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A new full data method: SVDquartets

Goal of this work:

Develop a full data approach that is computationally feasible for large-scale data

How?

Summarize data differently, so that model requires less computation

Develop theory to infer relationships among quartets of taxa very accurately

Use a quartet assembly method to build a large tree
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Species tree inference using site pattern frequencies

Data: DNA sequences for gene i , Di

Example:

Taxon Sequence
(A) Human GCCG A TGCCGATGCCGAA
(B) Chimp GCCG T TGCCGTTGCCGTT
(C) Gorilla GCGG A AGCGGAAGCGGAA

Assume each site in the sequence evolves independently of other sites

Data are assumed to be an iid sample of sites:
(Di )j = data at the tips of the tree for site j in gene i

Consider site pattern probabilities – for example, p̃ATA
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Species tree inference using site pattern frequencies

Model: Species tree → gene trees → data

species tree → gene tree ::: coalescent process

gene tree → data ::: nucleotide substitution models: GTR+I+Γ and
submodels

Idea: compute site pattern probabilities under this model for 4 taxa by
enumerating all possibilities for simple models

Tedious, but not difficult

Look for algebraic structure in the site pattern probabilities
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Methods – data representation

1 2 3 4

Taxon Sequence
1 ACCAATGCCGATGCCAAA
2 ACCATTGCCGATGCCATA
3 ACGAAAGCGGAAGCGAAA
4 ATGAAAGCGGAAGCCAAA

Flat12|34(P) =



[AA] [AC ] [AG ] [AT ] [CA] · · ·
[AA] pAAAA pAAAC pAAAG pAAAT pAACA · · ·
[AC ] pACAA pACAC pACAG pACAT pACCA · · ·
[AG ] pAGAA pAGAC pAGAG pAGAT pAGCA · · ·
[AT ] pATAA pATAC pATAG pATAT pATCA · · ·
[CA] pCAAA pCAAC pCAAG pCAAT pCACA · · ·
[· · · ] · · · · · · · · · · · · · · · · · ·


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Methods – data representation

1 2 3 4

Taxon Sequence
1 ACCAATGCCGATGCCAAA
2 ACCATTGCCGATGCCATA
3 ACGAAAGCGGAAGCGAAA
4 ATGAAAGCGGAAGCCAAA

Flat12|34(P) =



[AA] [AC ] [AG ] [AT ] [CA] · · ·
[AA] 5 pAAAC pAAAG pAAAT pAACA · · ·
[AC ] pACAA pACAC pACAG pACAT pACCA · · ·
[AG ] pAGAA pAGAC pAGAG pAGAT pAGCA · · ·
[AT ] pATAA pATAC pATAG pATAT pATCA · · ·
[CA] pCAAA pCAAC pCAAG pCAAT pCACA · · ·
[· · · ] · · · · · · · · · · · · · · · · · ·


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Methods – data representation

1 2 3 4

Taxon Sequence
1 ACCAATGCCGGAGCCCAAA
2 ACCATTGACGGAGCCAATA
3 ACGAAAGACGGAAGCAAAA
4 ATGAAAGTCGGAAGCTAAA

Flat12|34(P) =



[AA] [AC ] [AG ] [AT ] [CA] · · ·
[AA] 5 pAAAC pAAAG pAAAT pAACA · · ·
[AC ] pACAA pACAC pACAG pACAT pACCA · · ·
[AG ] pAGAA pAGAC pAGAG pAGAT pAGCA · · ·
[AT ] pATAA pATAC pATAG pATAT pATCA · · ·
[CA] pCAAA pCAAC pCAAG 2 pCACA · · ·
[· · · ] · · · · · · · · · · · · · · · · · ·


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Methods – data representation

1 2 3 4

Taxon Sequence
1 ACCAATGCCGGAGCCCAAA
2 ACCATTGACGGAGCCAATA
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
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[· · · ] · · · · · · · · · · · · · · · · · ·
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Methods – data representation

