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Rooted species trees ...

. are oriented connected and acyclic graphs, where terminal nodes
are associated to a set of species:

@ the leaves or taxa represent
extant organisms
@ internal nodes represent TIME

hypothetical ancestors

@ each internal node represents
the lowest common ancestor of
all taxa below it (clade)

. . . .
Pan Pongo Macaca Mus

@ the only node without ancestor
is called root
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Gene trees

@ Gene trees are built by analyzing a gene family, i.e., homologous
molecular sequences appearing in the genome of different
organisms.

Mouse GGAGCTTGAGCCGGAATAGTAGGAACATCTT TAAGAATTITTAATTCGAGC
GGAATCTGAACAGGCTTAGTAGCCACTAGAATAAGACTITTAATTCGAGC
Bat GGAATTTGAACAGGTTITAGTAGCCACTAGAATAAGACTCTTAATTCGAGC
GGAATTTGAACCGGCCTCGTAGCAACAAGAATAAGCTTATTAATCCGTGC

Mouse Bat
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Gene trees

@ Gene trees are built by analyzing a gene family.

o Used, among other things, to estimate species trees.
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Gene trees

@ Gene trees are built by analyzing a gene family.

Mouse Bat Mouse Bat Mouse

o Used, among other things, to estimate species trees.

Gene trees can significantly differ from the species tree for:

e methodological reasons

e biological reasons

Bat
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Gene trees

@ Gene trees are built by analyzing a gene family.

Mouse Bat Mouse Bat Mouse

o Used, among other things, to estimate species trees.

Gene trees can significantly differ from the species tree for:

e methodological reasons

e biological reasons

o We usually use several gene families...

Bat
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Gene trees

@ Gene trees are built by analyzing a gene family.

A

Cumulative sequenced genomes
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Gene trees can sigji '/4 e for:
1
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e biological reasons

o We usually use several gene families...
http://sulab.org/2013/06/sequenced-genomes-per-year/
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Reconstruction of phylogenies for multiple datasets

The two main classic approaches:

@ Supermatrix approach: assembling primary data
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Reconstruction of phylogenies for multiple datasets

The two main classic approaches:

@ Supermatrix approach: assembling primary data




An implicit assumption

The implicit assumption of using trees is that, at a
macroevolutionary scale, each (current or extinct) species or gene
only descends from one ancestor. Darwin described evolution as
"descent with modification”, a phrase that does not necessarily
imply a tree representation...
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A new approach: building phylogenic networks

Why do we need them? Due to reticulate evolutionary phenomena
(hybridization, recombination, horizontal gene transfer) the

evolution of a set of species sometimes cannot be described using
phylogenetic trees.
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H. cydmo cordula H. melpomenc
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A new approach: building phylogenic networks

Why do we need them? Due to reticulate evolutionary phenomena
(hybridization, recombination, horizontal gene transfer) the

evolution of a set of species sometimes cannot be described using
phylogenetic trees.
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The network of life
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Archaea
Doolittle, 1999

Eukarya
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Three different paradigms

) see only the tree

We (want to

EJOABYDIRUDI))

Archaea

Eukarya

eLIR)ORqOURK))

) q D

Bacteria
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Three different paradigms

It is a big mess, no chance to retrieve the past

Bacteria Eukarya Archaea

Animalia
Crenarchaeota
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Three different paradigms

There is an underlying tree structure, with
some reticulate events

Bacteria Eukarya Archaea
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An example - a split network

,~ Ceriodaphnia —~_ ANOMOPODA
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J. Wagele and C. Mayer. Visualizing differences in phylogenetic information content of alignments and distinction of
three classes of long-branch effects. BMC Evolutionary Biology, 7(1):147, 2007
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An example - a reduced median network

m Northeast Asia domestic pig ' Domestic pig in region MDYZ m Domestic pig in South China [ Other
Northeast Asia wild boar = Wild boar in region MDYZ m Wild boar in South China Feral pigs
m Domestic pig in region UMYR m Domestic pig in the Mekong region m Domestic pig in region URYZ ~ m Japanese domestic pig and ancient DNA
m Domestic pig in region DRYR m Wild boar in the Mekong region Wild boar in region URYZ * Coalescent root type of haplogroup D1
Dlg

o > s
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Di1c2
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One mutation

G.-S. Wu, Y.-G. Yao, K.-X. Qu, Z.-L. Ding, H. Li, M. Palanichamy, Z.-Y. Duan, N. Li, Y.-S. Chen, and Y.-P. Zhang.
Population phylogenomic analysis of mitochondrial DNA in wild boars and domestic pigs revealed multiple
domestication events in East Asia. Genome Biology, 8(11):R245, 2007



An example - a minimum spanning network

C. M. Miller-Butterworth, D. S. Jacobs, and E. H. Harley. Strong population sub- structure is correlated with
morphology and ecology in a migratory bat. Nature, 424(6945):187-191, 2003
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An example - a DTLR network

-proteobacteria a-proteobacteria  Gram-postive
Pasteursllaceae prm— bacteria

Zobiacene
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P.J. Planet, S.C. Kachlany, D.H. Fine, R. DeSalle, and D.H. Figurski. The wide spread colonization island of
actinobacillus actinomycetemcomitans. Nature Genetics, 34:193-198, 2003.
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An example - a recombination network

00000
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Daniel H. Huson, Regula Rupp, Celine Scornavacca. Phylogenetic Networks. Cambridge University Press. 2011
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Phylogenetic networks
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Phylogenetic networks
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A phylogenetic network ...

