option specified the number of bootstrap replicated to be performed. Bootstrap analysis can be

very time consuming, so reduce the number of replicates if you feel the analysis is too slow.
To perform a rapid bootstrap analysis, run:

raxmIHPC -x $SRANDOM -p $SRANDOM -m GTRGAMMA -# autoMRE -s exon_10112.phy -n
R3.b

Note: The command for rapid bootstrap is largely the same as standard bootstrap, with the only
difference being the option used to specify the random number seed (“-x” instead of “-b”). Here
we specified “autoMRE” for the “-#” option; it indicates that, instead of running a fixed number of
replicates, the “autoMRE” automatic bootstopping criterion will be used to decide when to stop

the bootstrap analysis (up to 1000 replicates).

Once these analyses are finished, you can compare the speed of the two types of bootstrap
analyses. Also you can map the bootstrap replicates onto the best tree we obtained in exercise

R2 and obtain the support values:

raxmlHPC -f b -t RAXML_bestTree.R2.e -z RAXML_bootstrap.R3.a -m GTRGAMMA -n R3.c
raxmlHPC -f b -t RAXML_bestTree.R2.e -z RAXML_bootstrap.R3.b -m GTRGAMMA -n R3.d

You can then visualize and compare the two trees on Phylo.io. Are the two types of bootstrap

support values similar to each other?

In addition, you can combine rapid bootstrap and ML tree search into one single analysis with

the “-f a” option:

raxmIHPC -f a -x SRANDOM -p $SRANDOM -m GTRGAMMA -# autoMRE -s
exon_10112.dna.phy -n R3.e

Note: In this way, RAXML will first perform the rapid bootstrap analysis, and take the every 5"
bootstrap replicate tree as starting tree to conduct ML searches.

Compare the results with the thorough ML search we did in exercise 2 in terms of run time, best

tree score, etc.
Exercise R4: Partition model and protein data

In phylogenomic analysis, the data set (e.g. supermatrix containing multiple genes) are often
divided into partitions (e.g. by gene) to accommodate the differences in their evolutionary rates

and substitution models. Here, we will run a partitioned analysis on the exon sequence

alignment. We will divide the alignment into two partitions based on codon positions by creating

the following partition model file:

DNA, c1 = 1-xxx\2,
DNA, c2 = 2-xxx\2

Note: The first line defines the “c1” partition as every other column starting from position 1 to xxx.
Similarly, the second line defines the “c2” partition as every other column starting from position 2

to xxx.

We can then run a ML search as we have done in exercise R1, now with the partition model (use

the same random number seed so the results can be compared):

raxmIHPC -p SRANDOM -m GTRGAMMA -# 1 -s exon_10112.dna.phy -q exon_10112.dna.part
-n R4.a

Note: The partition model is provided via “-q”.

So far, we have only analyzed the nucleotide alignment, but protein alignment can be analyzed
in the same way. The only difference is the that there are more substitution models available for

amino acid. You can analyze the protein alignment as following:

raxmIHPC -p SRANDOM -m PROTGAMMAAUTO --auto-prot=bic -# 1 -s exon_10112.dna.phy -q
-n R4.a

Note: “-m PROTGAMMAAUTO —auto-prot=bic” instructs RAXML to perform an automatic
selection for the best-fit protein model based on the BIC criterion, and use the “GAMMA” model

for rate heterogeneity.

X
Exercise R5: Web server

If you have time, explore the CIPRES portal (http://www.phylo.org/index.php/) which is a valuable

resource for analyzing large-scale data sets using RAXML.

PhyML

Exercise P1: Basic tree search

To conduct a basic PhyML tree search, run:
phyml -i exon_10112.dna.phy -d nt-q-b 0 -m GTR -c 4 -a e -f e -s SPR -0 tIr --run_id P1

Here, the model is equivalent to the “GTRGAMMA” model we have used in the RAXML exercise.
The same model is specified in different ways in the two programs. Check the help message (or

manual) to find out the meanings of all the options in the command above.