1 2 3 4

Taxon Sequence
1 ACCAATGCCGGAGCCCAAA
2 ACCATTGACGGAGCCAATA
3 ACGAAAGACGGAAGCAAAA
4 ATGAAAGTCGGAAGCTAAA

Flat12|34(P) =



[AA] [AC] [AG ] [AT ] [CA] · · ·
[AA] 5 pAAAC pAAAG pAAAT pAACA · · ·
[AC ] pACAA pACAC pACAG pACAT pACCA · · ·
[AG ] pAGAA pAGAC pAGAG pAGAT pAGCA · · ·
[AT ] pATAA pATAC pATAG pATAT pATCA · · ·
[CA] pCAAA pCAAC pCAAG 2 pCACA · · ·
[· · · ] · · · · · · · · · · · · · · · · · ·


These two columns are identical – matrix rank is reduced by one
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Results

Main Result (Chifman and Kubatko, 2015):

Species tree inference: For a flattening matrix constructed on the true
four-taxon tree, the matrix rank is 10 under the following model

I species tree → gene tree ::: coalescent process

I gene tree→ data ::: nucleotide substitution models: GTR+I+Γ and submodels

New Result (Long and Kubatko, 2017):

This result holds even in the absence of a molecular clock or when population
sizes change along the tree
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What about the incorrect tree?

1 3 2 4

Taxon Sequence
1 ACCAATGCCGGAGCCCAAA
2 ACCATTGACGGAGCCAATA
3 ACGAAAGACGGAAGCAAAA
4 ATGAAAGTCGGAAGCTAAA

Flat13|24(P) =



[AA] [AC] [AG ] [AT ] [CA] · · ·
[AA] 5 pAAAC pAAAG pAAAT pAACA · · ·
[AC ] pACAA pACAC pACAG pACAT pACCA · · ·
[AG ] pAGAA pAGAC pAGAG pAGAT pAGCA · · ·
[AT ] pATAA pATAC pATAG pATAT pATCA · · ·
[CA] pCAAA pCAAC pCAAG 2 pCACA · · ·
[· · · ] · · · · · · · · · · · · · · · · · ·


These two columns are no longer identical – full rank matrix in both cases
(rank = 16)
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Extensions of the Main Result

Arbitrary number of states, κ, under the coalescent model:

I If A|B is a valid split for a tree T , then rank(FlatA|B(P)) ≤
(
κ+1

2

)
.

I If C |D is not a valid split for a tree T , then rank(FlatC |D(P)) >
(
κ+1

2

)
.

I The species tree is completely determined by knowledge of valid splits on all
quartets.

Single underlying gene tree (no coalescent assumption):

I If A|B is a valid split for a tree T , then rank(FlatA|B(P)) ≤ 4.
I If C |D is not a valid split for a tree T , then rank(FlatC |D(P)) = 16.
I The species tree is completely determined by knowledge of valid splits on all

quartets.

Laura Kubatko and Dave Swofford SVDquartets January 31, 2017 12 / 33



How can we use these facts for inference?

Basic idea:

I Data: aligned DNA sequences for multiple loci or for a collection of SNPs

I Construct the flattening matrix

I Compute some measure of how close the observed flattening matrix is to a
matrix with rank 10

We use singular value decomposition (SVD) of the flattening matrix – define
the SVD score for a split A|B to be

SVDscore(FlatA|B(P̂)) =

√√√√ 16∑
i=11

σ2
i

where σ2
i is the i th singular value of the matrix FlatA|B(P̂).

I Pick tree relationships that give the best value of the measure in the previous
step
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Multi-locus vs. SNP data

The theory is developed for the SNP setting – why do we think this might be ok
for multilocus data?

Consider the case of three possible gene trees with the probabilities below under
the coalescent model:

Gene tree 1 — p1 = 0.4

Gene tree 2 — p2 = 0.3

Gene tree 3 — p3 = 0.3

Now suppose we observe multilocus data for 1,000 genes as follows:

Gene tree1 — 380 genes

Gene tree 2 — 300 genes

Gene tree 3 — 320 genes

Then, if the genes are equal in length, the proportion of sites coming from each
tree is approximately what is predicted under the SNP model.
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Application: Species tree estimation under the coalescent

Main idea: use the observed site pattern distribution to provide information about
which of the three possible splits for a set of four taxa is the true split.

Species tree estimation using algebraic statistics

Main idea: use the observed site pattern distribution to provide information about
which of the three possible splits for a set of four taxa is the true split.