. is any connected graph, where terminal nodes are associated to a
set of species.

Pan

Macaca
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A rooted phylogenetic network ...

. is any single-rooted directed acyclic graph, where terminal nodes
are associated to a set of species.

TIME

Spear Mint Peppermint Water Mint

o
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Phylogenetic networks
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Abstract VS explicit phylogenetic networks

Hybridization network:

Split network:
< genus Altolamprologus

Lamprologus calliperus

==
Lamprologus meleagris
Lamprologus ocellatus
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Shows conflicting Shows putative
hybridization history

placement of taxa



The plan of the survey

@ combinatorial and distance methods not accounting for ILS

e unrooted networks
o rooted networks (explicit or not)

@ methods accounting for ILS (always explicit)
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Unrooted phylogenetic
networks




with contributions from Markus Franz, Migiiel Jette’,
Tobias Kloepper and Michael Schroder

www.splitstree.org
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Reconstruction of unrooted phylogenetic networks

e from splits
o from distances (via splits or not)
o from trees (via splits)

e from sequences (via splits or not)
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Splits

A split A| B on X is a partition of a taxon set X into two non-empty sets.

b
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Compatible splits

Definition (Compatible splits)

Two splits S; = A;1|B;1 and S, = Ax|B; on X are called compatible, if
one of the following four possible intersections of their split parts is
empty: A1 N Az, A1N By, BN Az or By N By. Otherwise, the two
splits are called incompatible. A set of splits S is called compatible if
all pairs of splits in S are compatible.

{a}|{b,c,d, e}
{a,b,d,e,h} | {c,f, g}
{b}{a, Zv Z? e} {a,c,d,e, g, h} | {bvi}
\ elltebidie) _ {ac.eg}|{bd,f,h}
é€rha, b, ¢, {a,c,e,f, g} |{b,d, h}
{a, b}|{C, dv e} {37 e, h} | {b, c, d, f,g}

{a, b, e}|{c,d}
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Compatible splits

Theorem (Compatible splits)

Let S be a set of splits on X and assume that S contains all trivial
splits on X. There exists a unique unrooted phylogenetic tree T that
realizes S,that is, with S(T) = S, if and only if S is compatible.

{a}l{b,c,d, e}
{b}|{a,c,d,e}
a {c}|{a,b,d, e}
c {d}|{a, b,c,e}

{e}l{a, b, c,d}

{a, b}|{c,d, e}

e d {a, b, e}l{c,d}

(a) Unrooted tree T (b) Split encoding of T
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Circular splits

Definition (Circular splits)

A set of splits S on X is called circular, if there exists a linear ordering
m = (X1,...,x%n) of the elements of X’ for S such that each split S € §
is interval-realizable, that is, has the form

S= {XP7XP+1""7XCI} | (XN {Xp7xp+1a~--vxq})’

for appropriately chosen 1 < p < g < n.

Example

{a,b,d,e,h}|{c,f, g} b
{a,c,d,e, g, h} | {b,f}
{a,c,e,g} | {b,d,f,h}
{a,c,g} | {b,d,e,f,h}
{a,c,e,f,g} | {b,d,h}
{a,e,h} | {b,c,d,f g} : oc
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Circular splits

Problem (Consecutive Ones problem)

Let M be a binary matrix. Does there exist a permutation of the
columns of the matrix M such that in each row, all ones in the row
occur in a single consecutive run?

{a’ b’ d’ e? h} | {C7 f’ g}

a b ¢ d e f g h a e h d b f c g
{a,c,d,e, g, h} | {b,f} Dol oor Loy (ppoooli
{a,c,e,g} | {b,d,f, h} oSO 00 00
{a,c,g} | {b.d,e f, h} I

{3, C, e, f’ g} | {b’ d’ h} (a) Input matrix (b) Permuted matrix
{a,e,h} [ {b,c,d,f, g}
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Circular splits

Problem (Consecutive Ones problem)

Let M be a binary matrix. Does there exist a permutation of the
columns of the matrix M such that in each row, all ones in the row
occur in a single consecutive run?

Example
{a’ b’ d’ e? h} | {C7 f" g}

a b ¢ d e f g h a e h d b f c g
{a,c,d,e, g, h} | {b,f} Dol oor Loy (ppoooli
{a,c,e,g} | {b,d,f, h} oSO 00 00
{a,c,g} | {b.d,e f, h} I

{3, C, e, f’ g} | {b’ d’ h} (a) Input matrix (b) Permuted matrix
{a,e,h} [ {b,c,d,f, g}

Note

decision problem is polynomial solvable

finding an ordering of X that minimizes the number of runs of ones in the
matrix M (Optimal Consecutive Ones problem) is NP-hard.
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Circular splits

Theorem (Circular implies outer-labeled planar)

A set of splits S on X = {x1,...,xn} is circular if and only if it can be
represented by a split network N that is outer-labeled planar.

Example
{avb7dve7h} ’ {C7 f7g} b
{a,c,d,e,g,h} | {b’ f} h f

{37C7e>g} ‘ {b7d7 fah}
{a7 C7g} | {b7 d? e7 f’ h}
{37C7e> f,g} ‘ {b7d7h}
{a,e,h} | {b,c,d,f, g} a B
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Weakly compatible splits

Definition (Weakly compatible splits)

A set of splits S on X is called weakly compatible, if any three distinct
splits in S are weakly compatible. Three such splits $; = A1 , S = gz
and Sz = 22 are called weakly compatible, if

Q at Ieast one of the following four intersections is empty:

AitNANA3, AinB,NBs, BN AN Bs and Bi N By, N As,

@ at least one of the following four intersections is empty:
BiNnB,NB;s, BINA>N A3, AiNnByNAs and A; N Ay N Bs.

