
Extract	RNA,	convert	to	cDNA	

RNA-Seq	Empowers	Transcriptome	Studies	

Next-gen	Sequencer	
(pick	your	favorite)	



RNA-Seq	Empowers	Many	Facets	of	
Biological	InvesDgaDons	

•  Transcript	idenDficaDon	(ie.	which	genes	acDve)	
•  Expression	Levels	
•  AlternaDve	splicing	isoforms	
•  Allelic	variants	
•  MutaDons	
•  Fusion	Transcripts	
•  RNA-ediDng	



RNA-Seq	is	Empowering	Discovery	at	Single	Cell	Resolu<on	

Wagner,	Regev,	and	Yosef.		NBT	2016		



RNA-seq	analysis	flow	chart.	

hQp://journals.plos.org/ploscompbiol/arDcle?id=10.1371/journal.pcbi.1004393	



RNA-seq	library	fragmenta<on	and	size	selec<on	strategies	that	influence	
interpreta<on	and	analysis.	

hQp://journals.plos.org/ploscompbiol/arDcle?id=10.1371/journal.pcbi.1004393	



RNA-seq	library	fragmenta<on	and	size	selec<on	strategies	that	influence	
interpreta<on	and	analysis.	

hQp://journals.plos.org/ploscompbiol/arDcle?id=10.1371/journal.pcbi.1004393	



RNA-seq	library	fragmenta<on	and	size	selec<on	strategies	that	influence	
interpreta<on	and	analysis.	

hQp://journals.plos.org/ploscompbiol/arDcle?id=10.1371/journal.pcbi.1004393	



RNA-seq	library	fragmenta<on	and	size	selec<on	strategies	that	influence	
interpreta<on	and	analysis.	

hQp://journals.plos.org/ploscompbiol/arDcle?id=10.1371/journal.pcbi.1004393	



RNA-seq	library	fragmenta<on	and	size	selec<on	strategies	that	influence	
interpreta<on	and	analysis.	

hQp://journals.plos.org/ploscompbiol/arDcle?id=10.1371/journal.pcbi.1004393	



RNA-Seq:		How	do	we	make	cDNA?	
	

Reverse	transcriptase	

RNase	H	
DNA	polymerase	
DNA	Ligase	

Prime	with	Random	Hexamers	(R6)	

cDNA	First	strand	synthesis	

cDNA	Second	strand	synthesis	

mRNA	
5’	 3’	

R6	 R6	 R6	

R6	 R6	R6	

Illumina	cDNA	Library	

Slide	courtesy	of	Joshua	Levin,	Broad	InsDtute.	



RNA-seq	library	fragmenta<on	and	size	selec<on	strategies	that	influence	
interpreta<on	and	analysis.	

hQp://journals.plos.org/ploscompbiol/arDcle?id=10.1371/journal.pcbi.1004393	



RNA-seq	library	fragmenta<on	and	size	selec<on	strategies	that	influence	
interpreta<on	and	analysis.	

hQp://journals.plos.org/ploscompbiol/arDcle?id=10.1371/journal.pcbi.1004393	



RNA-seq	library	fragmenta<on	and	size	selec<on	strategies	that	influence	
interpreta<on	and	analysis.	

hQp://journals.plos.org/ploscompbiol/arDcle?id=10.1371/journal.pcbi.1004393	



RNA-seq	library	enrichment	strategies	that	influence	interpreta<on	and	analysis.	

hQp://journals.plos.org/ploscompbiol/arDcle?id=10.1371/journal.pcbi.1004393	



RNA-seq	library	enrichment	strategies	that	influence	interpreta<on	and	analysis.	

hQp://journals.plos.org/ploscompbiol/arDcle?id=10.1371/journal.pcbi.1004393	



RNA-seq	library	enrichment	strategies	that	influence	interpreta<on	and	analysis.	

hQp://journals.plos.org/ploscompbiol/arDcle?id=10.1371/journal.pcbi.1004393	



RNA-seq	library	enrichment	strategies	that	influence	interpreta<on	and	analysis.	

hQp://journals.plos.org/ploscompbiol/arDcle?id=10.1371/journal.pcbi.1004393	



RNA-seq	library	enrichment	strategies	that	influence	interpreta<on	and	analysis.	

hQp://journals.plos.org/ploscompbiol/arDcle?id=10.1371/journal.pcbi.1004393	



Genera<ng	RNA-Seq:		How	to	Choose?	
	

Illumina	 454	 SOLiD	 Helicos	

Pacific	Biosciences	Ion	Torrent	 Oxford	Nanopore	

Slide	courtesy	of	Joshua	Levin,	Broad	InsDtute.	

