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Phylogenetic networks

Trees displayed by a network

In a phylogenetic network, a reticulate event is represented as a
reticulation, where branches converge to give rise to a new lineage:

The genome(s) at the start of the new lineage is (are)
a composition of those of the parent lineages.

The evolution of each part independently
inherited is described by a gene tree

I In the absence of deep
a b ¢ d e f coalescence and

\ allopolyploidy, the gene
\ trees are a subset of the
trees displayed by the
network
a b ¢ d e f

a b ¢ d e f
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Phylogenetic networks

Phylogenetic network inference

An optimization problem where a candidate N
network is evaluated on the basis of how
well the trees it displays fit the data:

a bcd e f

Many possible formulations: a bcd e f a bcde f

Data: /<\
Trees with 3 taxa: /<\ /<\ /<\ /<\

(inferred from otherdata) a b ¢ c [ a d e f d [ b a ¢ d

Goal:
Find the network N with the lower hybridization number such that the triplets are
‘consistent” with one of the trees displayed by N

subject to constraints on the complexity of N
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An optimization problem where a candidate N
network is evaluated on the basis of how
well the trees it displays fit the data:

a bcd e f
Many possible formulations: a bcd e a bcd e f

Data:
Any trees on the same taxa:
(inferred from other data)

a cd e f ¢ f abdef
Goal:

Find the network N with the lower hybridization number such that the input trees
are consistent’ with one of the trees displayed by N

subject to constraints on the complexity of N
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Phylogenetic network inference

An optimization problem where a candidate N
network is evaluated on the basis of how
well the trees it displays fit the data:

a bcd e f

/\

Many possible formulations: a bcd e f a bcde f

Data:
Clusters of taxa: {a,b},{d,e},{d,e, f},{a,b,c,d,e, f},{e, f},{c,d,e, f},...

Goal:
Find the network N with the lower hybridization number such that the input
clusters are "explained’ by one of the trees displayed by N

subject to constraints on the complexity of N
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Phylogenetic network inference

An optimization problem where a candidate N
network is evaluated on the basis of how
well the trees it displays fit the data:

a bcd e f

m“/m

Many possible formulations: a bcd e a bcd e f
Data: B
GGG GGG
(typically given in blocks) Goma
Goal: m
Find N that minimizes F(N|A;, Ag,...,Ap) = min F(T|A;)
— TeT(N)

subject to constraints on the complexity of N. F() is the parsimony score.

Jin et al. Parsimony Score of Phylogenetic Networks: Hardness Results and a Linear-Time Heuristic. TCCB. 2009.



Phylogenetic networks

Phylogenetic network inference

An optimization problem where a candidate N
network is evaluated on the basis of how

well the trees it displays fit the data: o\ 1

a bcd e f
Many possible formulations: a bcd e a bcd e f

Data: .
. GGG GGG
(typically given in blocks) gege

Goal: . .
Find N that maximises Pr(A;, As,..., Ay |N) = [[Pr(4i|N) =] ] ( > [Pr(4T Pr(T|N))
=1

i=1 \TeT(N)

Jin et al.Maximum likelihood of phylogenetic networks. Bioinformatics 2006.
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Phylogenetic network inference

An optimization problem where a candidate N
network is evaluated on the basis of how
well the trees it displays fit the data:

pyl1-
https://phylomemetic.wordpress.com/2015/04/17/phylodag/ a b c d e f
http://old-bioinfo.cs.rice.edu/nepal/ / \
T(N) :
Many possible formulations: a becd e f a bcd e f

Data: .
. GGG GGG
(typically given in blocks) gege

Goal
Find N that maximises Pr(A;, A,,..., A,|N) = [[Pr(4IN) =[] ( > [Pr(4T Pr(T|N))
=1

i=1 \T€eT(N)

Jin et al.Maximum likelihood of phylogenetic networks. Bioinformatics 2006.