{37 b,d,e, h} | {C, f',g} {37 lo), Gl @ h} | {Cv fvg}
{a,c,d,e, g, h} | {b,f} {a,c,d,e,g,h} | {b,f}

S, = {a,c,e,g}|{b,d,f,h} S, = {a,c,e,g}|{b,d,f,h}
' {acgl|{bdef,hy T2 {ac.de}|{bf g}
{a,c,e,f,g} | {b,d, h} {a, b} | {c,d,e,f, g}
{a,e,h} | {b,c,d,f, g} {a,e,f} | {b,c,d, g}
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Weakly compatible splits

Definition (Weakly compatible splits)

A set of splits S on X is called weakly compatible, if any three distinct
splits in S are weakly compatible. Three such splits §; = %, S, = g—z,

and S3 = %z are called weakly compatible, if

Why all this?!?
¢ Phylogenetic networks reconstructed from
weakly compatible are easier than the ones 3

reconstructed from generic splits

{a,b,d, e, h} | {c,f, g} {a,b,d,e, h} | {c,f, g}

{a,c,d,e,g,h}|{b,f} {a,c,d,e,g,h}|{b,f}

S — {a,c,e,g} | {b,d,f, h} S — {a,c,e,g} | {b,d,f, h}
' {acgl|{bdef,hy T2 {ac.de}|{bf g}
{a,c,e,f,g} | {b,d, h} {a, b} | {c,d,e,f, g}
{a,e,h} | {b,c,d,f, g} {a,e,f} | {b,c,d, g}
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UPN from distances

or “how to get the splits from distances”
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From weighted splits to distances

Any split S € S can be used to define a distance matrix Ds on X,
by setting:

1 if S separates x and y,
0 else.

ds(x,y) = {

for all taxa x and y in X.
Assume we are given a weighting of a set of splits, w : S — RZ°,
then we define the weighted split metric Ds ) as:

dsw)(x.y) =D w(S) x ds(x,y)
Ses

for all taxa x and y in X.
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PN from distances: the split decomposition

The split decomposition algorithm [Bandelt and Dress, 1992]: Given a distance
matrix D on X = {xy,...,x,} we start by computing the isolation index for

quartets and splits : g )
o for any four taxa w, x, y and z with {w,x} N{y,z} =0, >_<

but not necessarily w # x or y # z:
ap (122}) = S(max{d(w, x) + d(y, 2), d(w, ) + d(x, 2), d(w, ) + d(x, y)} — d(w, x) = d(y, 2)).

o for any (partial) split S:  ap(s) = min{ap(442}) | w,x € 4, v,z € B} > 0.

Then, we set Xp = () and Sy = (). Now, assume that the set of splits S; on the
first i taxa X; = {x1,...,x;}. To obtain Si;1 on Xjy1 = {x1,...,x;41}, for
each split g € §; do:

@ Consider § = 22551} if 45(S) > 0, set w(S) = ap(S) and add S to Sit1.

Q Consider S = ﬁ;_ﬂ}. If ap(S) > 0, set w(S) = ap(S) and add S to Si;1.
© Consider S = {X - Ifap(S) >0, set w(S) = ap(S) and add S to Sjy1.

The result is given by S,,.

28 /76



PN from distances: the split decomposition

o A split S whose isolation index ap(S) is greater than 0 is called a
D-split. D-splits are always weakly compatible.

o |t follows from this that the split decomposition always computes a
set of weakly compatible splits

29/76



PN from distances: the split decomposition

o A split S whose isolation index ap(S) is greater than 0 is called a
D-split. D-splits are always weakly compatible.

o |t follows from this that the split decomposition always computes a
set of weakly compatible splits

@ The SD is a conservative method

@ It can be used for small number of taxa or low divergence

29/76



PN from distances: Neighbor-Net

o Given a distance matrix D on X, the Neighbor-Net algorithm
[Bryant and Moulton, 2004] computes a circular ordering 7 of X
from D and then a set of weighted splits S that are
interval-realizable with respect to 7:

e produces circular splits
o uses together with circular network algorithm to get planar networks
e can be used for large number of taxa and high divergence
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PN from distances: Neighbor-Net

o Given a distance matrix D on X, the Neighbor-Net algorithm
[Bryant and Moulton, 2004] computes a circular ordering 7 of X’
from D and then a set of weighted splits S that are
interval-realizable with respect to 7:

e produces circular splits
o uses together with circular network algorithm to get planar networks

e can be used for large number of taxa and high divergence

Theorem (Neighbor-Net consistency)

Given a circular distance matrix D on X, the Neighbor-Net
algorithm produces a circular ordering m and a set of
weighted splits S that are interval-realizable with respect to

7 such that D = D(S).
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PN from distances

Other algorithms from distances:
@ Minimum spanning network
o T-Rex

http://phylnet.univ-mlv.fr/

Who is Who in Phylogenetic Networks

A great source of information:

# Authors Community Keywords Publications Softwane Browse Basket Account Contribute! About Help & Q

Programs and their Input Datz @

How do | interact with the graph @

Below, you can find all programs present at least 1 time(s) in Who is who in phylogenetic networks, as well as

the links with the data they use as input.
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UPN from splits

or “what to do with the splits?”
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PN from splits: the Convex hull algorithm