Many	different	instruments	hit	the	scene	in	the	last	decade	



From	hQps://www.genome.gov/sequencingcostsdata/	

Hello	Next-Gen	
	Sequencing!	



Illumina	 454	 SOLiD	 Helicos	

Pacific	Biosciences	Ion	Torrent	 Oxford	Nanopore	

Slide	courtesy	of	Joshua	Levin,	Broad	InsDtute.	

Genera<ng	RNA-Seq:		How	to	Choose?	
	



Genera<ng	RNA-Seq:		How	to	Choose?	
	

Illumina	 454	 SOLiD	 Helicos	

Pacific	Biosciences	Ion	Torrent	 Oxford	Nanopore	

Popular	choices	for	RNA-Seq	today	



Genera<ng	RNA-Seq:		How	to	Choose?	
	

Illumina	 454	 SOLiD	 Helicos	

Pacific	Biosciences	Ion	Torrent	 Oxford	Nanopore	

Popular	choices	for	RNA-Seq	today	

[Current	RNA-Seq	
workhorse]	

[Full-length	single	
	molecule	sequencing]	

[Newly	emerging	
technology	for	full-length	
single	molecule	sequencing]	



hQps://www.youtube.com/watch?v=fCd6B5HRaZ8	

Illumina	Sequencing	by	Synthesis	



Millions	to	Billions	of	Reads	

Adapted	from:	hQp://www2.fml.tuebingen.mpg.de/raetsch/members/research/transcriptomics.html	

(Avg.	~	2	kb)	

(Avg.	~	300	b)	

(~	75	to	150	b	reads,	SE	or	PE)	



Common	Data	Formats	for	RNA-Seq	

>61DFRAAXX100204:1:100:10494:3070/1	
AAACAACAGGGCACATTGTCACTCTTGTATTTGAAAAACACTTTCCGGCCAT	

FASTA	format:	
	

FASTQ	format:	

@61DFRAAXX100204:1:100:10494:3070/1	
AAACAACAGGGCACATTGTCACTCTTGTATTTGAAAAACACTTTCCGGCCAT	
+	
ACCCCCCCCCCCCCCCCCCCCCCCCCCCCCBC?CCCCCCCCC@@CACCCCCA	

Read	

Quality	values	



InterpreDng	Base	Quality	Values	
@61DFRAAXX100204:1:100:10494:3070/1	
AAACAACAGGGCACATTGTCACTCTTGTATTTGAAAAACACTTTCCGGCCAT	
+	
ACCCCCCCCCCCCCCCCCCCCCCCCCCCCCBC?CCCCCCCCC@@CACCCCCA	

Read	

Quality	values	

Phred_Quality_Value	=	AsciiEncodedQual(‘B’)	–	33	 =	30	

Phred_Quality_Value	=	-10	*	log10(Pwrong(‘T’))	

Pwrong(‘T’)	=	10^(30/-10)	=	10^-3	=	0.001	

AsciiEncodedQual	(‘B’)	=	63	



Paired-end	Sequences	

@61DFRAAXX100204:1:100:10494:3070/1	
AAACAACAGGGCACATTGTCACTCTTGTATTTGAAAAACACTTTCCGGCCAT	
+	
ACCCCCCCCCCCCCCCCCCCCCCCCCCCCCBC?CCCCCCCCC@@CACCCCCA	

@61DFRAAXX100204:1:100:10494:3070/2	
CTCAAATGGTTAATTCTCAGGCTGCAAATATTCGTTCAGGATGGAAGAACA	
+	
C<CCCCCCCACCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCBCCCC	

Two	FastQ	files,	read	name	indicates	
lev	(/1)	or	right	(/2)	read	of	paired-end	
	







What	to	do?	

•  Trim	the	reads?	
•  Start	over	–	try	sequencing	it	again?	



Trimming	low	quality	regions	of	reads:		Trimmoma<c	



“…	researchers	interested	in	assembling	transcriptomes	de	novo	
should	elect	for	a	much	gentler	quality	trimming,	or	no	trimming	
at	all.”	

“…	trimming	at	PHRED=2	or	PHRED=5	opDmizes	assembly	quality.”	



#	NucleoDde		
errors	/	Mb	

#	unique	
kmers	

Normalized	#	of	
blast	matches	

Fewer	errors	in	the	assembly		

Light	trimming	doesn’t	reduce	number	of	blast	matches	w/	higher	sequencing	depths.	

MacManes	2014	

Fewer	unique	kmers	

Aggressive	Trimming	may	be	harmful,	whereas	light	trimming	could	be	beneficial	



Mul<QC		-	aggrega<on	across	all	QC	on	all	samples	



In	silico	normalizaDon	of	reads	

High	

Moderate	

Low	



Impact	of	NormalizaDon	on	De	novo	Full-length	
Transcript	ReconstrucDon	

Haas	et	al.,	2013	

Largely	retain	full-length	reconstrucDon,	but	use	less	RAM	and	assemble	much	faster.	



