
Methods	to	reconstruct	phylogene1c	
networks	accoun1ng	for	ILS		

Céline	Scornavacca	
some		slides	have	been	kindly	provided	by	Fabio	Pardi	

ISE-M,	Equipe	Phylogénie	&	Evolu1on	Moléculaires		
Montpellier,	France	

		
February	the	2nd,	2017		

	
	



Phylogene1c	networks	

a b c d e f 

In	a	phylogene1c	network,	a	re1culate	event	is	represented	as	a	
re1cula1on,	where	branches	converge	to	give	rise	to	a	new	lineage:	

Trees	displayed	by	a	network	



Phylogene1c	networks	

In	a	phylogene1c	network,	a	re1culate	event	is	represented	as	a	
re1cula1on,	where	branches	converge	to	give	rise	to	a	new	lineage:	

a b c d e f 

The	genome(s)	at	the	start	of	the	new	lineage	is	(are)	
a	composi1on	of	those	of	the	parent	lineages.	

Trees	displayed	by	a	network	



Phylogene1c	networks	

a b c d e f 

The	evolu1on	of	each	part	independently	
inherited	is	described	by	a	gene	tree	

In	a	phylogene1c	network,	a	re1culate	event	is	represented	as	a	
re1cula1on,	where	branches	converge	to	give	rise	to	a	new	lineage:	

Trees	displayed	by	a	network	

The	genome(s)	at	the	start	of	the	new	lineage	is	(are)	
a	composi1on	of	those	of	the	parent	lineages.	



Phylogene1c	networks	

a b c d e f 

a b c d e f 

In	a	phylogene1c	network,	a	re1culate	event	is	represented	as	a	
re1cula1on,	where	branches	converge	to	give	rise	to	a	new	lineage:	

Trees	displayed	by	a	network	

The	genome(s)	at	the	start	of	the	new	lineage	is	(are)	
a	composi1on	of	those	of	the	parent	lineages.	

The	evolu1on	of	each	part	independently	
inherited	is	described	by	a	gene	tree	



Phylogene1c	networks	

a b c d e f 

a b c d e f 

a b c d e f 

In	a	phylogene1c	network,	a	re1culate	event	is	represented	as	a	
re1cula1on,	where	branches	converge	to	give	rise	to	a	new	lineage:	

Trees	displayed	by	a	network	

The	genome(s)	at	the	start	of	the	new	lineage	is	(are)	
a	composi1on	of	those	of	the	parent	lineages.	

The	evolu1on	of	each	part	independently	
inherited	is	described	by	a	gene	tree	



Phylogene1c	networks	

a b c d e f 

a b c d e f 

In	the	absence	of	deep	
coalescence	and	

allopolyploidy,	the	gene	
trees	are	a	subset	of	the	
trees	displayed	by	the	

network	

In	a	phylogene1c	network,	a	re1culate	event	is	represented	as	a	
re1cula1on,	where	branches	converge	to	give	rise	to	a	new	lineage:	

Trees	displayed	by	a	network	

The	genome(s)	at	the	start	of	the	new	lineage	is	(are)	
a	composi1on	of	those	of	the	parent	lineages.	

The	evolu1on	of	each	part	independently	
inherited	is	described	by	a	gene	tree	

a b c d e f 



Phylogene1c	network	inference	

Phylogene1c	networks	

a b c d e f 

N

?	
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Many	possible	formula4ons:	 a b c d e f 
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Phylogene1c	networks	

An	op1miza1on	problem	where	a	candidate	
network	is	evaluated	on	the	basis	of	how	
well	the	trees	it	displays	fit	the	data:		
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Data:	
Trees	with	3	taxa:	
(inferred	from	other	data)	

Find	the	network	N	with	the	lower	hybridiza1on	number	such	that	the	triplets	are	
`consistent’	with	one	of	the	trees	displayed	by	N	
	

subject	to	constraints	on	the	complexity	of	N	
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Phylogene1c	networks	

An	op1miza1on	problem	where	a	candidate	
network	is	evaluated	on	the	basis	of	how	
well	the	trees	it	displays	fit	the	data:		

a b c d e f 

Data:	

Find	the	network	N	with	the	lower	hybridiza1on	number	such	that	the	input	trees	
are	`consistent’	with	one	of	the	trees	displayed	by	N	
	

subject	to	constraints	on	the	complexity	of	N	

Goal:	