Let S be a set of splits on X comprising all trivial
ones. Assume that we have already computed a
split network N for S. To obtain a split network
for SUS, where S = g is a new non-trivial split, , S=ft= {:fé'ﬂ e Si'ﬁ'?‘i#ffx

modify N as follows: L\ d%” (I.\\l//-a de ka

/-
@ Compute the two convex hulls H(A) and a\ “h

*h
. : e /\ e I\ h e h
H(B) in N and let M be the split graph ;e A /-/\-g fvg.
Induced in N by the Set Of nodes (a) Network Ny (b) Hulls for S/ (L) Network Ny (d) Hulls for S}

H(A) N H(B) # 0. N[ ”\\—y/ ﬁgyr
@ Create a copy M’ of M and for each node v ‘

and edge e in M let v’ and €’ denote their °

copies in M’, respectively. (e)Nelwcrsz (r)nuusfms'ﬂ (g]Nelworst

s5= Bs = Bdeghl

@ For every edge f that leads from some node

uin H(B)\ H(A) # 0 to a node v in M,

redirect the edge f so that it leads from u to

V.

@ Connect each pair of nodes v in M and v’ in
M’ by a new edge f = (v, v') and set
o(f)=S5
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PN from splits: the circular network algorithm

Let S be a set of splits on X comprising all trivial
ones. Assume that we have already computed a
split network N for S. To obtain a split network

for SUS, where S = H is a new

non-trivial split, modify N as follows: (splits have
to be considered in a certain order)

@ Determine the path M(x,, x,) and let M d-\\ .a
denote the path obtained by removing the
first and last (Iejaf) edges from M(xp, xq). . \\'h
@ Create a copy M’ of M and for each node v ! \
H Y / / H / g
and edge e in M let v’ and €’ denote their (a) Network N,
copies, respectively. A_(afgh
B~ ibcdet

© Redirect every edge f that leads from some
node u = A(x;) to some node v in M so that
it leads from v to v/, forall i=p,...,q.

@ Connect each pair of nodes v in M and v/ in
M’ by a new edge f = (v, v') and set
O'(f) = 5t+1-

r° g
(b) Network N3

34/76



PN from splits: attention!!!

All four different split networks shown below represent the
same set of splits. The split networks shown in (a) and (b)
were computed using the circular network algorithm processing
the splits and taxa in two different orders. The one shown in
(c) was constructed using the convex hull algorithm. The split
network shown in (d) can be obtained by deleting superfluous
edges in any of the first three.

(a) (b) (c) (d)
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UPN from trees

or “how to get splits from a bunch of trees”
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PN from trees: Consensus split networks

Consensus splits [Holland et al, 2004]
@ Input: Trees on identical taxon sets
@ Determine splits in more than X% of trees

@ For >50%, the result is compatible

f d f c f c
c b b d d a

(a) Tree Ty (b) Tree T» (c) Tree Ty

f c f b f b
d b c d d c
(d) Tree Ty (e) Tree Ts (f) Tree Ty

Figure 11.1 (a)- (f) Six different phylogenetic trees Ty, ..., Ts on

Z =1{a,b,c,d,e, f}. (g) Their majority consensus tree and (h) their consensus
split network for d = 2, representing all splits that are present in more than % of
the trees. Note that in this case the network is still a tree, but more resolved than
the majority consensus tree. (i) The consensus split network for d = 5 and (j) the
split network representing all splits present in the six trees.
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PN from trees: Consensus split networks

Consensus splits [Holland et al, 2004]
@ Input: Trees on identical taxon sets
@ Determine splits in more than X% of trees
o For >50%, the result is compatible

EANRatirat

(a) Tree Ty ) Tree T (c) Tree Ty
d) Tree n (e) Tree 75 (f) Tree T(,
® Ma]omy (hd=2 () All ;plm

Figure 11.1 (a)- () Six different phylogenetic trees 71, ..., Ts on

={a,b,c,d,e, f}. (g) Their majority consensus tree and (h) their consensus
split network for d = 2, representing all splits that are present in more than + of
the trees. Note that in this case the network is still a tree, but more resolved than
the majority consensus tree. (i) The consensus split network for d = 5 and (j) the
split network representing all splits present in the six trees.
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PN from trees: Consensus super splits networks

Consensus super splits [Huson et al, 2004, Whitfield et al 2008].
Input: Trees on overlapping taxon sets

@ Use the Z—closure to complete partial splits

@ Use the “distortion” values to filter splits

P
b, enysi,_ P @S Physaria
P i |, P

A haller
Ateglecta
(@ Tree Ty

P.vali . fasigiata

Acabisglabra

Physaria gracills

() Tree Ty

Arabisglabra

Arabis paucifor
©.punila
0. caxlica
Aathionema
Mricandia.
Fr canslina.
A halleri
prysaria graciis
Physariaballi

(€) Tree T

‘Cardaninopsi
Alyrata

Arabispaucfiora

0. cabulica

Shinita
Jo—— P tasigta
RasLgiene P Saixa
Croohimeiaa P.elis
iy
e ganatna
Corcgmicpss
it Pryscia el
Rijraa P a g
on
neavisapina /Inoncanda
) Tree 7,
P g
» i
ronaeatanda, Gl
P snedand S peatisgara
P.aulsa eaispoora
cansia
o
Vorcandia
A thaland

Cardaminopss A neglecta
(d) Tree T;
Alyrta

0. cabulica A neglecia

P sdiata
Pylasigaap oifin,
e a

A haller
P, fand A thaiara
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Figure 11.3 (a)-(e) Five partial gene trees T, .., Ts on 13-25 plant taxa. (f) The
corresponding super split network N on all 26 taxa, computed using the
Z-closure method. The edges in N are scaled to represent the number of input
trees that contain the edge. The network N shows that the placement of the pair
of taxa Physaria belliiand Physaria gracilis differs in the five trees.
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The Z-closure

The Z-closure method takes a set of partial splits on X" as input and infers a
set of complete splits on X as output.

