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The	trouble	with	retrac4ons:	Nature	News	2011	

“the frequency of retraction varies among journals and shows 
a strong correlation with the journal impact factor”


Fang	2011	Infect.	Immun.		
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“the	expression	for	many	sets	of	genes	was	found	to	be	more	similar	in	
different	4ssues	within	the	same	species	than	between	species”	

we	iden4fy	three	robust	clusters	(referred	to	as	enterotypes	hereaHer)	that	
are	not	na4on	or	con4nent	specific	...	mostly	driven	by	species	composi4on	

Publica4ons	with	significant	human	error	that	have	not	been	retracted	

“[aHer	accoun4ng]	for	the	batch	effect,	
…	human	and	mouse	tend	to	cluster	by	
4ssue,	not	by	species”	Gilad	and	
Mizrahi-Man	2015.	F1000	Research	

Snyder mouse controversy


Correla4on	

“the	expression	for	many	sets	of	genes	was	
found	to	be	more	similar	in	different	4ssues	
within	the	same	species	than	between	
species”	Lin	et	al.	2014	PNAS	

Human	 mouse	

Hum
an	

m
ouse	

Human	–	Mouse	TMRCA		
~	90	MYA	

Brain	–	Kidney	TMRCA?	
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Batch effect: confounding sequencing grouping 
with biological grouping


•   


Solution = Keep technical effects orthogonal to biological

•  Mouse & Human in same lane, same tissues in same lane


•  Will your Core facility know to do this for you?


N=85	
N=154	
N=33	

Courtesy	of	
Paul	

McMurdie	

Enterotypes


•   

we	iden4fy	three	robust	clusters	(referred	to	as	enterotypes	
hereaHer)	that	are	not	na4on	or	con4nent	specific	...	mostly	
driven	by	species	composi4on	

Result	of	using	supervised	clustering	method,	set	to	generate	3	
clusters.		

Their	clusters	are	not	a	property	of	dataset,	as	the	only	robust	cluster	
is	found	grouping	by	sequencing	technique	

154	pyrosequencing-based	
16S	sequences	
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•   


Parker	et	al.	2013.	Nature	502:228–231.	
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•  2326 orthologous genes

•  site-wise log-likelihood support (SSLS)


–  Negative values support convergence H1,H2

•  824 mean support for H1

•  329 mean support for H2  


Hearing		
Vision	

“Strong	and	significant	support	
for	convergence	among	bats	
and	the	boilenose	dolphin	was	
seen	in	numerous	genes	linked	
to	hearing	or	deafness,	
consistent	with	an	involvement	
in	echoloca4on.”	

Parker et al. failed to conduct orthogonal ‘test’ of 
findings or estimate proper ‘null’ expectation


•   


Thomas	and	Hahn	2015.	Mol	Biol	Evol	32:1232–1236.	
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What makes us difference from 
chimps?


Is it really just 2%




On which lineage, ours or theirs?




•   

201	cita4ons	since	2007	

Only	2	genes	of	original	59	
were	validated!!		

(at	bioinforma4c	level)	

•  Many	chimpanzee-specific	divergent	sites	are	adjacent	to	
indels	

•  removing	nucleo4des	within	five	posi4ons	of	indels	
abolishished	most	adap4ve	signals	
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Evolutionary Inference = House of Cards?


The quality of our evolutionary inference    




Is proportional to assumptions of orthology


Orthologous genes … can their phenotypic effects 
drift over evolutionary time?


•  RNAi phenotypes assessed for1,300 genes in two nematodes

–  TMRA ~24 MYA

– 7% had divergent phenotypic effects (in lab, etc.)

–  Likely higher in nature


Verster	et	al.	2014.	PLoS	Genet	

~	24	MY	

Caenorhabdi+s	

C.	elegans	

C.	briggsae	

Gene	regulatory	networks	are	changing	even	when	phenotype	is	not	
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So … how many of you are sequencing a 
genome?


•  What does that mean?


•  What kind of genome are you generating?


•  What is your question?

– Short term vs. long term goals?

– Are these in conflict?
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Is there a genome for 
humans?