N

. . .
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Any	trees	on	the	same	taxa:		
(inferred	from	other	data)	
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Phylogene1c	networks	

An	op1miza1on	problem	where	a	candidate	
network	is	evaluated	on	the	basis	of	how	
well	the	trees	it	displays	fit	the	data:		

a b c d e f 

Data:	
Clusters	of	taxa:	

Find	the	network	N	with	the	lower	hybridiza1on	number	such	that	the	input	
clusters	are	`explained’	by	one	of	the	trees	displayed	by	N 	
	

subject	to	constraints	on	the	complexity	of	N	

Goal:	

{a, b}, {d, e}, {d, e, f}, {a, b, c, d, e, f}, {e, f}, {c, d, e, f}, . . .
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network	is	evaluated	on	the	basis	of	how	
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Data:	
Sequence	alignments:		
(typically	given	in	blocks)	

Find	N	that	minimizes	
	
	

subject	to	constraints	on	the	complexity	of	N. F() is the parsimony score.	

. . .

F (N |A1, A2, . . . , Am) =
mX

i=1

min
T2T (N)

F (T |Ai)
Goal:	

T (N) :

N

	
Jin	et	al.	Parsimony	Score	of	Phylogene1c	Networks:	Hardness	Results	and	a	Linear-Time	Heuris1c.	TCCB.	2009.	
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Jin	et	al.Maximum	likelihood	of	phylogene1c	networks.	Bioinforma1cs	2006.	
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h^p://old-bioinfo.cs.rice.edu/nepal/	

h^ps://phylomeme1c.wordpress.com/2015/04/17/phylodag/	



Problems	

Some	issues	

•  Searching	the	space	of	phylogene1c	networks	
The	space	of	networks	with	k	re1cula1ons	is	infinite.	

•  Controlling	for	Model	Complexity	
	Because	any	network	with	k	re1cula1ons		provides	a	more	complex	model	than		
	any		network	with	(k-1)	re1cula1ons,	we	must	handle	the	model	selec1on	problem	
	(AIC,	BIC,	K-fold	cross-valida1on,	…).		

•  Iden1fiability	issues	

•  Not	accoun1ng	for	ILS	and	allopolyploidy			

Pr(A1, A2, . . . , Am|N) =
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Iden1fiability	problems	

Different	networks	can	display	the	same	trees	

Some	networks	display	exactly	
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Because	N1	and	N2	display	
the	same	trees,	they	are	
equally	good	to	any	of	the	
inference	methods	we	saw	
–	no	ma9er	the	input	data	

Some	networks	display	exactly	
the	same	trees:	

Data	
(Recall	that	a	network	is	evaluated	
on	the	basis	of	how	well	the	trees	it	
displays	fit	the	data)	
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Iden1fiability	problems	

Branch	lengths	do	not	
eliminate	non-
iden1fiability…	

Indis1nguishable	networks	

N1	and	N2	display	the	same	trees	(i.e.	including	branch	lengths)	and	are	thus	
indis4nguishable	even	to	methods	accoun1ng	for	lengths		
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Iden1fiability	problems	

Branch	lengths	do	not	
eliminate	non-
iden1fiability…	
The	same	hold	for		
inheritance	probabili1es		

Indis1nguishable	networks	

N1	and	N2	display	the	same	trees	(i.e.	including	branch	lengths)	and	are	thus	
indis4nguishable	even	to	methods	accoun1ng	for	lengths		
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Canonical	networks	

Key	observa1on:	we	can	move	re1cula1ons	up	or	down	(un1l	they	hit	a	
specia1on	node)	and	the	trees	displayed	by	a	network	remain	the	same:		
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By	moving	re1cula1ons	always	down,	N1	and	
N2	both	end	up	becoming	the	same	network.		
	
True	in	general:	indis1nguishable	networks	
always	transform	into	the	same	network	–	
the	canonical	form	of	N1	and	N2.	