RNA-Seq	Challenge:	Transcript	ReconstrucDon	

Adapted	from:	hQp://www2.fml.tuebingen.mpg.de/raetsch/members/research/transcriptomics.html	

(Avg.	~	2	kb)	

(Avg.	~	300	b)	

(~	75	to	150	b	reads,	SE	or	PE)	



Transcript	Reconstruc<on	from	RNA-Seq	Reads	

Nature	Biotech,	2010	



Transcript	Reconstruc<on	from	RNA-Seq	Reads	



Transcript	Reconstruc<on	from	RNA-Seq	Reads	



Transcript	Reconstruc<on	from	RNA-Seq	Reads	

Trinity	

GMAP	

Non-model	organisms:	
	“I	don’t	have	a	

reference	genome!”	



Transcript	Reconstruc<on	from	RNA-Seq	Reads	

Cufflinks	

TopHat	



Transcript	Reconstruc<on	from	RNA-Seq	Reads	

Cufflinks	

TopHat	



Transcript	Reconstruc<on	from	RNA-Seq	Reads	

Trinity	
Oases	
SoapDenovoTrans	
AbyssTrans	
IDBA-Tran	
Shannon	
BinPacker	
Bridger	
…	

GMAP	
BLAT	
AAT	
Spidey	
Sim4	
…	

Cufflinks	
String<e	
IsoLasso	
Bayesembler	
Trip	
Traph	
CEM	
TransComb	
…	

TopHat		
STAR	
HISAT	
GSNAP	
…	

Many	tools	to	choose	among:	



Graph	Data	Structures	Commonly	Used	For	Assembly	

Reads	to	Graph		

•  Sequence	
•  Order	
•  OrientaDon	(+,	-)	
•  Overlap	

GATC	

CGATCA	

GTC	

CG	

AGTCA	

AGC	

GATTACA	

Nodes	=	sequence	(+/-)	
Edges	=	order,	overlap	



Graph	Data	Structures	Commonly	Used	For	Assembly	

GATC	

CGATCA	

GTC	

CG	

AGTCA	

AGC	

GATTACA	

GATCGTCCGAGCGATTACA	

Reads	to	Graph		

•  Sequence	
•  Order	
•  OrientaDon	(+,	-)	
•  Overlap	

Nodes	=	sequence	(+/-)	
Edges	=	order,	overlap	



Genome-Guided	Transcript	ReconstrucDon	

From	MarDn	&	Wang.	Nature	Reviews	in	GeneDcs.	2011	

Splice-align	reads	to	the	genome	



Genome-Guided	Transcript	ReconstrucDon	

From	MarDn	&	Wang.	Nature	Reviews	in	GeneDcs.	2011	

Splice-align	reads	to	the	genome	

Alignment	segment	piles		=>			exon	regions	



Genome-Guided	Transcript	ReconstrucDon	

From	MarDn	&	Wang.	Nature	Reviews	in	GeneDcs.	2011	

Splice-align	reads	to	the	genome	

Large	alignment	gaps			=>			introns			



Genome-Guided	Transcript	ReconstrucDon	

From	MarDn	&	Wang.	Nature	Reviews	in	GeneDcs.	2011	

Splice-align	reads	to	the	genome	

Overlapping	but	different	introns	=		evidence	of	alternaDve	splicing	



Genome-Guided	Transcript	ReconstrucDon	

From	MarDn	&	Wang.	Nature	Reviews	in	GeneDcs.	2011	

Splice-align	reads	to	the	genome	



From	MarDn	&	Wang.	Nature	Reviews	in	GeneDcs.	2011	

Genome-Guided	Transcript	ReconstrucDon	
Splice-align	reads	to	the	genome	

Individual	reads	can	yield	mulDple	exon	and	intron	segments	(splice	paQerns)	



From	MarDn	&	Wang.	Nature	Reviews	in	GeneDcs.	2011	

Nodes	=	unique	splice	paQerns	

Genome-Guided	Transcript	ReconstrucDon	
Splice-align	reads	to	the	genome	



From	MarDn	&	Wang.	Nature	Reviews	in	GeneDcs.	2011	

Construct	graph	from	unique	splice	paaerns	of	aligned	reads.	

Nodes	=	unique	splice	paQerns	

Genome-Guided	Transcript	ReconstrucDon	
Splice-align	reads	to	the	genome	



From	MarDn	&	Wang.	Nature	Reviews	in	GeneDcs.	2011	

Construct	graph	from	unique	splice	paaerns	of	aligned	reads.	