Species cannot be represented by an individual




 
 
 
Species do not have a single genome


Genomes of 2,504 individuals from 26 populations �



•  You	differ	from	references	on	average	at:	
– 4	to	5	M	SNPs	
– ~2k	structural	variants	covering	~20	M	bp	

1000	Genomes	Project	Consor4um	(2015)	Nature		
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What does this mean


•  Most species have lots of genomic polymorhism

–  SNPs are just the tip of the iceburg, lots of structural changes

–  Characterizing all the variation is very expensive


•  But


•  Very rarely will your questions require chromosomal level 
assembly

–  Thus you can get to your answers much faster and cheaper if you 

generate what you need rather than working for an ideal you don’t 
need


Three	years,	
~300,000	Euros	

Hill	et	al.,	in	prep.	
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Pieris rapae

Pieris napi

Pieris rapae HiRise

Phoebis sennae

Leptidea sinapis

Heliconius erato demophoon

Heliconius melpomene

Melitaea cinxia

Bicyclus anynana

Danaus plexippus

Calycopis cecrops

Lerema accius

Papilio xuthus

Papilio polytes

Papilio machaon

Papilio glaucus

Chilo suppressalis

Plodia interpunctella

Helicoverpa armigera

Spodoptera frugiperda

Operophtera brumata

Manduca sexta

Bombyx mori

Plutella xylostella

227 729trait value

Genome	size	(Mbp)	

Pieris rapae
Pieris napi
Pieris rapae HiRise
Phoebis sennae
Leptidea sinapis
Heliconius erato demophoon
Heliconius melpomene
Melitaea cinxia
Bicyclus anynana
Danaus plexippus
Calycopis cecrops
Lerema accius
Papilio xuthus
Papilio polytes
Papilio machaon
Papilio glaucus
Chilo suppressalis
Plodia interpunctella
Helicoverpa armigera
Spodoptera frugiperda
Operophtera brumata
Manduca sexta
Bombyx mori
Plutella xylostella

227 729trait value

length=67.5 N50	of	genome	assembly	(Mbp)		
0						1																												5																																														10	

Published	genomes	
vary	drama4cally	in	

quality	

Hill	et	al.,	in	prep.	

Which	do	you	need	
NOW?	

Depending on your question


Just sequence lots of genomes

Generate hypotheses


Test them
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Genomic signal of Diapause adaptation


Genomic tools at start:

•  mtDNA and microsat loci

•  Extensive ecological studies > 10 

years


Peter	Pruisscher		

Speckled	Wood	
(Pararge	aegeria)	

Karl	Goihard	 Peter	Pruisscher	

Speckled	Wood	
(Pararge	aegeria)	

Genera&ons	
per	year	

%	in	diapause	at	
18	hours	light	

1	 100	%	

2	 0	%	

two	genera4ons	per	year	

one	genera4ons	per	year	

What	is	the	gene4c	basis	
of	adapta4on	to	day	

length?	
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De	novo	genome	
assembly		

Map	reads	to	
genome	

Map	reads	to	
genome	 A	

A	
A	
A	
	
	
T	
T	
T	
T	

T	
A	
A	
T	
	
	
T	
A	
A	
T	

A	
T	
A	
T	
	
	
T	
A	
T	
A	

What	regions	are	different?	

con4g	

What	genes	are	in	those	
regions?	

Gene	features	

Call	SNPs	

GS-MESPA 
N=50	
60	X	coverage	

N=50	
60	X	coverage	

Southern	Northern	

Scaffold	con4gs,	find	exons	

MESPA: Mining Exons and Scaffolding on Poor Assemblies


Can use 1000s genes (much more than BUSCO):

•  quantify # found in assembly and their length

•  can scaffold these regions for better gene space coverage

•  identify and work with these high quality scaffolds


Neethiraj	et	al.	2017	ME	

Amino	acid	sequence:	
	
Genomic	con4gs:	
	
	
Find	aligned	regions:	
	
	
Output:	

	-	scaffolds	based	upon	exons	
	-	cDNA	of	genes	
	-	GFF	files	for	the	scaffolds	(start,	stop,	exon	boundaries)	

	

NNNNNNN	 NNNNNNN	

Ram	
Neethiraj	
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Fst outlier analysis for candidates