@ Two partial splits $; = % c€Sand 5 = % € S are said to be in
Z-relation to each other, if exactly one of the four intersections A; N Ay,
A1 N By, BiN Ay or BN By is empty. In this case, if the empty
intersection is A; N By, say, then we write 73% Z l%'

@ The Z-operation applied to S; and S, is defined as the creation of two

new splits

A
S{I;and%:

A1 UA
B U B ’

B>

@ If at least one of the two new splits contains more taxa than its
predecessor, the pair of splits is called productive.

We obtain a set of complete splits from a set partial splits S = {S1,...,S5n}
on X as follows: While S contains a productive pair of splits {S;, S;}, apply
the Z-operation to obtain two new splits {57, SJ’} and then replace the
former pair by the latter pair in S. Finally, add all trivial splits on X’
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The distortion values

o Let 7 =(Ty,..., Tky be a set of partial trees on X'. For any
complete split S on X’ we define the distortion of S (with respect
to T) as 0(S) = S5, (T3, S)

e o(T;,S) denotes the minimal homoplasy score for S on the input
tree T;, i.e. the smallest number of (SPR or TBR)
branch-swapping operations required to transform some
refinement of T; into a tree that contains the split S

@ The distortion of a split can be efficiently computed using
dynamic programming
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UPN from sequences
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Median networks

For a condensed® multiple alignment M of binary sequences on X, its
median network is a phylogenetic network N = (V/, E, o, \) whose node
set is given by the median closure V = M and in which any two nodes
a and b are connected by an edge e of color o(e) =i € E, if any only if
they differ in exactly in their i-th position (as haplotypes). An
associated taxon labeling A : X — V maps each taxon x onto the node
A(x) that represents the corresponding sequence.

1 . . . . .
each set of identical sequences is pooled into a single haplotype, then all constant columns are removed and
finally, every set of columns that have the same pattern is replaced by a single column i that is assigned a weight
w(i) that equals the number of columns in the represented set.
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Median networks

For a condensed® multiple alignment M of binary sequences on X, its
median network is a phylogenetic network N = (V/, E, o, \) whose node
set is given by the median closure V = M and in which any two nodes
a and b are connected by an edge e of color o(e) =i € E, if any only if
they differ in exactly in their i-th position (as haplotypes). An
associated taxon labeling A : X — V maps each taxon x onto the node
A(x) that represents the corresponding sequence.

a 0000000

a 0000000
b 0110000
c1101100
ad 1110110
e0110101

d1110110
(a) Alignment M (b) Median network N

1 . . . . .
each set of identical sequences is pooled into a single haplotype, then all constant columns are removed and
finally, every set of columns that have the same pattern is replaced by a single column i that is assigned a weight
w(i) that equals the number of columns in the represented set.
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Quasi median networks

a AAARR a 00 oloofofofofo a 0000000
b BBARAA b 110|oofofofofo b 1100000
¢ ABABB ¢ o0 1fojoof1f1|1fo c 0100011
d AABBC d o0of1f10f1]|1]of1 d 0011010
e AACBC e oof1fo1|1]1]of1 e 0010110
(a) Input M (b) Binary expansion M; (¢) Condensed M,
oaooo&o¢ 000000000 AAAZR
1100000 110000000 BBAAA
0100011 010001110 ABABEB A 000
0011010 001101101 AACBC B 110
0010110 001011101 AABBC c 101
0010010 001001101 AA+BC
0000010 000001100 AAAB x
0100000 010000000 ABAARA
0100010 010001100 ABAB «
(d) Median closure M (e) Expanded M (f) Multi-states M
AAAARA o AAGEC.
BBAARA dAABBC
AAABC ABanB Lo
AA+BC={ A A B B C
Aach e ABCBC .
A
AARBx={ AAABB AAAB A ABABN
ARRBC AARBB aAMAA
ABABA ABAMA)
ABABx={ ABABB ABRRRA
R ABABA e
ABABC
(g) Expansion of (h) Final matrix My (i) Quasi-median network N'

virtual medians
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How to keep the complexity of the network down...

The number of nodes of the quasi-median network can be
very large, even for a small number of short sequences. Thus,
the quasi-median network is rarely useful in practice. There
exist two alternative methods:

@ median-joining algorithm, which aims at computing an
UPN that is as informative as a quasi-median network,
but usually much smaller. The algorithm has a
parameter A that is used to control how complex the
resulting phylogenetic network will be.

@ geodesically-pruned quasi-median networks: a method
that aims at computing a pruned version of the full
quasi-median network by considering only those
sequences that lie on a geodesic between two of the
original input sequences.
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How to keep the complexity of the network down...

UPN from ...

quartets ... QNet
http://www2.cmp.uea.ac.uk/ vlim/qnet/

http://phylnet.univ-mlv.fr/
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Rooted phylogenetic networks




Dendroscope 3

by Daniel H. Huson

with contributions from Benjamin Albrecht.
Philippe Gambette, Leo van lersel,
Celine Scornavacca and others.

www-ab.informatik_uni-tuebingen.de/software/dendroscope
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Reconstruction of rooted phylogenetic networks

e from clusters

o from trees (via clusters or not)
o from sequences

o fromdistanees
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Clusters

A cluster C on X is a subset of the taxon set X.
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Compatible clusters

Definition (Compatible splits)

Two clusters C; and G, on X are called compatible, if ¢, € G or
Cy € Gy or Gy N Gy = (. Otherwise, the two clusters are called
incompatible. A set of clusters C is called compatible if all pairs of
clusters in C are compatible.