Canonical	networks	

The	canonical	form	of	N	is	a	unique	representa1ve	of	the	networks	
indis1nguishable	from	N,	that	excludes	their	unrecoverable	aspects…	

What	it	means	for	the	evolu1onary	biologist	
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If	N	is	reconstructed	by	a	"classic"	inference	method,	then	even	assuming	perfect	
and	unlimited	data,	the	best	you	can	hope	is	that	the	true	phylogene1c	network	
is	just	one	of	the	many	that	are	indis1nguishable	from	N	…	



Canonical	networks	

Take home message for the computational biologist 

If	N	is	reconstructed	by	a	"classic"	inference	method,	then	even	assuming	perfect	
and	unlimited	data,	the	best	you	can	hope	is	that	the	true	phylogene1c	network	
is	just	one	of	the	many	that	are	indis1nguishable	from	N	…	

"Classic"	network	inference	methods	should	only	a^empt	to	reconstruct	
canonical	networks	.	
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Dealing	with	deep	coalescence	

Are	gene	trees	always	displayed	by	the	network?	

Currently	accepted	introgression	
scenario	among	modern	humans,	
Neanderthals	and	Denisovans,	
based	on	sequenced	(ancient)		
nuclear	genomes:		

We note that the stratigraphy and indirect dates indicate that this
individual lived between 30,000 and 50,000 years ago20,28. At a similar
time individuals carrying Neanderthal mtDNA4 were present less
than 100 km away from Denisova Cave in the Altai Mountains,
whereas the presence of an Upper Palaeolithic industry at some sites,
such as Kara-Bom and Denisova, has been taken as evidence for the
appearance of anatomically modern humans in the Altai before
40,000 years ago2,3. Although these dates are associated with large
and unknown errors, this temporal concurrence suggests that com-
plete and successive replacements of distinct hominin forms, similar
to what occurred in Western Europe11, may not have taken place in
southern Siberia. Rather, representatives of three genetically distinct
hominin lineages may all have been present in this region at about the
same time. Thus, the presence of Homo floresiensis in Indonesia about
17,000 years ago29,30 and of the Denisova mtDNA lineage in southern
Siberia about 40,000 years ago suggest that multiple Late Pleistocene
hominin lineages coexisted for long periods of time in Eurasia.

Received 21 January; accepted 3 March 2010.
Published online 24 March; corrected 8 April 2010 (see full-text HTML version for
details).
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Figure 3 | Phylogenetic tree of complete mtDNAs. The phylogeny was
estimated with a Bayesian approach under a GTR1I1C model using 54
present-day and one Pleistocene modern human mtDNA (grey), 6
Neanderthals (blue) and the Denisova hominin (red). The tree is rooted with
a chimpanzee and a bonobo mtDNA. Posterior probabilities are given for

each major node. The map shows the geographical origin of the mtDNAs
(24, 25, 32, 44 are in the Americas). Note that two partial mtDNAs sequenced
from Teshik Tash and Okladikov Cave in Central Asia fall together with the
complete Neanderthal mtDNAs in phylogenies4 (not shown).
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Phylogene1c	tree	for	the	
mitochondrial	genome	
(Krause	et	al	Nature	2010):	

The	approaches	above	assume	that	deep	coalescence	cannot	occur,	so		
gene	trees	are	necessarily	displayed	trees,	but	this	is	not	always	the	case	



An	example	of	incomplete	lineage	sor1ng	(ILS)	

ILS	

(a) Population view (b) Reconciliation representation

Figure 1: Impact of incomplete lineage sorting on simple populations of 4 haploid individuals.
The originating population contains a single blue allele for the considered gene. First, a
mutation leads to a new green allele at this locus, then a first speciation takes place, rapidly
followed by a second one. As the blue and green alleles still co-exist when the second speciation
takes place, both alleles still have a chance to be fixed in the resulting child species B and
C. For these species, the history of this gene will hence di↵er from the species history due to
ILS.

and thus always returns an optimal time-consistent reconciliation. A detailed comparison
with the models and algorithms of [21] and [18] is also provided.

2 Preliminaries

Given a tree T , its node set, branches, and leaf set are respectively denoted V (T ), E(T ),
L(T ). The label of each leaf u is denoted by L(u), while the set of labels of leaves of T is
denoted by L(T ).

If T is rooted, we denote its root by r(T ). Given a node u 2 V (T ), we denote its
parent by up, and the subtree of T rooted at u by Tu. Given two nodes u and v of T , we
write u T v (u <T v) if and only if v is on the unique path from r(T ) to u (and u 6= v);
in such a case, u is said to be a (strict) descendant of v. The height of T , denoted h(T ), is
the length, in nodes, of the longest path from r(T ) to any leaf of T . From now on, unless
otherwise specified, we assume that all trees are rooted.