A/C	

EXON1	EXON2	 	EXON3	

~	114.000	SNPs	7	million	SNPs	

11,000	gene	models	&	~7	million	SNPs	

Filtering	

Quality	Filtering	

~	114,000	SNPs	of	which	68,000	SNPs:	FST	>0.9	

UniRef90_proteinnames	 exon	gene	intergenic	Total	D.plex	scaffold	 Bmori_chr	
Timeless												 2	 0	 0	 2	 DPSC300014	 chr4	
Carni&ne	O-acetyltransferase											3	 25	 1	 29	 DPSC300014	 chr4	
Trypsin-like	protein											 2	 14	 14	 30	 DPSC300041	 chr5	
Vasa-like	protein											 1	 2	 0	 3	 DPSC300379	 chr19	
Period												 2	 2	 1	 5	 DPSC30005	 chr1	

Fixed variation in genes


SNPs	per	gene	model	

1.  Intergenic	regions	contain+/-	67,604	Fixed	
SNPs	

2.  67	gene	models	contain	209	fixed	SNPs	

3.  Filter	for	SNPs	in	exons	and	introns	

Is	there	a	foot-print	of	selec4on	around	these	SNPs?	
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120,000	bp	window	

Skåne	
Sundsvall	

Coloured	by	P.	aegeria	scaffold	
Ordered	using	synteny	with	Monarch	

Timeless;	Carni4ne	O-acetyltransferase	
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Are these outliers real?

Do the affect the diapause 

phenotype?
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120,000	bp	window	

Skåne	
Sundsvall	

Coloured	by	P.	aegeria	scaffold	
Ordered	using	synteny	with	Monarch	

Timeless;	Carni4ne	O-acetyltransferase	
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Rather than argue about the 
significance of this high Fst, I move 
quickly onto testing this hypothesis!




1/23/18	

17	

Validating genomic hypothesis of Timeless

La
ra
l	d
ev
el
op

m
en

t	4
m
e	

North	
South	

Heterozygote	

Småland	N=4	
2N,	2	het	

Öland	
(island)	

Gotland	
(island)	

Skåne	

Stockholm	

Clinal	analysis	SNP	genotyping	in	F2	cross	

Genomics to hypothesis to validation


•   Use genomics to generate robust hypothesis

– Orthogonal methods

– Stong signals


•  Validate upwards

– Use independent biological samples

– Higher level of biological organization

– Simultaneously test hypothesis and its generality
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Colias croceus, the Clouded Yellow


Male 	 	 	 	 	Female 	 	 	 			Alba	Female	

Life	History	differences:	
Development	4me	 	 	 	 	 	 	 	 	 	faster	
Fat	body	 	 	 	 	 	 	 	 	 	 	 	 	larger	
Fecundity 	 	 	 	 	 	 	 	 	 	 	 	more	
Longevity 	 	 	 	 	 	 	 	 	 	 	 	longer	

Female	limited	alterna4ve	life	history	strategy	(and/or	reproduc4ve	strategy?)	

(a)	

DNA	polymerase	from	
jockey-like	TE	

BarH-1	

(b)	

(c)	

220,000	210,000	200,000	190,000	180,000	
0.0

0.5

1.0

1.5

2.0

2.5

220000 230000 240000

lo
g1

0 
(O

ra
ng

e 
Re

ad
 D

ep
th

)

0.0

0.5

1.0

1.5

2.0

2.5

220000 230000 240000

lo
g1

0 
(A

lb
a 

Re
ad

 D
ep

th
)

(d)	

-lo
g	
10
	(F
DR

)	
-lo

g	
10
	(F
DR

)	

0.0	

0.5	

1.0	

1.5	

2.0	

0.0	

0.5	

1.0	

1.5	

2.0	

lo
g	
10
	(R

ea
d	
De

pt
h)
	

	
Al
ba
	

	
or
an
ge
	

	

0.0	

1.0	

2.0	

0.0	

1.0	

2.0	

Con4g	12		 1	 430,000	

Con4g	12		 220,000	 230,000	 240,000	

N=15	 N=15	

GWAS	+	genome	+	QTL	mapping	
(blood,	sweat,	tears)	