Genome-Guided	Transcript	ReconstrucDon	
Splice-align	reads	to	the	genome	

Nodes	=	unique	splice	paQerns	
Edges	=	compaDble	paQerns	



From	MarDn	&	Wang.	Nature	Reviews	in	GeneDcs.	2011	

Construct	graph	from	unique	splice	paaerns	of	aligned	reads.	

Nodes	=	unique	splice	paQerns	
Edges	=	compaDble	paQerns	

Genome-Guided	Transcript	ReconstrucDon	
Splice-align	reads	to	the	genome	



From	MarDn	&	Wang.	Nature	Reviews	in	GeneDcs.	2011	

Genome-Guided	Transcript	ReconstrucDon	

Traverse	paths	through	the	graph	to	assemble	transcript	isoforms	



From	MarDn	&	Wang.	Nature	Reviews	in	GeneDcs.	2011	

Genome-Guided	Transcript	ReconstrucDon	

Traverse	paths	through	the	graph	to	assemble	transcript	isoforms	

Reconstructed	isoforms	



What	if	you	don’t	have	a	high	quality	reference	genome	sequence?	



Read	Overlap	Graph:				Reads	as	nodes,	overlaps	as	edges	



Read	Overlap	Graph:				Reads	as	nodes,	overlaps	as	edges	

Node	=	read	
Edge	=	overlap	



Read	Overlap	Graph:				Reads	as	nodes,	overlaps	as	edges	

Transcript	A	

Transcript	B	

	Generate	consensus	sequence	where	reads	overlap	

Node	=	read	
Edge	=	overlap	



Finding	pairwise	overlaps	between	n	reads	involves	~	n2	comparisons.	

ImpracFcal	for	typical	RNA-Seq	data	(50M	reads)	



No	genome	to	align	to…			De	novo	assembly	required	

Want	to	avoid	n2	read	alignments	to	define	overlaps	

Use	a	de	Bruijn	graph	



Sequence	Assembly	via	de	Bruijn	Graphs	

From	MarDn	&	Wang,	Nat.	Rev.	Genet.	2011	

Generate	all	substrings	of	length	k	from	the	reads	

k-mers	(k=5)	

Reads	



Sequence	Assembly	via	De	Bruijn	Graphs	

From	MarDn	&	Wang,	Nat.	Rev.	Genet.	2011	

Generate	all	substrings	of	length	k	from	the	reads	

k-mers	(k=5)	

Reads	



Sequence	Assembly	via	De	Bruijn	Graphs	

From	MarDn	&	Wang,	Nat.	Rev.	Genet.	2011	

Generate	all	substrings	of	length	k	from	the	reads	

Construct	the	de	Bruijn	graph	

k-mers	(k=5)	

Reads	

Nodes	=	unique	k-mers	



Sequence	Assembly	via	De	Bruijn	Graphs	

From	MarDn	&	Wang,	Nat.	Rev.	Genet.	2011	

Generate	all	substrings	of	length	k	from	the	reads	

Construct	the	de	Bruijn	graph	

k-mers	(k=5)	

Reads	

Nodes	=	unique	k-mers	
Edges	=	overlap	by	(k-1)	



Sequence	Assembly	via	De	Bruijn	Graphs	

From	MarDn	&	Wang,	Nat.	Rev.	Genet.	2011	

Generate	all	substrings	of	length	k	from	the	reads	

Construct	the	de	Bruijn	graph	

k-mers	(k=5)	

Reads	

Nodes	=	unique	k-mers	
Edges	=	overlap	by	(k-1)	

(k-1)	overlap	



Sequence	Assembly	via	De	Bruijn	Graphs	

From	MarDn	&	Wang,	Nat.	Rev.	Genet.	2011	

Generate	all	substrings	of	length	k	from	the	reads	

Construct	the	de	Bruijn	graph	

k-mers	(k=5)	

Reads	

Nodes	=	unique	k-mers	
Edges	=	overlap	by	(k-1)	

(k-1)	overlap	



Sequence	Assembly	via	De	Bruijn	Graphs	

From	MarDn	&	Wang,	Nat.	Rev.	Genet.	2011	

Generate	all	substrings	of	length	k	from	the	reads	

Construct	the	de	Bruijn	graph	

k-mers	(k=5)	

Reads	

Nodes	=	unique	k-mers	
Edges	=	overlap	by	(k-1)	