If a node in a tree T has more than two children, we call it a polytomy. If u 2 V (T ) is
not polytomous, we denote its children by {ul, ur}; if u has just one child, ur is understood
to be undefined. In this paper all trees are considered as unordered, so ul and ur are
arbitrarily assigned.

We define a clade of T as a set of leaves of T . The clade generated by the node u,
denoted C(u), is the set L(Tu). We define C(T ) as the set of all clades generated by nodes
in T ; for a set T of trees, C(T ) = [T2T C(T ). The LCA of a clade is the internal node
which is the lowest common ancestor of the elements of the clade.

If u is a binary internal node, we define the tripartition generated by u, denoted by
⇧(u), as the clade triplet (C(u), C(ul), C(ur)). The latter two clades of a tripartition are
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ILS	and	the	probability	of	gene	trees	

ILS	

  

A B C A B C A B C

a b c

b a c

c a b

Incomplete lineage sorting and the probability of gene trees

Rannal	&	Yang	2003	(Genealogies)	
Degnan	&	Salter	2005	(Topologies)	
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Es1ma1ng	the	species	tree	under	the	coalescent	model	

ILS	

Since	standard	phylogene1c	methods	can	be	inconsistent	under	ILS	
(Degnan	&	Rosenberg	2006),	new	methods	have	been	developed	to	cope	
for	this	bias,	eg:	

		
•  STEM	(Kubatko,	Carstens	&	Knowles	2009)	
•  STAR	(Liu,	Yu,	Pearl	&	Edwards	2009)	
•  MP-EST	(Liu,	Yu	&	Edwards	2010)	
•  …	

	
They	es1mate	a	phylogene1c	species	tree	given	a	sample	of	gene	trees	
(with	branch	lengths	or	not)	under	the	coalescent	model.	
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The	same	can	be	done	with	networks!	
	

phylogenetic X-network, or X-network for short, Ψ is an rDAG
whose leaves are bijectively labeled by the set X of taxa and
whose every internal node (except the root) has in-degree 1 and
out-degree greater than 1 (tree nodes) or in-degree 2 and out-
degree 1 (reticulation nodes). We use V ðΨÞ and EðΨÞ to denote
the set of nodes and edges, respectively, of phylogenetic network
Ψ. Every edge (or branch) b of Ψ has a length λb = tb=Nb in co-
alescent units, where tb is the duration of edge b in generations
and Nb is the population size corresponding to branch b. A
consequence of this setting is that the phylogenetic network does
not have to be ultrametric. Furthermore, whereas the model
does not require or necessitate a constant population size across
all branches of the network, the population size and number of
generations of each branch are dependent, given the branch’s
length. In other words, the values of neither of these two
parameters can be uniquely determined, given the length of
a branch in our model (e.g., doubling both keeps the branch
length unchanged). As is common in the literature in this area,
we use a single composite parameter Ψ to denote the phyloge-
netic network topology and its branch lengths.
Tracing the evolution of a lineage from a leaf of the network

back toward the root follows the multispecies coalescent model
on trees, yet with one major difference: As a lineage encounters
a reticulation node, it tracks one of the two parents of that node
according to an inheritance probability. Because the probabilities
of inheritance vary from one hybridization event to another in
the network, and because different loci may provide different
hybridization signals in the population (Fig. 1), the inheritance
probabilities are given by a jEðΨÞj×m matrix Γ, where m is the
number of independent loci (given the species phylogeny) in the
dataset being analyzed and the entries of Γ satisfy three con-
ditions for every 1≤ j≤m: (i) Γðb; jÞ∈ ½0; 1$ for every b∈EðΨÞ,
(ii) Γðb; jÞ= 1 for every edge b incident into a tree node, and (iii)
Γðb; jÞ+Γðb′; jÞ= 1 for every distinct pair b; b′∈EðΨÞ such that
b and b′ are incident into the same reticulation node. For an
edge b incident into node v in Ψ, the entry Γ½b; j$ denotes the
probability that a sample from locus i tracks branch b when

“entering” the population represented by node v. It is important
to note here that the topology and branch lengths of Ψ, as well as
the matrix Γ, are to be inferred from the data; details are given
below and in SI Appendix.