Alyssa	Woronik,	Phd	

VS.	
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Bar is functionally required in primary pigment cells of 
developing ommatidia


•  Hox gene transcription 
factor


•  Repressor of other 
developmental genes 


Hi
ga
sh
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et
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l.	
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20
13
	

Normal	eye	

Dr
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op
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	m
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r	

Bar	Knockout		

Should	we	spend	money	&	4me:	
	

Valida4ng	mapping	and	GWAS?	
	or		

Validate	upward	

Video	
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Testing BarH1 hypothesis:�
CRISPR/Cas9 knockout of Bar


Allows us to remove function 
of BarH1


Up and working in 2 months

Masters project in lab
 Injec4on	of	Cas9	protein	+	guideRNA	

into	Colias	croceus	egg	

Developmental defects:

•  Lack of pigment formation 

within ommatidia

•  Equivalent to Drosophila 

phenotype


John	Hallman	

BarH1 knockout


Phenotypes	observed	using	2	separate	
gRNA	constructs,	awai4ng	PCR	valida4on	
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CRISPR/Cas9 results

Individual	 gRNA	 Sex	 Eye	 Proboscis	

CC58	 3	 F	 yes	 yes	

CC51	 3	 M	 yes	 yes	

CC31_2	 3+4 F	 yes	 yes	

CC33	 3+4 F	 yes	 yes	

CC31_1	 3+4 M	 yes	 yes	

CC52	 bar5	 F	 yes	 yes	

•  >2000	eggs	injected	
–  Consistent	developmental	phenotype	

•  BarH1		
–  Involved	in	development	of	eye,	proboscis	
– Not	involved	in	orange	/	white	wing	colora4on		
– No	sex	specific	effects	

Woronik	et	al.,	in	prep	

When	injected	into	Alba	females	
color	mosaic	phenotype	

Woronik	et	al.,	in	prep	
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1001 ways for your pipeline 
to break


An overview of genomic pipeline 
challenges





Christopher West Wheat


Informatics and Biology

•  We need to make sure we put the ‘bio’ into the bioinformatics


–  Do results pass 1st principals tests

–  Always double check data from your core facility or service company

–  Use independent analyses as ‘controls’ on accuracy


•  What are your + and – controls? 

•  Do independent methods converge?


•  Need to re-assess our common metrics for potential bias in the  
genomic age

–  Bootstraps on genomic scale data

–  P-values, outlier analyses, demographic null models
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Outline

•  Transcriptome analyses in non-model species


– Walk through pipeline and highlight issues of 
concern


– What is validation?


•  Insights from candidate genes

– Can Second Gen methods get us there?


Pipeline Overview
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Pipeline Overview


How	much	
HD	space	
is	needed?	

What	
soHware	&	
how	do	I	
get	it?	

How	
much	

RAM	do	I	
need?	

Why	
Linux?	

How	can	I	study	
my	data	using	
open	source?	

Are	16	cores	
enough?	

Can	I	
use	my	
laptop?	
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Computer Infrastructure


File	Sizes	(Gb)	 CPUs	
(Cores)	

RAM	(Gb)	 Time		

Raw	files	*gz	 (1.5	Gb	X	2)	X	
samples	=	216		

1	 ~3	hours	/	file	

Raw	files	
expanded	

(5	Gb	X	2)	X	
samples	=	720	

1	

TA	assembly	 Final	=	100	Mb	 64	 750	 	~1	–	4	weeks	

Mapping	
(BAM)	

2.5	Gb	X	samples	
=	180	

5	 20	 ~1	–	3	hours	/	file	

Annota4on	 100	Mb	 ≥	64	 20	 ~6	–	12	days	

Analysis	 <	20	Mb	 4	 4	 ~<	1	hour	

Visualiza4on	 BAM	files	 ≥	4	 ≥	8	

RNAseq	dataset:	
4	condi4ons	X	2	4ssues	X	3	families	X	3	replicates	=	72	X	10^6	reads		

Get	ready	for	your	data	by	
downloading	similar	sized	
dataset	from	the	Short	

Read	Archive.	Do	not	wait	
4ll	it	arrives	

	

Pipeline Overview
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Core facilities and non-model species