Note: PhyML also uses the random seed number, but unlike RAXML, it generates the seed

automatically. You can provide your own seed using the “--r_seed” option.
Exercise P2: More thorough tree search

To conduct more thorough tree search, we can simply run PhyML multiple times (assign a unique

ID to each run so that the results are not overwritten):

phyml -i exon_10112.dna.phy -d nt-q -b 0 -m GTR -c 4 -a e -fe -s SPR -0 tIr --run_id P2.a0
phyml -i exon_10112.dna.phy -d nt-q-b 0 -m GTR -c 4 -a e -f e -s SPR -0 {Ir --run_id P2.a1

In addition, we can add one or more searches using random starting trees to the analysis:

phyml -i exon_10112.dna.phy -d nt-q -b 0 -m GTR -c 4 -a e -f e -s SPR -0 tIr --rand_start
--n_rand_starts 10 --run_id P2.b

Note: This analysis include five searches using random starting trees and one search using the

default starting tree.

Another option is to provide your own starting trees (e.g. the starting trees from the RAxML

exercise). This can be done via the “-u” option:

phyml -i exon_10112.dna.phy -d nt-q-b 0 -m GTR -c4 -a e -fe -s SPR -0 tIr --u
RAXML_parsimonyTree.R1 --run_id P2.c

Exercise P3: Compare PhyML and RAxXML

Having analyzed the same data set using both PhyML and RAXML, we can now compare the

likelihood scores of the best trees found by the two programs. It is important to keep in mind that

the likelihood scores from different phylogenetic programs are not necessarily comparable. For a
fair comparison, we will evaluate all the trees using the same program. To calculate the likelihood

score for a given tree (e.g. the best tree found in exercise R1) using RAXML, run:
raxmIHPC -f e -t RAXML_bestTree.R1 -m GTRGAMMA -s exon_10112.dna.phy -n P3.a

In exercise P2, we have performed a PhyML tree search using the RAXML parsimony starting

tree from exercise R1. We can evaluate the best tree found by PhyML in the same way:

raxmIHPC -f e -t exon_10112.dna.phy_phyml_tree_P2.c -m GTRGAMMA -s
exon_10112.dna.phy -n P3.b

Check the likelihood scores of the two trees, which one is better? Besides the scores, you should
also calculate the RF distance between the trees; different Newick representations of the same
topology may give rise to slightly different scores. Also, keep in mind that this is a single data set
and a single tree search, so this one comparison cannot tell you which program performs better

in general.
To do the same thing in PhyML.:

phyml -i exon_10112.dna.phy -d nt-q -b 0 -m GTR -c 4 -a e -f e -0 Ir --u RAXML_bestTree.R1
--run_id P3.c

phyml -i exon_10112.dna.phy -d nt-q-b 0 -m GTR-c4 -ae-fe-olr--u
exon_10112.dna.phy_phyml_tree P2.d --run_id P3.d

Exercise P4: Bootstrap analysis and alternative approaches

To perform a standard bootstrap analysis in PhyML, run:

phyml -i exon_10112.dna.phy -d nt -q -b 100 -m GTR -c 4 -a e -f e -0 Ir --u RAXML_bestTree.R1
--run_id P4.a

This one analysis includes a search for the ML tree and 100 bootstrap replicates, and the
bootstrap support values will be mapped onto the tree at the end of the analysis. You can also
map the PhyML bootstrap trees onto the RAXML best tree (or vice versa) and compare the
bootstrap support values from the two programs.

Note: PhyML does not have the “bootstopping” function so you have to specify the number of

bootstrap replicates. Here we run 100 replicates, but feel free to reduce the number of replicates.

The standard bootstrap analysis can be very time consuming for larger data sets, therefore

PhyML offers several alternative, fast approaches to calculate branch supports. These can be

specified using the “-b” option and we can calculate the support values for a user provided tree.