Likelihood Formulation Based on Sequence Data. Consider m in-
dependent loci along with a set S= fS1; . . . ; Smg of sequence
alignments, where Si corresponds to locus i. The number of
sequences in each Si equals the total number of individuals from
which a sequence is available for locus i, and this number can
vary from one locus to another. Under the independence as-
sumption, the likelihood of an evolutionary history Ψ and in-
heritance probabilities Γ is given by

LðΨ;ΓjSÞ=
Ym

i=1

Z

g

PðSijgÞpðgjΨ;ΓÞdg; [1]

where PðSijgÞ is the probability of the (sequence) data, given
a particular gene genealogy g, and pðgjΨ;ΓÞ is the distribution
(density) of gene genealogies (topologies and branch lengths),
given the model parameters. The integral in the equation is
taken over all possible values of g, where g represents a gene
genealogy (topology and branch lengths). It is important to
note here that for computing the probability PðSijgÞ, the
genealogy’s branch lengths are in units of the expected num-
ber of nucleotide substitutions per site, whereas for computing
pðgjΨ;ΓÞ, the genealogy’s branch lengths need to be converted
to coalescent units. Given the population mutation rate
θ= 4Neu, where Ne is the effective population size and u is
the per-site mutation rate, the conversion from units of the
expected number of nucleotide substitutions per site to coa-
lescent units can be done by multiplying every gene tree
branch length by 2=θ.

Likelihood Formulation Based on Estimated Genealogies. Although
the likelihood formulation given by Eq. 1 uses all of the in-
formation in the data, inference of the species phylogeny from
estimated genealogies can significantly speed up the inference.
In this case, the likelihood formulation becomes

LðΨ;ΓjGÞ=
Ym

i=1
pðGijΨ;ΓÞ; [2]

where Gi is the genealogy estimated for locus i and
G= fG1; . . . ;Gmg. Here, pðGijΨ;ΓÞ is the probability mass func-
tion (pmf) or probability density function (pdf), depending on
whether the Gi s are given by their topologies alone or by topol-
ogies and branch lengths, respectively. Indeed, for the case when
the topology of Ψ is a tree, the Species Tree Estimating using
Maximum Likelihood (STEM) method (19) and the Species
Tree Inference with Likelihood for Lineage Sorting (STELLS)
method (20) use this formulation for inference of Ψ, where the
former makes use of the gene genealogies’ topologies and branch
lengths and the latter makes use of only the genealogies’
topologies.
Inference of high-quality species phylogenies based on Eq. 2

requires accurate estimates of the individual gene genealogies.
Because the methods are aimed at data from closely related
species and potentially multiple individuals from populations,
the signal in the sequence data might be too low for estimating
accurate gene genealogies. Although inference from sequences
(Eq. 1) accounts naturally for this issue, it is important to ac-
count for it explicitly when conducting inference from estimates
of gene genealogies. Assume that for each locus i, the un-
certainty in estimation is accounted for by having a collection of
gene genealogies Gi = fGi1; . . . ;Gipg; for example, these gene

A B C
Fig. 1. Phylogenetic networks. Here, the MRCA of A and B split from its
MRCA with C, and some time after A and B split, hybridization occurred be-
tween B and C. Four independent loci, ▲, ●, ■, and ♦, are illustrated, for
which a single individual is sampled from each of A and C and six individuals
are sampled from B. Two gene trees are depicted for the ▲ and ♦ loci, and
both trees agree in terms of their shapes. However, the disagreement of the
species splitting pattern with the gene tree in red is due to ILS, whereas the
disagreement with the gene tree in blue is due to hybridization. Furthermore,
the ▲ locus exhibits no evidence of hybridization in B, the ♦ locus has lost all
signal of vertical inheritance from the MRCA of B with A, and the other two
loci exhibit varying degrees of hybridization signal in the population. Locus-
specific inheritance probabilities are needed to capture such scenarios.

Yu et al. PNAS | November 18, 2014 | vol. 111 | no. 46 | 16449
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Phylogene1c	network	inference	under	ILS	

Phylogene1c	networks	+	ILS	
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on its consistency with collections of such data will not be able to distinguish between networks N1 and
N2. This includes all the methods whose data consists of clusters of taxa (e.g., [34]), triples (e.g., [35]),
quartets (e.g., [36]), or any trees (e.g., [37]).