•  Here is your data


•  You can’t do RNA-Seq without a genome


•  We’ll have your data back in < 1 month


Statements	from	core	facili4es	that	are	not	true:	

Pipeline Overview
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Gene Ontology: order in the chaos


•  Addresses the need for consistent descriptions of gene products 
in different databases in a species-independent manner


•  GO project has developed three structured controlled 
vocabularies (ontologies) that describe gene products in terms 
of their associated 

–  biological processes

–  cellular components 

– molecular functions


hip://www.geneontology.org/	

Comparisons among 
annotation tools


Radivojac	et	al.:	A	large-scale	evalua&on	of	computa&onal	protein	func&on	predic&on.	Nat	
Meth	2013,	10:221–227.		
Falda	et	al.		Argot2:	a	large	scale	func&on	predic&on	tool	relying	on	seman&c	similarity	of	
weighted	Gene	Ontology	terms.	BMC	Bioinforma+cs	2012,	13:S14.	
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•   


Batch processing for GO terms


•   
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Pipeline Overview


Template 
mismatch effects: 
excellent yeast study


N
oo

ka
ew

	e
t	a

l	2
01
2	
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Does alignment software matter?


Nookaew	et	al.	A	comprehensive	comparison	of	RNA-Seq-based	transcriptome	analysis	from	reads	to	differen&al	gene	expression	and	cross-comparison	with	
microarrays:	a	case	study	in	Saccharomyces	cerevisiae.	Nucleic	Acids	Research	2012,	40:10084–10097.	

Mappers don’t appear to matter


Wrong

•  Genomic scale data can hide widespread biases that unless 

you specifically look, are hard to find


•  Mapping programs differ in their settings and design

– DNA to DNA vs. RNA to DNA

– Are usually compared using species without much genetic 

variation

–  Indels, splicing, SNPs all affect mapper performance
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Nookaew	et	al.	A	comprehensive	comparison	of	RNA-Seq-based	transcriptome	analysis	from	reads	to	differen&al	gene	expression	and	cross-comparison	with	
microarrays:	a	case	study	in	Saccharomyces	cerevisiae.	Nucleic	Acids	Research	2012,	40:10084–10097.	

SNPs	

SNP effects can be large


Insertions & deletions (indels) have large effects


Nookaew	et	al.	A	comprehensive	comparison	of	RNA-Seq-based	transcriptome	analysis	from	reads	to	differen&al	gene	expression	and	cross-comparison	with	
microarrays:	a	case	study	in	Saccharomyces	cerevisiae.	Nucleic	Acids	Research	2012,	40:10084–10097.	

Indels	
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15 mapping results


Dramatic differences in ability to 
handle a 2 bp insertion in 
reference compared to reads


TopHat, SpliceMap, Bowtie and 
Soap


– do not identify indels

–  they fail to accurately align 

reads to these regions


Grant	GR,	Farkas	MH,	Pizarro	A,	Lahens	N,	Schug	J,	Brunk	B,	Stoeckert	CJ,	Hogenesch	JB,	Pierce	EA:	Compara&ve	Analysis	of	RNA-Seq	Alignment	
Algorithms	and	the	RNA-Seq	Unified	Mapper	(RUM).	Bioinforma+cs	2011,	doi:10.1093/bioinforma4cs/btr427.	

Allelic bias in read mapping


•  Essentially identical to allele specific PCR bias … but on a scale 
you can’t detect unless you care to look


•  Do your genes of interest have more than 3 SNPs / 100 bp?

Sedlazeck	et	al.	2013	Bioinforma+cs	
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100	bp	window	with	4	–	5	SNPs	differing	
from	reference	

Mapping reads in outbred species


Leffler	et	al.	2012	Plos	Biol	

Average	genome	polymorphism	levels	(ignores	indels)	

Homo	sapiens	

Drosophila	
melanogaster	
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Sig. expression differences by method