A

B D

C A

C D

B A

D B

C

The program SVDscores computes a score for each split in a given quartet of taxa
and chooses the split with the best (lowest) score.

Laura Kubatko () Molecular Evolution Workshop 2013 July 30, 2013 2 / 9

Compute a score for each split in a given quartet of taxa and choose the split with
the best (lowest) score.
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Simulation study 1 – can we detect the correct split?

Simulate data from the Jukes-Cantor model for a 4-taxon tree and examine split scores

First row: 5,000 SNP sites; Second row: 10 genes of 500bp
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Simulation study 1 – can we detect the correct split?

Simulate data from the GTR+I+Γ model for a 4-taxon tree and examine split scores

First row: 5,000 SNP sites; Second row: 10 genes of 500bp
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Simulation study 1 – can we detect the correct split?

Change in scores as amount of data increases
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12|34 split, branch lengths = 0.5
13|24 split, branch lengths = 0.5
14|23 split, branch lengths = 0.5
12|34 split, branch lengths = 1.0
13|24 split, branch lengths = 1.0
14|23 split, branch lengths = 1.0
12|34 split, branch lengths = 2.0
13|24 split, branch lengths = 2.0
14|23 split, branch lengths = 2.0
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How do we assess variability?

How can we measure confidence in the inferred split?

Use a nonparametric bootstrap procedure

I Generate bootstrap data sets from the original data matrix

I Compute split scores on all three splits for each bootstrap data matrix

I Record the number of bootstrap data sets for which each split is inferred, and
use the proportion of these as a bootstrap support measure

Evaluate performance of the bootstrap procedure using the same simulated
data
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Assessing support using the bootstrap

Simulate data from the Jukes-Cantor model for a 4-taxon tree and examine bootstrap

support scores
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Assessing support using the bootstrap

Simulate data from the GTR+I+Γ model for a 4-taxon tree and examine bootstrap

support scores
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Extension to larger trees

Algorithm

1 Generate all quartets (small problems) or sample quartets (large problems)

2 Estimate the correct quartet relationship for each sampled quartet

3 Use a quartet assembly method to build the tree - PAUP* uses the method
of Reaz-Bayzid-Rahman (2014), called QFM, to build the tree.

→

1 2 | 3 4
3 5 | 2 17
19 6 | 16 1
5 22 | 3 7
. . . .

→
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Extension to larger trees

Multiple lineages are handled as follows:

1 Sample four species

2 Select one lineage at random from each species

3 Estimate the quartet relationships among the four sampled lineages

4 Restore the species labels (but lineage quartets are saved, too)
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Simulation under more realistic scenarios

Consider the effects of:

Larger trees: 10 species

Multi-locus data: 10-100 genes

Varying levels of ILS: speciation intervals of 0.5, 1.0, and 2.0

Lineage-specific rate variation: modeled by the lognormal distribution

0 1 2 3 4

0
1

2
3

4

Lognormal Distributions

Rate multiplier

D
en
si
ty

m=-0.005, s=0.1
m=-0.125, s=0.5
m=-0.5, s=1.0
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Simulation study 2 – larger trees with lineage-specific rate variation

Average (over 100 reps) scaled RF distance (range 0 - 1)

9
10
7
8
5
6
3
4
2
1

black = lognormal(m = −0.005, s = 0.1)
red = lognormal(m = −0.125, s = 0.5)
blue = lognormal(m = −0.5, s = 1.0)

500bp per gene

10 genes 20 genes 50 genes 100 genes
Short 0.246 0.169 0.039 0.001
(0.5) 0.290 0.161 0.043 0.004

0.290 0.160 0.050 0.004
Medium 0.117 0.024 0.001 0

(1.0) 0.107 0.027 0 0
0.099 0.001 0.001 0

Long 0.016 0.001 0 0
(2.0) 0.017 0 0 0

0.011 0.001 0 0
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Data: 7 (sub)species, 26 individuals (52 sequences), 19 genes