{a} {a}
{b} {b}
{c} {c}
{d} {d}
C1= {e} Ca = {e}
{a, b} {a, b}
{d.,e} {d, e}
{a, b, c} {a, b, e}

{a,b,c,d, e} {a,b,c,d, e}
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Compatible clusters

Definition (Compatible splits)

Two clusters C; and G, on X are called compatible, if ¢, € G or
Cy € Gy or Gy N Gy = (. Otherwise, the two clusters are called
incompatible. A set of clusters C is called compatible if all pairs of
clusters in C are compatible.

{a} {a}

{b} {b}

{c} {c}

{d} {d}

C1 = {e} CQ = {e}
{a, b} {a, b}

{d, e} {d, e}
{a, b, c} {a, b, e}

{a,b,c,d, e} {a,b,c,d, e}
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Compatible clusters

Theorem (Compatible clusters)

Let C be a set of clusters on X and assume that C contains all trivial
splits on X . There exists a unique rooted phylogenetic tree T that
realizes C,that is, with C(T) = C, if and only if C is compatible.
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RPN from clusters
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When a phyl. network N represents a cluster C?

HARDWIRED SENSE : if there exists a tree edge of N such that the
set of all taxa below the edge equals C

e :{a, b, c}

a b ¢ d e f
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RPN from clusters - Cluster networks
The Cluster-popping algorithm [Huson & Rupp, 2008]:

for each cluster C € C create a node u and define v(C) = u and v *(u) = C.
Create a root node p and set v !(p) = X
for each C € C in order of non-increasing cardinality do
Unmark all nodes
Push p onto a stack S and mark p
while S is not empty do
Pop v off § {abed
Set isBelow = false
for each child w of v do  {a}
if C C v™*(w) then
. {a a b ¢ d e f g h
Set ISBe/OW = true (a) Hasse diagram (b) Cluster network
if w is unmarked then Mark w and push w onto S
if isBelow = false then Create a new edge (v, v(C))
for each node v with indegree > 2 and outdegree # 1 do
Create a new node v’
Redirect all in-edges of v to v/
Create a new edge (v, v)
for each taxon a € X do
Set A(a) = v !({a})

end

{cd.e.f.g.1}

53 /76



RPN from clusters - Hardwired sense

The Cluster-popping algorithm [Huson & Rupp, 2008]:

for each cluster C € C create a node u and define v(C) = u and v *(u) = C.
Create a root node p and set v (p) = X
for each C € C in order of non-increasing cardinality do
Unmark all nodes
Push p onto a stack S and mark p
while S is not empty do
Pop v off S
Set isBelow = false
for each child w of v do  {a}
if C C v7'(w) then
Set isBelow = true {a} {0} {c} {d} (8} g 1 a b c d e f g h
(a) Hasse diagram (b) Cluster network
if w is unmarked then Mark w and push w onto S

if isBelow = false then Create a new edge (v, v(C))
for each node v with indegree > 2 and outdegree # 1 do

Create a new node v/
Redirect all in-edges of v to v/ Problem

{cd.e.f.g.1}

Create a new edge (V/,v) The networks obtained in this way are
for each taxon a € X do too complex

Set M(a) = v '({a})
end
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When a phyl. network N represents a cluster C?

SOFTWIRED SENSE : if there exists a tree edge of N such that the
set of all taxa below the edge equals C (with one edge per reticulation
node "switched on")

e :{a, b, c}
{a, b}

a b ¢ d e f
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Constructing minimal softwired networks

@ cluster containment: NP-hard

@ minimization NP-hard, APX-hard

A possible solution ... topological constraints:

o galled trees (if every non-trivial biconnected component of N properly
contains exactly one reticulation) (it does not always exist)

o galled networks (if every reticulation in N has a tree cycle) (still NP-hard)

@ level-k networks (maximum reticulation number among biconnected
components of N is k) (still NP-hard)

c d e f g h i j k| 56 /76



RPN from clusters - Softwired sense

CASS algorithm [ van lersel et al., 2010], guaranteed to construct minimal networks

if level is 1 or 2:

Algorithm 8.5.1 (Level-k networks for tangled clusters) Let k = 0 be a fixed number.
Input is a set of clusters ‘€ on 2, which is assumed to be tangled in the initial call to the
algorithm. Recursively construct a set of level-k networks N for€ in the following steps (if
any such network exists):

if € is compatible then
Compute the rooted phylogenetic tree T for € (and all trivial clusters on &)
5 Insertan auxiliary edge that separates the root from the rest of the tree T
Set N ={T}
else (comment: k> 0)
Create a new auxiliary taxon z
9 for each raxon x € 2 U {z} do
Set €' = €|a-—x, remove all trivial clusters and then collapse to obtain €" on X"
Recursively compute the set 4" of level-(k — 1) networks for ¢" on %"
for each network N" in 4" do
Replace each leaf of N", which is labeled by a composite taxon A€ %", by the
rooted phylogenetic tree T(€'| ;) that represents €'| 4
Let N' be the resulting network
for each pair of (not necessarily distinct) edges e, and e, in a new copy of N' do
Create two nodes r and u, add an edge from r to u and set A(x) = u
Insert a new node v, into e, and connect vy tor
Insert a new node v, into e, and connect v, tor
if the resulting network N represents 6 (disregarding all auxiliary taxa) then
add N to N
return .4

If the returned set A is empty, then the algorithm reports fail.