The same holds for many, sequence-based, maximum parsimony and maximum likelihood approaches
proposed in recent papers. For maximum parsimony, a practical approach [2,29–31] is to consider that
the input is partitioned in a number of alignments A1, A2, . . . , Am

, each from a different non-recombining
genomic region (possibly consisting of just one site each), and then take, for each of these alignments, the
best parsimony score Ps(T |A

i

) among all those of the trees displayed by a network N . The parsimony
score of N is then the sum of all the parsimony scores thus obtained. Formally, we have

Ps(N |A1, A2, . . . , Am

) =
mX

i=1

min
T2T (N)

Ps(T |A
i

).

It is clear that if two networks display the same set of trees (as in Fig. 1), then their parsimony score
with respect to any input alignments will be the same — because they take the minimum value over the
same set T (N) — and thus they are indistinguishable to any method based on the maximum parsimony
principle above.

As for maximum likelihood (ML), Nakhleh and collaborators [2, 32,33,38] have proposed an elegant
framework whereby a phylogenetic network N is not only described by a network topology, but also edge
lengths and inheritance probabilities associated to the reticulations of N . As a result, any tree T displayed
by N has edge lengths — allowing the calculation of its likelihood Pr(A|T ) with respect to any alignment
A — and an associated probability of being observed Pr(T |N). The likelihood function with respect to a
set of alignments A1, A2, . . . , Am

, each from a different non-recombining genomic region, is then given by:

Pr(A1, A2, . . . , Am

|N) =
mY

i=1

Pr(A
i

|N) =
mY

i=1

X

T2T (N)

Pr(A
i

|T )Pr(T |N).

Pr(A1, A2, . . . , Am

|N) =
mY

i=1

Z

G

Pr(A1, A2, . . . , Am

|N) =

Pr(A
i

| )p(G|N).

Ym

i=1

p(G
i

|N).

Note Note that an important difference with the consistency-based and parsimony methods described
above is that any tree T displayed by a network has now edge lengths and an associated probability
Pr(T |N).

Unfortunately, this ML framework is also subject to identifiability problems. For example, it does not
allow us to distinguish between networks with topologies N1 and N2 in Fig. 1: for every assignment of
edge lengths and inheritance probabilities to N1, there exist corresponding assignments to N2 that make
the resulting networks indistinguishable, that is, displaying the same trees, with the same edge lengths
and the same probabilities of being observed (see the last section in the Supporting Information, S1 Text).
As a result, the likelihoods of these two networks will be identical, regardless of the data, and no method
based on this definition of likelihood will be able to favour one of them over the other. We refer to S1
Text for a more detailed discussion about networks with inheritance probabilities and likelihood-based
reconstruction.

In general, we believe that these identifiability problems affect all network inference methods which
seek consistency with unordered collections of sequence alignments or pre-inferred attributes such as
clusters, triples, quartets or trees.
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the resulting networks indistinguishable, that is, displaying the same trees, with the same edge lengths
and the same probabilities of being observed (see the last section in the Supporting Information, S1 Text).
As a result, the likelihoods of these two networks will be identical, regardless of the data, and no method
based on this definition of likelihood will be able to favour one of them over the other. We refer to S1
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reconstruction.

In general, we believe that these identifiability problems affect all network inference methods which
seek consistency with unordered collections of sequence alignments or pre-inferred attributes such as
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Y	Yu	&	L	Nakhleh's	group	:	
•  	Yu	et	al.	BMC	Bioinforma1cs	2013	(without	branch	lengths)	
•  	Yu	et	al.	PNAS	2014	(with	branch	lengths)	
•  	Wen	el	al.	PLOS	Gene1cs	2016	(Bayesian	method)	
		
	PhyloNet	h^p://bioinfo.cs.rice.edu/phylonet	
	
But	also	other	groups	contributed	significantly,	e.g.		
L	Kubabtko's	group	and	C	Ané’s	group.		
	



Dealing	with	deep	coalescence	

Are	gene	trees	always	displayed	by	the	network?	