Some issues

* Searching the space of phylogenetic networks
The space of networks with k reticulations is infinite.

* Controlling for Model Complexity
Because any network with k reticulations provides a more complex model than

any network with (k-1) reticulations, we must handle the model selection problem
(AIC, BIC, K-fold cross-validation, ...).

* |dentifiability issues

m

Pr(Ay, As,..., An|N) = [[ Pr(A4:|N) =[]

Pr(AﬂT)Pr(TN))

* Not accounting for ILS and allopolyploidy
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(Recall that a network is evaluated
on the basis of how well the trees it
displays fit the data)
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Indistinguishable networks

Branch lengths do not
eliminate non-
identifiability...

N, and N, display the same trees (i.e. including branch lengths) and are thus
indistinguishable even to methods accounting for lengths



Identifiability problems

Indistinguishable networks

Branch lengths do not
eliminate non-
identifiability...

The same hold for
inheritance probabilities

N, and N, display the same trees (i.e. including branch lengths) and are thus
indistinguishable even to methods accounting for lengths
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Unzipping a network
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speciation node) and the trees displayed by a network remain the same:
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Canonical networks

Unzipping a network

Key observation: we can move reticulations up or down (until they hit a
speciation node) and the trees displayed by a network remain the same:

By moving reticulations always down, N, and
N, both end up becoming the same network.

True in general: indistinguishable networks
always transform into the same network —
the canonical form of N, and N,.




Canonical networks

What it means for the evolutionary biologist

If Vis reconstructed by a "classic" inference method, then even assuming perfect
and unlimited data, the best you can hope is that the true phylogenetic network
is just one of the many that are indistinguishable from N ...

The canonical form of N is a unique representative of the networks
indistinguishable from A, that excludes their unrecoverable aspects...



Canonical networks

Take home message for the computational biologist

If Vis reconstructed by a "classic" inference method, then even assuming perfect
and unlimited data, the best you can hope is that the true phylogenetic network
is just one of the many that are indistinguishable from N ...

Canonical networks

Network space

Classes of indistinguishable
networks

"Classic" network inference methods should only attempt to reconstruct
canonical networks .



Dealing with deep coalescence

Are gene trees always displayed by the network?

The approaches above assume that deep coalescence cannot occur, so
gene trees are necessarily displayed trees, but this is not always the case

1 Afr. Mbuti 2
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=== 5 Afr. Ibo 2

6 Afr. San 2

Currently accepted introgression | — S S
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An example of incomplete lineage sorting (ILS)

A B C

(a) Population view (b) Reconciliation representation



ILS and the probability of gene trees

Rannal & Yang 2003 (Genealogies)
Degnan & Salter 2005 (Topologies)
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ILS and the probability of gene trees




Estimating the species tree under the coalescent model

Since standard phylogenetic methods can be inconsistent under ILS
(Degnan & Rosenberg 2006), new methods have been developed to cope
for this bias, eg:

 STEM (Kubatko, Carstens & Knowles 2009)
e STAR (Liu, Yu, Pearl & Edwards 2009)
e MP-EST (Liu, Yu & Edwards 2010)

They estimate a phylogenetic species tree given a sample of gene trees
(with branch lengths or not) under the coalescent model.



Estimating the species tree under the coalescent model

Since standard phylogenetic methods can be inconsistent under ILS
(Degnan & Rosenberg 2006), new methods have been developed to cope
for this bias, eg:

 STEM (Kubatko, Carstens & Knowles 2009)
e STAR (Liu, Yu, Pearl & Edwards 2009)
e MP-EST (Liu, Yu & Edwards 2010)

The same can be done with networks! AOHN S

Yu et al. PNAS 2014



Phylogenetic networks + ILS

Phylogenetic network inference under ILS

a bcd e f

Pr(Ai, As, ..., Apn|N) = HPrA|N H > Pr(4]|T)Pr(T|N).
i=1 i=1TeT(N)
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Phylogenetic networks + ILS