Species Location No. of individuals per gene

S. catenatus catenatus Eastern U.S. and Canada 9

S. c. edwardsii Western U.S. 4

S. c. tergeminus Western and Central U.S. 5

S. miliarius miliarius Southeastern U.S. 1

S. m. barbouri Southeastern U.S. 3

S. m. streckerii Southeastern U.S. 2

Agkistrodon sp. (outgroup) U.S. 2

Laura Kubatko and Dave Swofford SVDquartets January 31, 2017 26 / 33



Empirical example: Sistrurus rattlesnakes
All quartets and 100 bootstrap replicates
∼ 11 minutes
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Empirical example: Sistrurus rattlesnakes
All quartets and 100 bootstrap replicates
∼ 11 minutes

Agkistrodon

S.c. catenatus

S.c. edwardsii

S.c. tergeminus

S.m. miliarius

S.m. streckeri

S.m. barbouri
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SVDQuartets bootstrap consensus
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New features: branch length estimation

Consider the JC69 model for the
symmetric species tree with 4 taxa

In this case, there are 9 distinct site
pattern probabilities

Chifman and Kubatko (2015)
showed that these site pattern
probabilities under the coalescent
model could be expressed as

pia ib ic id |(S,τ ) = c0 + c1x
2µ
1 + c2x

2µ
2 + c3x

2µ
1 x2µ

2 + c4x
2µ
3 + c5x

µ
1 x

2µ
3 + c6x

µ
2 x

2µ
3

+c7x
µ
1 x

µ
2 x

2µ
3 + c8x

− 2
θ

1 x
− 2

θ
2 x

4(µ+ 1
θ )

3

where xj = e−τj for j = 1, 2, 3 and the

coefficients are functions of the

mutation rate µ and effective

population size θ.
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Fig 1: Example of two gene trees (red) nested within a symmetric species
tree (blue). (a) bla-bla; (b) bla-bla.

out the application to DNA sequence data where relevant. We then present
our main results and show how they are used to establish identifiability in
the general case. Based on these results, we propose a method for inferring
species-level relationships for empirical data sets consisting of multi-locus
DNA sequences. We conclude by suggesting extensions of our current work.

2. Background. In this section, we review the models used for both
the coalescent process and the mutation process along a phylogenetic tree.
Let � = (S, ⌧) represent a phylogenetic species tree with n leaves with
topology S and vector of speciation times ⌧ = (⌧1, ⌧2, . . . , ⌧n�1). Let g =
(G, t) denote a gene tree with topology G and vector of coalescent times
t = (t1, t2, . . . , tn�1). In particular, tj is the time measured backward from
the (j � 1)st coalescent event to the jth coalescent event, 0 < tj < 1, for
j = 1, 2, . . . n�1. Figure 1 shows examples of gene trees nested within species
trees with all of these quantities labeled.

2.1. The Coalescent Process. The coalescent is a model that describes
the evolutionary history of a sample of lineages within a population back-
ward in time from the present to the past [9, 10, 17? ]. In particular, given
a sample of j lineages, the coalescent model specifies that the time tj until
the next pair of lineages coalesces follows an exponential distribution with

imsart-aos ver. 2012/08/31 file: version1_10-16-2012.tex date: March 17, 2014
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New features: branch length estimation

Let C9×9 be the matrix of coefficients. Then the above expressions for the
site pattern probabilities can be written as

Cβ = p

where

β
′

=
(
x2µ

1 , x2µ
2 , x2µ

1 x2µ
2 , x2µ

3 , xµ1 x
2µ
3 , xµ2 x

2µ
3 , xµ1 x

µ
2 x

2µ
3 , (x1x2)−2/θx

4(µ+1/θ)
3

)
and

p
′

= (pxxxx , pxxxy , pxyxx , pxyxy , pxxyy , pxxyz , pyzxx , pxyzx , pxyzw )

Use this to write the likeilhood for the four-taxon case, and find maximum
likelihood estimates numerically

Asymptotic variances can be found using standard statistical theory (Fisher
information matrix, etc.)
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New features: branch length estimation

For 4 taxa:
I Test robustness and possibly use models more general than JC69

For larger trees:
I Combine estimates for 4 taxa

τ τ
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SVDquartets Summary

Advantages:

I Quick! And scales well to large taxon sets and next-gen sequencing data

I Easily parallelized

I Intuitive method for handling missing data

I Potential for application to other data types (codons, amino acids, etc.)

Disadvantages:

I Estimating a matrix with 256 entries .... so may not work well with limited
data
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SVDQuartets

Now on to the tutorial!
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