From	MarDn	&	Wang,	Nat.	Rev.	Genet.	2011	

Construct	the	de	Bruijn	graph	

Collapse	the	de	Bruijn	graph	



From	MarDn	&	Wang,	Nat.	Rev.	Genet.	2011	

Collapse	the	de	Bruijn	graph	

Traverse	the	graph	

Assemble	Transcript	Isoforms	



Contras<ng	Genome	and	Transcriptome	De	novo	Assembly	

Genome	Assembly	 Transcriptome	Assembly	

•  Uniform	coverage	 •  ExponenDally	distributed	coverage	levels	

•  Single	conDg	per	locus	 •  MulDple	conDgs	per	locus	(alt	splicing)	

•  Assemble	small	numbers	of	
large	Mb-length	chromosomes	

•  Assemble	many	thousands	of	Kb-length	
transcripts	

•  Double-stranded	data	 •  Strand-specific	data	available	



Trinity	Aggregates	Isolated	Transcript	Graphs	

Genome	Assembly	
Single	Massive	Graph	

Trinity	Transcriptome	Assembly	
Many	Thousands	of	Small	Graphs	

Ideally,	one	graph	per	expressed	gene.	EnDre	chromosomes	represented.	



RNA-Seq	
reads	

Linear	
con<gs	

de-Bruijn	
graphs	

Transcripts	
+	

Isoforms	

Trinity	–	How	it	works:	

Thousands	of	disjoint	graphs	



Inchworm	Algorithm	
•  Decompose	all	reads	into	overlapping	Kmers	=>	hashtable(kmer,	count)	

AATGTGAAAACTGGATTACATGCTGGTATGTC… 
	AATGTGA	
ATGTGAA	
TGTGAAA	
…	

Read:		

Overlapping	kmers	of	length	(k)	

Kmer	 Count	among	
all	reads	

AATGTGA 4	

ATGTGAA 2	

TGTGAAA 1	

GATTACA 9	

Kmer	Catalog	(hashtable)	



Inchworm	Algorithm	
•  Decompose	all	reads	into	overlapping	Kmers	=>	hashtable(kmer,	count)	

•  IdenDfy	seed	kmer	as	most	abundant	Kmer,	ignoring	low-complexity	kmers.	

GATTACA	
9	

Kmer	 Count	among	
all	reads	

AATGTGA 4	

ATGTGAA 2	

TGTGAAA 1	

GATTACA 9	

Kmer	Catalog	(hashtable)	



Inchworm	Algorithm	
•  Decompose	all	reads	into	overlapping	Kmers	=>	hashtable(kmer,	count)	

•  Extend	kmer	at	3’	end,	guided	by	coverage.	
G	

A	

T	

C	

•  IdenDfy	seed	kmer	as	most	abundant	Kmer,	ignoring	low-complexity	kmers.	

GATTACA	
9	



Inchworm	Algorithm	

G	

A	

T	

C	

4	

GATTACA	
9	



Inchworm	Algorithm	

G	

A	

T	

C	

4	

1	
GATTACA	

9	



Inchworm	Algorithm	

G	

A	

T	

C	

4	

1	

0	

GATTACA	
9	



Inchworm	Algorithm	

G	

A	

T	

C	

4	

1	

0	

4	

GATTACA	
9	



GATTACA	

G	

A	

T	

C	

4	

1	

0	

4	

9	

Inchworm	Algorithm	



GATTACA	

G	

A	

T	

C	

G	 A	

T	

C	

G	

A	

T	C	

4	

1	

0	

4	

9	

1	

1	

1	
1	

5	

1	

0	

0	

Inchworm	Algorithm	



GATTACA	

G	

A	

4	

9	

5	

A	

T	

C	

G	

T	

C	

G	

A	

T	C	

1	

0	

4	 1	

1	

1	
1	

1	

0	

0	

Inchworm	Algorithm	



GATTACA	

G	

A	

4	

9	

5	

Inchworm	Algorithm	



GATTACA	

G	

A	

4	

9	

5	

G	

A	

T	

C	

6	

1	

0	

0	

Inchworm	Algorithm	



GATTACA	

G	

A	

4	

9	

5	

A	
6	

A	
7	

Inchworm	Algorithm	

Remove	assembled	kmers	from	catalog,	then	repeat	the	enDre	process.	

Report	conDg:						….AAGATTACAGA….		