A: Stampy mapping

B: Cuffdiff analysis

C: Likely error source


A	 B	

C	

RNA-Seq


Real world example



 
2 factor analysis with family effects
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Bicyclus	anynana	

long	 lifespan	 short	

delayed	 reproduc&on	 fast	

inac&ve	 behaviour	 ac&ve	

high	 fat	reserves	 low	

cryp&c	 wing	pa^ern	 conspicuous	

Save 
energy,  
live long 

Live 
fast,  
die 

young 

Developmental plasticity in Bicyclus anynana


environmental	
condi&ons	

alternate	
phenotypes	

sensi+ve	period	

Bicyclus	anynana	

Marjo		
Saastamoinen	
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Experimental	design	
7	full-sib	families	

seasonal	temperature	

food	stress	

use	2	body	parts	

F7	

¨  2	seasonal	x	2	food	stress	x	2	body	parts	=	8	condi&ons	
¨  7	families	with	n	=	2	-	3	per	condi4on	à	144	RNA	libraries	
¨  10	million	reads	/	library	

edgeR	

body	part	 #	libraries	 #	clean	reads	(per	
library)	

#	nucleo&des	(per	
library)	 GC	content	

abdomen	 72	 15,261,019	 3,052,203,767	 45%	

thorax	 72	 15,633,416	 3,126,683,150	 46%	

total	 144	 2,224,399,290	 444,879,858,000	 45%	

# reads ~  season + stress + family + 
    season*stress + season*family + stress*family 
    season*stress*family 

	

14	samples:	one	from	each	family,	thorax	and	
abdomen	 69,075	con4gs	

Vicencio	Oostra	
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Log	fold	change	

Lo
g	
(P
-v
al
ue

)	
Season	

What	should	I	be	
looking	at	first?	

76	

Colored	by	Family	
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Log	fold	change	

Lo
g	
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)	
Stress	

Log	fold	change	

Lo
g	
(P
-v
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)	

Stress	
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Effect	of	filtering	the	mapping	to	Trinity	con4gs	

71	zero-read	samples	
allowed		

32	zero-read	samples	
allowed		

0	zero-read	samples	
allowed		

GLM results


•  Plastic responses:

– Effects without any 

interaction with Family


season	x	treatment	
x	family	

seasonal		
x	family	

stress		
x	family	

116	

22	
23	

27	

115	
15	

43	

• Genetic response:

o  Effects that have an interaction with family

o  Potential targets of natural selection  


season + stress + family + season*stress  +  
season*family + stress*family + season*stress*family 

reads ~ 	
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100	My	 320	My	
D. melanogaster 

lacks an orthologous 
reproductive 
physiology


Most studies are 
annotation limited


•  What is the biological 
meaning of the top P-value 
genes?


•  Low P-value or expression 
genes are certainly important


•  Gene set enrichments are key 
to insights

–  Thus, annotation is very 

important


7	of	20	(35%)	no	Uniprot	ID	



1/23/18	

42	

Sources of error


Transcriptome assembly can be huge source of bias:

•  Fragmentation creates multiple contigs of same gene

•  SNPs and alternative splicing generates more contigs

•  1 locus = frag. X SNPs X alt. splicing = many contigs


We can observe effects in expression analyses:

–  Family effect mapping bias

– Pseudo-inflation in Gene Set Enrichment Analyses
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Put the 
     in your informatics!!

Use independent analyses as ‘controls’ on accuracy


– What are your + and – controls? 


BIO


Analysis	#	1	 Analysis	#	2	 Analysis	#	3	

Mapper	 TopHat2	 STAR	 ?	

Normaliza4on	 none	 TMM	 TMM	

Analysis	 PCA	 RSEM	 EDGER	

Should	independent	methods	converge?	

Interrogate your results

•  “you need to be in charge of the analysis” – B. Cresko


•  This will give you confidence

–  Bring freedom to your findings (no waterboarding)


•  Graph your results – visualize the patterns

–  PCA or MDS plot

–  P-value distributions


•  Assess gene copy number in gene set enrichment analyses (GSEA)

–  Do these levels fit to 1st principals expectations?

–  Do you have extra copies due to your Transcriptome assembly?
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A major challenge for Ecological Genomics


•  What causes natural selection in the wild?

–  How does genetic variation at one region of the genome interact with 

its environment (genomic, abiotic, and biotic)


•  DNA alone can’t tell us about selection dynamics in the wild

– Molecular tests are very weak and uninformative about selection 

dynamics


•  Research community is demanding actual demonstration of 
natural selection when making claims of adaptive role 

–  Triangulate!!!! 