The	approaches	above	assume	that	deep	coalescence	cannot	occur,	so		
gene	trees	are	necessarily	displayed	trees,	but	this	is	not	always	the	case:	

Currently	accepted	introgression	
scenario	among	modern	humans,	
Neanderthals	and	Denisovans,	
based	on	sequenced	(ancient)		
nuclear	genomes:		



Dealing	with	deep	coalescence	

Are	gene	trees	always	displayed	by	the	network?	

We note that the stratigraphy and indirect dates indicate that this
individual lived between 30,000 and 50,000 years ago20,28. At a similar
time individuals carrying Neanderthal mtDNA4 were present less
than 100 km away from Denisova Cave in the Altai Mountains,
whereas the presence of an Upper Palaeolithic industry at some sites,
such as Kara-Bom and Denisova, has been taken as evidence for the
appearance of anatomically modern humans in the Altai before
40,000 years ago2,3. Although these dates are associated with large
and unknown errors, this temporal concurrence suggests that com-
plete and successive replacements of distinct hominin forms, similar
to what occurred in Western Europe11, may not have taken place in
southern Siberia. Rather, representatives of three genetically distinct
hominin lineages may all have been present in this region at about the
same time. Thus, the presence of Homo floresiensis in Indonesia about
17,000 years ago29,30 and of the Denisova mtDNA lineage in southern
Siberia about 40,000 years ago suggest that multiple Late Pleistocene
hominin lineages coexisted for long periods of time in Eurasia.

Received 21 January; accepted 3 March 2010.
Published online 24 March; corrected 8 April 2010 (see full-text HTML version for
details).
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Figure 3 | Phylogenetic tree of complete mtDNAs. The phylogeny was
estimated with a Bayesian approach under a GTR1I1C model using 54
present-day and one Pleistocene modern human mtDNA (grey), 6
Neanderthals (blue) and the Denisova hominin (red). The tree is rooted with
a chimpanzee and a bonobo mtDNA. Posterior probabilities are given for

each major node. The map shows the geographical origin of the mtDNAs
(24, 25, 32, 44 are in the Americas). Note that two partial mtDNAs sequenced
from Teshik Tash and Okladikov Cave in Central Asia fall together with the
complete Neanderthal mtDNAs in phylogenies4 (not shown).
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Currently	accepted	introgression	
scenario	among	modern	humans,	
Neanderthals	and	Denisovans,	
based	on	sequenced	(ancient)		
nuclear	genomes:		

Phylogene1c	tree	for	the	
mitochondrial	genome	
(Krause	et	al	Nature	2010):	

The	approaches	above	assume	that	deep	coalescence	cannot	occur,	so		
gene	trees	are	necessarily	displayed	trees,	but	this	is	not	always	the	case:	



Dealing	with	deep	coalescence	

The	following	two	scenarios	would	be	indis1nguishable	on	the	basis	of	the	
trees	they	display:	

A	 B	 C	 A	 B	 C	*	 *	

Deep	coalescence	(ILS)	can	solve	indis1nguishability	
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Imagine	sampling	two	alleles	
from	the	hybrid	species					…	
	
In	absence	of	ILS	the	only	
observable	gene	trees	are:	
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Dealing	with	deep	coalescence	

Given	a	network	with	branch	lengths	(in	coalescent	units)	and	inheritance	
probabili1es,	we	can	calculate	the	probability	of	every	possible	gene	tree:	
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The	probability	of	a	gene	tree	T	is	a	weighted	
average	of	the	probabili1es	of	T	under	a	number	
of	"parental	trees"…	(14	here)	
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This	may	solve	the	iden1fiability	issues	for	several	
prac1cal	cases.	
Note	that		gene	trees	can	fail	to	be	displayed	by	the	
network	also	because	of	allopolyploidy.	



Problems	

Some	issues	

•  Searching	the	space	of	phylogene1c	networks	
The	space	of	networks	with	k	re1cula1ons	is	infinite.	

•  Controlling	for	Model	Complexity	
	Because	any	network	with	k	re1cula1ons		provides	a	more	complex	model	than		
	any		network	with	(k-1)	re1cula1ons,	we	must	handle	the	model	selec1on	problem	
	(AIC,	BIC,	K-fold	cross-valida1on,	…).		

•  Iden1fiability	issues	
•  Not	accoun1ng	for	ILS	and	allopolyploidy			



h^p://phylnet.univ-mlv.fr/	
h^p://phylonetworks.blogspot.fr	
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