Inchworm	ConDgs	from	Alt-Spliced	Transcripts	

Isoform	A	

Isoform	B	

Expressed	isoforms	



Inchworm	ConDgs	from	Alt-Spliced	Transcripts	

Isoform	A	

Isoform	B	

Graphical	
representaDon	

Expressed	isoforms	
(low)	
(high)	

Expression	



Inchworm	ConDgs	from	Alt-Spliced	Transcripts	



Inchworm	ConDgs	from	Alt-Spliced	Transcripts	

+	 No	k-mers	
in	common	



Inchworm	ConDgs	from	Alt-Spliced	Transcripts	

+	



Chrysalis	Re-groups	Related	Inchworm	ConDgs	

+	

Chrysalis	uses	(k-1)	overlaps	and	read	
support	to	link	related	Inchworm	conDgs	



Chrysalis	

Integrate	isoforms	
via	k-1	overlaps	 Build	de	Bruijn	Graphs	

(ideally,	one	per	gene)	



Thousands	of	Chrysalis	Clusters	



(isoforms	and	paralogs)	



BuQerfly	Example	1:		
ReconstrucDon	of	AlternaDvely	Spliced	Transcripts	

BuQerfly’s	Compacted	
Sequence	Graph	

Reconstructed	Transcripts	

Aligned	to	Mouse	Genome	



ReconstrucDon	of	AlternaDvely	Spliced	Transcripts	

BuQerfly’s	Compacted	
Sequence	Graph	

Reconstructed	Transcripts	

Aligned	to	Mouse	Genome	



ReconstrucDon	of	AlternaDvely	Spliced	Transcripts	

BuQerfly’s	Compacted	
Sequence	Graph	

Reconstructed	Transcripts	

Aligned	to	Mouse	Genome	



ReconstrucDon	of	AlternaDvely	Spliced	Transcripts	

BuQerfly’s	Compacted	
Sequence	Graph	

Reconstructed	Transcripts	

Aligned	to	Mouse	Genome	

(Reference	structure)	



Teasing	Apart	Transcripts	of	Paralogous	Genes	
Ap2a1	 Ap2a2	

BuQerfly	Example	2:	



Teasing	Apart	Transcripts	of	Paralogous	Genes	
Ap2a1	 Ap2a2	



Trinity	output:	A	mulD-fasta	file	







Framework	for	De	novo	Transcriptome	Assembly	and	Analysis	

1.3	Billion		
Total	Reads	

86	Million		
Normalized	Reads	BowDe	&	RSEM	

EdgeR,	
Bioconductor,	
&	Trinity	



Example	Applica<ons	of	the	Trinity	RNA-Seq	Protocol	



Biomedical	Applica<ons	for	de	Novo	Transcriptome	Assembly		

Fusion	transcripts	in	Cancer	

BCR--ABL1		fusion	in	~95%	of		
chromic	myelogenous	leukemias	(CML)	

Fusions	Iden<fied	in	a	cohort	of	acute	myeloid	
leukemias	(AML)	using	de	novo	transcriptome	
assembly.		 N	Engl	J	Med.	2013	May	30;	368(22)	



Detec<on	&	Reconstruc<on	of	Viral	and	Microbial	Transcripts	in	Cancer	

HPV	

Biomedical	Applica<ons	for	de	Novo	Transcriptome	Assembly		

Tumor	Viruses	

•  Human	papilloma	virus	(HPV)	in	cervical	cancer	
•  HepaDDs	B	&	C	in	liver	cancer	
•  Eppstein	Barr	Virus	in	lymphomas	
•  T-lymphotrophic	virus	in	adult	T-cell	leukemia	

Bacterial	/	Cancer	Associa<ons	

•  Helicobacter	pylori	/	stomach	cancer	
•  Fusobacterium	nucleatum	/	colon	cancer	



Genome-guided	reconstruc<on	is		
more	sensi<ve	than	genome-free	methods	

Genome-guided	assembly	
reads	>>		

Overlap	requirements	
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Million	PE	reads	

#	Genes	w/	fully	
reconstructed	
transcripts	

Mouse	data	

Cufflinks	(genome-guided)	

Trinity	(genome-free)	

Genome-free	de	novo	assembly	
reads	

Contras<ng	Genome-guided	and	De	novo	Assembly		

(k-1)	



Summary	
•  Transcript	reconstrucDon	from	RNA-Seq	data	may	leverage	

genome-guided	or	de	novo	assembly	
	

•  Transcriptome	assembly	uses	directed	graph	data	structures	and	
path	traversal	
	

•  Advantages	and	disadvantages	to	assembly	approaches	
–  Genome-guided:	well-matched	samples	and	very	sensiDve	
–  De	novo:	almost	any	sample	will	do,	but	requires	higher	depth	
of	read	coverage	
	

•  Biomedical	applicaDons	for	de	novo	transcriptome	assembly	
–  Cancer	research:	fusion	transcripts	&	pathogen	detecDon	



Strand-specific	RNA-Seq	is	Preferred	
ComputaDonally:	fewer	confounding	graph	structures	in	de	novo	assembly:	
																ex.		Forward	!=	reverse	complement		

																					(GGAA	!=	TTCC)	
Biologically:	separate	sense	vs.	anDsense	transcripDon	
	



dUTP	2nd	Strand	Method:		Our	Favorite	

Modified	from	Parkhomchuk	et	al.	(2009)	Nucleic	Acids	Res.	37:e123	

RNA	

PCR	and	paired-end	sequencing	

Adaptor	liga<on	

U	 UU	U	 UU	U	

U	 UU	U	 UU	U	

USER™		
(Uracil-Specific	Excision	Reagent)	Remove	“U”s	

Second-strand	synthesis	with	dTTP	à	dUTP	

U	 UU	U	 UU	U	

First-strand	synthesis	with	normal	dNTPs	
cDNA	

Slide	courtesy	of	Joshua	Levin,	Broad	InsDtute.	