For example, to calculate the approximate likelihood ratio test (aLRT) support values:

phyml -i exon_10112.dna.phy -d nt -q -b -2 -m GTR -c 4 -a e -f e -0 Ir --u RAXML_bestTree.R1
--run_id P4.b

To calculate SH-like aLRT support values:

phyml -i exon_10112.dna.phy -d nt-q -b -4 -m GTR -c 4 -a e -f € -0 Ir --u RAXML_bestTree.R1
--run_id P4.c

To calculate approximate Bayes support values:

phyml -i exon_10112.dna.phy -d nt-q -b -5 -m GTR -c 4 -a e -f € -0 Ir --u RAXML_bestTree.R1
--run_id P4.d

You can then use Phylo.io to visualize and compare these trees which have the same topology
but different types of support values. Note that the alternative support values range between 0

and 1 while the bootstrap support values range between 0 and 100.

Exercise P5: Partition model and protein data

In PhyML, the partition model is specified using a XML configuration file, which is quite
complicated but at the same time really powerful. You can use the provided partition model and

alignment files to run the partitioned analysis:
phyml --xml=exon_10112.dna.xml

Protein alignments can be analyzed in the same way as DNA alignments. Unlike RAXML, PhyML
does not offer automated model selection so you have to specify the amino acid substitution

model for the analysis. Here we analyze the protein alignment with the “LG” model:
phyml -i exon_10112.pep.phy -d aa -q -b -0 -m LG -c 4 -a e -f m -0 tIr --run_id P5.b

You can also run the analysis using the model selected by RAXML (in exercise R4), and

compare the results of PhyML and RAXML.

Exercise R6: Web server

If you have time, explore the PhyML web server (http://www.atgc-montpellier.fr/phyml/). Note that

it runs an earlier version of PhyML (version 3.0).

http://www.atgc-montpellier.fr/phyml/

IQ-TREE
Exercise I1: Basic tree search
To conduct a basic tree search in IQ-TREE, run:

igtree -s exon_10112.dna.phy -m GTR+G -pre |1

Note how the same model (GTR for nucleotide substitution model, and Gamma for rate
heterogeneity) is specified in the three programs. Also, IQ-TREE prints out detailed progress

information during its run. Check the information and try to match with the algorithm of IQ-TREE.

Note: Similar to PhyML, IQ-TREE generates its random seed number automatically. You can

provide your own seed using the “--seed” option.
Exercise 12: More thorough tree search

There are multiple strategies to conduct more thorough tree searches in IQ-TREE. First, we can

run IQ-TREE multiple times (assign a unique ID to each run, otherwise IQ-TREE will complain):

igtree -s exon_10112.dna.phy -m GTR+G -pre 12.a0
igtree -s exon_10112.dna.phy -m GTR+G -pre 12.a1

In addition, we can increase the length of the tree search:
igtree -s exon_10112.dna.phy -m GTR+G -nstop 500 -pre 12.b

Note: The option “-nstop” specifies the number of unsuccessful iterations before stop. Here we

change the value from 100 (default) to 500.

Another critical parameter to tune for difficult data set is the strength of randomized NNI
perturbation. It is recommended to use smaller perturbation strength for data sets with many
short sequences. Here we try to change to strength from 0.5 (default) to 0.2, but you can try

larger values as well:
igtree -s exon_10112.dna.phy -m GTR+G -pers 0.2 -pre 12.c

IQ-TREE by default only consider a subset of the NNI neighbors during its tree search. We can

conduct a more thorough NNI search by turn on the “-allnni” option:

igtree -s exon_10112.dna.phy -m GTR+G -allnni -pre 12.d

Compare the results and run time of all the four strategies. Which one has the best performance

on this data set?
Exercise 13: Compare IQ-TREE and other programs

Now we can compare the results of IQ-TREE, RAXML, and PhyML. For example, we will use