Phylogenetic network inference under ILS
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Phylogenetic networks + ILS

Phylogenetic network inference under ILS

Y Yu & L Nakhleh's group :

* Yuetal. BMC Bioinformatics 2013 (without branch lengths)
* Yuetal. PNAS 2014 (with branch lengths)
* Wen el al. PLOS Genetics 2016 (Bayesian method)

PhyloNet http://bioinfo.cs.rice.edu/phylonet

But also other groups contributed significantly, e.g.
L Kubabtko's group and C Ané’s group.

m

Pr(A17A27 . 7Am|N) = Hp(G’L|N>

=1l




Dealing with deep coalescence

Are gene trees always displayed by the network?

The approaches above assume that deep coalescence cannot occur, so
gene trees are necessarily displayed trees, but this is not always the case:

Currently accepted introgression
scenario among modern humans,
Neanderthals and Denisovans,
based on sequenced (ancient)
nuclear genomes:
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Are gene trees always displayed by the network?

The approaches above assume that deep coalescence cannot occur, so
gene trees are necessarily displayed trees, but this is not always the case:

1 Afr. Mbuti 2
-+ 2 Afr. Mbuti
- 3 Afr. Hausa
== 4 Afr. San

=== 5 Afr. Ibo 2

6 Afr. San 2
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Currently accepted introgression
scenario among modern humans,
Neanderthals and Denisovans,

based on sequenced (ancient)
nuclear genomes:
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Deep coalescence (ILS) can solve indistinguishability

The following two scenarios would be indistinguishable on the basis of the
trees they display:
Imagine sampling two alleles
from the hybrid species k...

In absence of ILS the only
observable gene trees are:

o *% b c o XX b c
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trees can be observed:
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Deep coalescence (ILS) can solve indistinguishability

The following two scenarios would be indistinguishable on the basis of the
trees they display:

Imagine sampling two alleles

If this is the from the hybrid species k...
true network
If the two alleles from % do
not coalesce, other three gene
trees can be observed:
g ' '




Dealing with deep coalescence

Network Multi-Species Coalescent (NMSC)

Given a network with branch lengths (in coalescent units) and inheritance
probabilities, we can calculate the probability of every possible gene tree:

G0 Pr="7 Pr="%

o *X b c a x b ¥Xc

Pr=0

a b**c



Dealing with deep coalescence

Network Multi-Species Coalescent (NMSC)

Given a network with branch lengths (in coalescent units) and inheritance
probabilities, we can calculate the probability of every possible gene tree:

Pr="% Pr="7% Pr="%
co o ¥% L c o XX c o b **c
oo oo Pr=1% Pr=%

' )

/2 2

a *Xb ¢ a x b Xc
A The probability of a gene tree T is a weighted
0 average of the probabilities of T under a number

A %k B C of "parental trees"... (14 here)



Dealing with deep coalescence

Network Multi-Species Coalescent (NMSC)

Given a network with branch lengths (in coalescent units) and inheritance
probabilities, we can calculate the probability of every possible gene tree:

Pr="% Pr="7% Pr="%
co o ¥% L c o XX c o b **c
oo o Pr=" Pr="%

q 1)

o

a *¥Xb c o x b Xc
" o This may solve the identifiability issues for several
i 0 g practical cases.
A % B c Note that gene trees can fail to be displayed by the

network also because of allopolyploidy.



Some issues

* Searching the space of phylogenetic networks

The space of networks with k reticulations is infinite.

* Controlling for Model Complexity
Because any network with k reticulations provides a more complex model than

any network with (k-1) reticulations, we must handle the model selection problem
(AIC, BIC, K-fold cross-validation, ...).

e |dentifiability issues



http://phylnet.univ-mlv.fr/
http://phylonetworks.blogspot.fr

THANKS FOR YOUR
ATTENTION