Overlapping	UTRs	from	Opposite	Strands	

Schizosacharomyces	pombe	
(fission	yeast)	



AnDsense-dominated	TranscripDon	



Abundance	EsDmaDon	
(Aka.	CompuDng	Expression	Values)	



Slide	courtesy	of	Cole	Trapnell	
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Slide	courtesy	of	Cole	Trapnell	
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Normalized	Expression	Values	
	
•  Transcript-mapped	read	counts	are	
normalized	for	both	length	of	the	transcript	
and	total	depth	of	sequencing.	

•  Reported	as:	Number	of	RNA-Seq	Fragments		
				Per	Kilobase	of	transcript	
												per	total	Million	fragments	mapped	

FPKM	
RPKM	(reads	per	kb	per	M)	used	with	Single-end	RNA-Seq	reads	
FPKM	used	with	Paired-end	RNA-Seq	reads.	



Transcripts	per	Million	(TPM)	

iTPM = iFPKM
FPKM
j∑

*1e6

Preferred	metric	for	measuring	expression	
•  BeQer	reflects	transcript	concentraDon	in	the	sample.	
•  Nicely	sums	to	1	million	

TPM	

FPKM	

Linear	relaDonship	between	TPM	and	
FPKM	values.	

Both	are	valid	metrics,	but	best	to	be	consistent.	



MulDply-mapped	Reads	Confound	
Abundance	EsDmaDon	

Blue	=	mulDply-mapped	reads	
Red,	Yellow	=	uniquely-mapped	reads	

Isoform	A	

Isoform	B	

	EM					



MulDply-mapped	Reads	Confound	
Abundance	EsDmaDon	

Blue	=	mulDply-mapped	reads	
Red,	Yellow	=	uniquely-mapped	reads	

Isoform	A	

Isoform	B	

	EM					

Use	ExpectaDon	MaximizaDon	(EM)	to	find	the	
most	likely	assignment	of	reads	to	transcripts.	
	
Performed	by:		
•  Cufflinks,	String	Tie	(Tuxedo)	
•  RSEM,	eXpress	(genome-free)	
•  Kallisto,	Salmon	(alignment-free)	

EsDmate	expression,	
Compute	likelihood	
	

Adj	Model	Params,	
ProporDoning	Reads	



Expression	Quan<fica<on	Results	
(ex.	from	Kallisto)	



Evalua<ng	the	quality	of	your	transcriptome	assembly	



De	novo	Transcriptome	Assembly	is	Prone	to	Certain	Types	of	Errors		

Smith-Unna	et	al.	Genome	Research,	2016	



Smith-Unna	et	al.	Genome	Research,	2016	



Simple	Quan<ta<ve	and	Qualita<ve	Assembly	Metrics	

Read	representaFon	by	assembly	

Align	reads	to	the	assembled	transcripts	using	BowDe.	
A	typical	‘good’	assembly	has	~80	%	reads	mapping	to	the	assembly	
and	~80%	are	properly	paired.	

Proper	pairs	

Given	read	pair:		 Possible	mapping	contexts	in	the	Trinity	assembly	are	reported:	

Improper	pairs	 Lev	only	 Right	only	



%		samtools	tview		alignments.bam		target.fasta	

Assembled	transcript	con<g	is	only	as	good	as	its	read	support.	



IGV	



Can	Examine	Transcript	Read	Support	Using	IGV	



Can	align	Trinity	transcripts	to	genome	scaffolds	to	examine	intron/exon	structures	
(Trinity	transcripts	aligned	to	the	genome	using	GMAP)	



The	ConDg	N50	staDsDc	

“At	least	half	of	assembled	bases	are	in	conDgs	
that	are	at	least	N50	bases	in	length”	

In	genome	assemblies	–	used	oven	to	judge	‘which	assembly	is	beQer’	

0	 500000	 1000000	 1500000	 2000000	 2500000	 3000000	 3500000	 4000000	

1	 1M	 750k	 500k	 250k	

N50	conDg	length	=	500k	

Assemblies	ordered	by	length:	



Expression	

Oren,	most	assembled	transcripts	are	*very*	lowly	expressed	
(How	many	‘transcripts	&	genes’	are	there	really?)	