IQ-TREE to evaluate the ML trees found by the three programs:

igtree -s exon_10112.dna.phy -m GTR+G -te [RAXML best tree file] -pre 13.a
igtree -s exon_10112.dna.phy -m GTR+G -te [PhyML best tree file] -pre 13.b
igtree -s exon_10112.dna.phy -m GTR+G -te [IQ-TREE best tree file] -pre 13.c

Check the likelihood scores of these trees, which one is better? You can also use IQ-TREE to

calculate the RF distances between the trees:

cat [RAXML best tree file] [PhyML best tree file] [[Q-TREE best tree file] > 13.trees
igtree -rf_all 13.tree -pre 13.d

Again, keep in mind that this is a single data set and a single tree search, so this one

comparison cannot tell you which program performs better in general.
Exercise R4: Bootstrap analysis

To perform a standard bootstrap analysis in IQ-TREE, run:
igtree -s exon_10112.dna.phy -m GTR+G -b 100 -pre 13.a

This will include one ML tree search and 100 bootstrap replicates in one run, and the bootstrap

support values will be mapped onto the ML tree at the end of the analysis.

Note: IQ-TREE does not offer a “bootstopping” function for the standard bootstrap analysis, so
you have to specify the number of bootstrap replicates. Here we run 100 replicates, but feel free

to reduce the number of replicates.
To perform an ultra-fast bootstrap (UFBS) analysis, run:
igtree -s exon_10112.dna.phy -m GTR+G -bb 1000 -pre 13.b

Note: The number of UFBS replicates is specified via the “-bb” option while for standard

bootstrap it is via the “-b” option.

Different from the standard bootstrap and the rapid bootstrap of RAXML, the ultra-fast bootstrap
analysis is conducted during the search for ML tree. Check the run time of the UFBS analysis
and compare with that of the ML tree search and the standard bootstrap analysis. Also, you can

compare the support values from the standard and ultra-fast bootstrap analyses.

Similar to PhyML, 1Q-TREE also implements the aLRT, SH-like aLRT, and aBayes analyses, and

it can run these analyses on a given tree. To calculate the aLRT support values:
igtree -s exon_10112.dna.phy -m GTR+G -alrt 0 -te RAXML_bestTree.R1 -pre 13.c

To calculate the SH-like aLRT support values:

igtree -s exon_10112.dna.phy -m GTR+G -alrt 1000 -te RAXML_bestTree.R1 -pre 13.d
To calculate the aBayes support values:

igtree -s exon_10112.dna.phy -m GTR+G -abayes -te RAXML_bestTree.R1 -pre [3.e

You can then visualize and compare these trees which have the same topology but different
types of support values on Phylo.io. You can also compare the aLRT, SH-like, and aBayes

support values calculated by IQ-TREE and PhyML. Do they match?
Exercise 15: Partition model and protein data

IQ-TREE accepts partition model files in the RAXML format. It also supports a more complicated
but more powerful NEXUS format. You can use either of them to run the analysis. To use the

RAXML partition model file, run:

igtree -s exon_10112.dna.phy -m GTR+G -q exon_10112.dna.part -pre 15.a
To use the NEXUS partition model file, run:

igtree -q exon_10112.dna.nxs -pre 15.b

Note: The NEXUS partition model file contains information on the alignment file, partition, and

model, therefore no other options are needed.

Protein alignments can be analyzed in the same way as DNA alignments. Like RAXML, IQ-TREE

also implements the model selection function (for both DNA and protein data):

igtree -s exon_10112.dna.phy -m TEST -mset raxml -pre 15.c

Note: The “-m TEST” option instructs IQ-TREE to perform model selection before the ML tree
search, while the “-mset raxml” option restricts the candidate models to the ones supported by
RAXML.

Now you can compare the result of IQ-TREE with that of RAXML and PhyML.
Exercise R6: Web server

If you have time, explore the IQ-TREE web server (http://igtree.cibiv.univie.ac.at/).