{a, g}, {b,c}, {d, e}, {a, b, f}, {b,c, f},

{c,d,e}, {b,c,d, 1, {a,b, f, g}
(a) Set of tangled input clusters ¢

{a,g), (d, e}, a, b, f}},

(b, £}, a, (b, /1, g}

(©) Set 6" obtained by
collapsing ¢

g a e

(e) Rooted tree T for
set of clusters in (d)

(g) Level-1 network for
set of clusters € in (b)

{a,gh {d, e}, {a, b, f1, 1D, f},
{bd, f}, {a,b f. g}
(b) Set €’ =€z

{a, g}, {d, e}

(d) Result of removing
(b, f} from 6"

g af{bffd e

(f) Level-1 network for
set of clusters €" in (c)

f b ¢

(h) Final level-2 network
for set 6 in (a)
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RPN from trees
(via clusters)




RPN from trees - option 1

@ decompose the trees in clusters

@ apply the cluster methods to (a part of) the clusters

{a,b}
{c.d}
a b c d a c b d a b c d
(a) Tree T (b) Tree T» (c) The clusters (d) Network N
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RPN from trees - option 1

@ decompose the trees in clusters

@ apply the cluster methods to (a part of) the clusters

A A /2

(a) Tree T} b) Tree T>» (c) Tree T3 (d) Network N
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RPN from trees
(NOT via clusters)




When a phyl. network N embeds a tree 77

if T can be obtained from N by performing a series of node deletions,
edge deletions and node suppressions

N T
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Problem

Given:
A set of (binary) trees (with same taxa set) and different
topology.

Question:
What is the most probable evolutionary history?
Assumptions: Difference is caused by hybridizations, parsimony

Answer:
Network embedding the trees with a minimal number of
hybridization nodes.
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Tree embedding

centropodi

-merxmuel_r

centropodi
————merxmuel_m
merxmuel_r

anomochloa

austrodant
———chusquea
karoochloa
oryza
merxmuel_m

N

Tytriticum

. triticum
——pennisetum —

chusquea
———zea
; " oryza
\ anomochloa

—Causlmdam
karoochloa

Hybridization network (left) highlighting the embedding of the
phylogenetic tree based on gene rbcL (right).
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Tree embedding

centropodi

strodant

merxmuel_r

merxmuel_m

miscanthus
o 4|£Ra
chusquea

pennisetum

oryza |:1rilicum
———triticum oryza

pennisetum

centropodi
zea |:

merxmuel_r

merxmuel_m
austrodant Echusquea
~——karoochloa

anomochloa

il

Hybridization network (left) highlighting the embedding of the
phylogenetic tree based on gene waxy (right).
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Agreement forests

An agreement forest for two rooted bifurcating phylogenetic trees
T1 and To on X Up is a set of components F = {F,, F1,..., Fp}
on X U p such that...
© ... the taxon p is contained in F,.
Q ... each component F; is a restricted subtree of T7 and T».
Q ... the trees in {T1(X;|i = p,1,...,n)} and
{T2(Xi|i = p,1,...,n)} are node disjoint subtrees of Ty and
T,, respectively.
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Acyclic agreement forests

Ti: Ty:
a b ¢ d e f p a b ¢ d f e p
.F(Tl, TQ)Z

No direct cycle @

A AN ;‘AFisacycﬁc/l\
a d b c e f p
Cy (O3 C4 Cq @‘—@—’

A maximal acyclic agreement forest, denoted by MAAF, is
any acyclic agreement forest of minimal size.
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Using MAAFs to construct hybridization networks

a b ¢ d e f p d b ¢ a f e p

A AN
¢ a b d e f p
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Using MAAFs to construct hybridization networks

T12 Tz:

a b ¢ d e f p d b ¢ a f e p

MAAF: A
e

f P a b d e

Compute acyclic ordering.
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Using MAAFs to construct hybridization networks

T: Ts:
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Using MAAFs to construct hybridization networks

T: Ts:

a®
~
S

]
<
U

o
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Using MAAFs to construct hybridization networks

a b ¢ d e f p d b ¢ a f e p

eﬁp
a b d
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Using MAAFs to construct hybridization networks

Ty: Ts:
a b ¢ d e f p d b ¢ a f e p
PN
e f P a b d lcli
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Using MAAFs to construct hybridization networks

Ty: Ts:
a b ¢ d e f p d b ¢ a f e p
PN
e f P a b d lcli
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Software

©Q HybridNet : http://www.cs.cityu.edu.hk/ lwang/
software/Hn/treeComp.html

@ UltraNet: http://rnc.r.dendai.ac.jp/ultraNet.html

© HybridInterleave: http:
//www.math.canterbury.ac.nz/"c.semple/software.shtml

@ NonbinaryCycleKiller: the two trees are not necessarily binary
http://homepages.cwi.nl/"iersel/cyclekiller/

© Dendroscope: the two trees are not necessarily binary and not
necessarily on the same taxon set.