20k	transcripts	

CumulaDve	
#	of		

Transcripts	

1.4	million	Trinity		
transcript	conDgs	
N50	~	500	bases	

*	Salamander	transcriptome	

-1	*	minimum	TPM		



N50	CalculaDon	for	Transcriptome	Assemblies??	

In	transcriptome	assemblies	–	N50	is	not	very	useful.	
•  	Overzealous	isoform	annotaDon	for	long	transcripts	drives	

higher	N50	
•  Very	sensiDve	reconstrucDon	for	short	lowly	expressed	

transcripts	drives	lower	N50	

0	 10000	 20000	 30000	 40000	 50000	 60000	 70000	 80000	 90000	

1	
…	300000	

N50	length?	
(small)	



•  Sort	conDgs	by	expression	value,	descendingly.	
•  Compute	N50	given	minimum	%	total	expression	data	thresholds	=>		ExN50	

N50=3457,	
and	

24K	transcripts	

Compute	N50	Based	on	the	Top-most	Highly	Expressed	Transcripts	(ExN50)	

90%	of		
expression	data	



ExN50	Profiles	for	Different	Trinity	Assemblies	Using	Different	Read	Depths	

Note	shiv	in	ExN50	profiles	as	you	assemble	more	and	more	reads.	

*	Candida	transcriptome	

Thousands	of		
Reads	

Millions	of	Reads	



Evalua<ng	the	quality	of	your	transcriptome	assembly	
Full-length	Transcript	DetecFon	via	BLASTX	

M	 *	 Known	protein	(SWISSPROT)	

Trinity	transcript	

Haas	et	al.	Nat.	Protoc.	2013	*	Mouse	transcriptome	

Have	you	
sequenced	
deeply	
enough?	





#Summarized	BUSCO	benchmarking	for	file:	Trinity.fasta	
#BUSCO	was	run	in	mode:	trans	
	
Summarized	benchmarks	in	BUSCO	nota<on:	
								C:88%[D:53%],F:4.5%,M:7.3%,n:3023	
	
Represen<ng:	
								1045				Complete	Single-copy	BUSCOs	
								1617				Complete	Duplicated	BUSCOs	
								139					Fragmented	BUSCOs	
								222					Missing	BUSCOs	
								3023				Total	BUSCO	groups	searched	



	“RSEM-EVAL	[sic]	uses	a	novel	probabilisDc	model-based	method	to	compute	the	
joint	probability	of	both	an	assembly	and	the	RNA-Seq	data	as	an	evaluaDon	score.”	

Li	et	al.	Evalua<on	of	de	novo	transcriptome	assemblies	from	RNA-Seq	data,	Genome	Biology	2014	

Detonate:	Which	assembly	is	beaer?	

“the	RSEM-EVAL	score	of	an	assembly	is	defined	as	the	log	joint	probability	
of	the	assembly	A		and	the	reads	D		used	to	construct	it”	



	“RSEM-EVAL	[sic]	uses	a	novel	probabilisDc	model-based	method	to	compute	the	
joint	probability	of	both	an	assembly	and	the	RNA-Seq	data	as	an	evaluaDon	score.”	

Li	et	al.	Evalua<on	of	de	novo	transcriptome	assemblies	from	RNA-Seq	data,	Genome	Biology	2014	

Detonate:	Which	assembly	is	beaer?	

“the	RSEM-EVAL	score	of	an	assembly	is	defined	as	the	log	joint	probability	
of	the	assembly	A		and	the	reads	D		used	to	construct	it”	

Bigger	Score	=	Beaer	Assembly	



	“RSEM-EVAL	[sic]	uses	a	novel	probabilisDc	model-based	method	to	compute	the	
joint	probability	of	both	an	assembly	and	the	RNA-Seq	data	as	an	evaluaDon	score.”	

Li	et	al.	Evalua<on	of	de	novo	transcriptome	assemblies	from	RNA-Seq	data,	Genome	Biology	2014	

Detonate:	Which	assembly	is	beaer?	
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RSEM-EVAL	Genome-free	metric	

Yay		
Trinity!!	



Hands-on	Workshop	Ac<vi<es	

hQp://journals.plos.org/ploscompbiol/arDcle?id=10.1371/journal.pcbi.1004393	

Trimmoma<c	 Normaliza<on	

				Hisat2						BowDe2									GMAP											

FastQC,	MulDQC	

Full-length	BlastX,	
ExN50		

																								salmon	

																								IGV,								R	

																StringDe																	Trinity	

(Tomorrow)	