Q Hybroscale: multiply trees, not necessarily binary and not
necessarily on the same taxon set
www.bio.ifi.lmu.de/softwareservices/hybroscale

68 /76


http://www.cs.cityu.edu.hk/~lwang/software/Hn/treeComp.html
http://www.cs.cityu.edu.hk/~lwang/software/Hn/treeComp.html
http://rnc.r.dendai.ac.jp/ultraNet.html
http://www.math.canterbury.ac.nz/~c.semple/software.shtml
http://www.math.canterbury.ac.nz/~c.semple/software.shtml
http://homepages.cwi.nl/~iersel/cyclekiller/
www.bio.ifi.lmu.de/softwareservices/hybroscale

RPN from triplets




Triplets

A rooted triple is given by a bifurcating, rooted
phylogenetic tree on a set of three taxa x,y,z.

ab ab ab  ab
c d e 7
cd cd cd cd
a b e I
ef ef ef ef
a b c d e f @ b ¢ d
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Triplets

A rooted triple yz|x is said to be contained in a rooted phylogenetic
network N , if there exist two nodes u and v in N such that:

@ There exists a directed path from u to the node labeled x.
@ There exists a directed path from u to v.

© There exists a directed path from v to the node labeled y.
@ There exists a directed path from v to the node labeled z.

@ All four paths are node-disjoint (except at their end-points).

>,
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Software for networks from triplets

https://leovaniersel.wordpress.com/software/

LEVIATHAN: A Practical Algorithm for Reconstructing Level-1 Phylogenetic
Networks, Combines any set of phylogenetic trees into a level-1 phylogenetic
network (a galled tree) that is consistent with a large number of the triplet
topologies of the Input trees. Paper. Download.

SIMPLISTIC: Constructs level-k phylogenetic networks from triplets, This program
always returns a phylogenetic network consistent with all input triplets. Partly based
on the SL-k and MINPITS algorithms in this paper. Download.

MARLON: Constructs a level-1 phylogenetic network with a minimum number of
reticulations consistent with a dense set of criplets, if such a netwark exists. Paper.
Download.

LEVELZ: Constructs a level-2 phylogenetic network consistent with a dense set of
triplets, if such a network exists. Paper. Download.
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Software for networks from binets and trinets

TriLoNet
https://www.uea.ac.uk/computing/TriLoNet
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RPN from sequences

— ARGs —




Recombination networks

Definition (Recombination network)

Let M be a multiple alignment of binary sequences of length L, on X'. A
recombination network N representing M is given by a bicombining rooted
phylogenetic network on X, together with two additional labellings:

o Each node v of N is labeled by a binary sequence o(v) of length L.

e Each tree edge e is labeled by a set of positions §(e) C {1,...,L}.
These two labellings must fulfill the following compatibility conditions:

A The sequence o(v) assigned to any leaf v must equal the sequence in
M that is given for the taxon associated with v.

B If ris a reticulate node (often called a recombination node in this
context) with parents v and w, then the sequence o(r) must be
obtainable from the two sequences o(v) and o(w) by a crossover.

C If e = (v, w) is a tree edge, then the set of positions at which the two
sequences o(v) and o(w) differ must equal §(e).
For computational reasons, the following condition is usually also required

D Any given position may mutate at most once in the network. In other
words, for any given position i there exists at most one edge e with
i€ 5(e).
This condition is usually referred to as the infinite sites assumption because for
sequences of infinite length it holds that the probability of the same site being
hit by a mutation more than once is zero, under a uniform distribution.

a10000
b 11000
¢c11100
d 00110
e00111

00000

a

10000 11000 11100 00110

00111
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Recombination networks

Definition (Recombination network)
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o Each node v of N is labeled by a binary sequence o(v) of length L.

e Each tree edge e is labeled by a set of positions §(e) C {1,...,L}.
These two labellings must fulfill the following compatibility conditions:

A The sequence o(v) assigned to any leaf v must equal the sequence in
M that is given for the taxon associated with v.

B If ris a reticulate node (often called a recombination node in this
context) with parents v and w, then the sequence o(r) must be
obtainable from the two sequences o(v) and o(w) by a crossover.

C If e = (v, w) is a tree edge, then the set of positions at which the two
sequences o(v) and o(w) differ must equal §(e).
For computational reasons, the following condition is usually also required

D Any given position may mutate at most once in the network. In other
words, for any given position i there exists at most one edge e with
i€ 5(e).
This condition is usually referred to as the infinite sites assumption because for
sequences of infinite length it holds that the probability of the same site being
hit by a mutation more than once is zero, under a uniform distribution.
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Recombination networks

Definition (Recombination network)

Let M be a multiple alignment of binary sequences of length L, on X'. A
recombination network N representing M is given by a bicombining rooted
phylogenetic network on X, together with two additional labellings:

o Each node v of N is labeled by a binary sequence o(v) of length L.
e Each tree edge e is labeled by a set of positions §(e) C {1,...,L}.
These two labellings must fulfill the following compatibility conditions:

A The sequence o(v) assigned to any leaf v must equal the sequence in
M that is given for the taxon associated with v.

B If ris a reticulate node (often called a recombination node in this
context) with parents v and w, then the sequence o(r) must be
obtainable from the two sequences o(v) and o(w) by a crossover.

C If e = (v, w) is a tree edge, then the set of positions at which the two
sequences o(v) and o(w) differ must equal §(e).

For computational reasons, the following condition is usually also required

D Any given position may mutate at most once in the network. In other
words, for any given position i there exists at most one edge e with

2
11000 00100
e

Bacter: http://tgvaughan.github.io/bacter/, a package of BEAST 2
ARGweaver: http://mdrasmus.github.io/argweaver/doc/

i€ 5(e).
the approach has to solve two NP-hard problems
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RPN from sequences
— Other approaches —
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