Story telling 

vs. 


Causal understanding


Genomics	is	full	of	adap4ve	stories	
	

Func4onal	and	field	valida4on	of	
SNPs	effects	are	needed	to	discern	

facts	from	fic4on	
	

Molecular spandrels:


Storz	&	Wheat	2010	Evolu+on 	 	 	 	Barrei	&	Hoekstra	2011		Nat	Rev	Genet	
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Team Alba


Constan�	Stefanescu	

John	Hallmén	Maria	Celorio	

Philipp	Lehmann	

Alyssa	Woronik	

Mike	Perry	

Kalle	Tunström	

Thanks!	
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Common mistakes

•  Blindly trusting bioinformaticians: look at your data!!!

•  Mapping reads to a very divergent genome


–  Only most conserved genes map: bias due to divergence and mapping threholds


•  Not accurately assessing a TA

–  Your template determines quality of results


•  Not enough reads, replication, or statistical power

–  Large amounts of data to not change fundamental statistics (never pool unless necessary)


•  Not assessing likely biases in analyses

–  Try different mapping thresholds & analysis methods to assess convergence of biological 

signal

–  Assess alternative splicing and duplication potential in findings


•  Data size and computational power are demanding

–  Download data and work with it before your real data comes.


Normalization


Dillies	2010	Brief	in	Bioinfo.		

matters
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Life after your RNA-Seq experiment

– What are you likely to learn?


• By measuring other aspects of the phenotype, you can validate 
and solidify your transcriptome insights


– What may limit your insights?

• Single gene analyses can be restrictive


– Statistically: FDR is very conservative

– Biologically: genes work in networks varying in expression and 

direction across pathways

– Possible solutions


• Gene set enrichment analysis: harness the functional network

• Collect additional data relevant to your phenotype and organism 


– Don’t hesitate to make your own enrichment set, measure hormones 
and metabolites.


RNAseq Resources

•  Papers


–  Oshlack A, Robinson MD, Young MD: From RNA-seq reads to differential expression results. 
Genome Biol 2010, 11:1–10.


–  Haas BJ, Zody MC: Advancing RNA-Seq analysis. Nat Biotechnol 2010, 28:421–423.

–  Grant GR, Farkas MH, Pizarro A, Lahens N, Schug J, Brunk B, Stoeckert CJ, Hogenesch JB, Pierce EA: Comparative 

Analysis of RNA-Seq Alignment Algorithms and the RNA-Seq Unified Mapper (RUM). 
Bioinformatics 2011, doi:10.1093/bioinformatics/btr427.


–  Wolf JBW: Principles of transcriptome analysis and gene expression quantification: an 
RNA-seq tutorial. Molecular Ecology Resources 2013, doi:10.1111/1755-0998.12109.


–  Nookaew I, Papini M, Pornputtapong N, Scalcinati G, Fagerberg L, Uhlen M, Nielsen J: A comprehensive 
comparison of RNA-Seq-based transcriptome analysis from reads to differential gene 
expression and cross-comparison with microarrays: a case study in Saccharomyces 
cerevisiae. Nucleic Acids Research 2012, 40:10084–10097.


–  De Wit P, Pespeni MH, Ladner JT, Barshis DJ, Seneca F, Jaris H, Therkildsen NO, Morikawa M, Palumbi SR: The simple 
fool's guide to population genomics via RNA-Seq: an introduction to high-throughput 
sequencing data analysis. Molecular Ecology Resources 2012, 12:1058–1067.


•  Websites

–  http://www.rna-seqblog.com/

–  Google anything that comes to mind


•  Workshops

–  http://evomics.org/

–  EBI online 


•  http://www.ebi.ac.uk/training/online/course/ebi-next-generation-sequencing-practical-course/rna-sequencing/rna-seq-analysis-transcriptome


•  Colleagues

–  Email colleagues and ask questions early, rather than late.




1/23/18	

48	

hip://sfg.stanford.edu/guide.html	

Ecological	
model	systems	

finding		
what	fits	the	

theory	
	

Validating candiate genes moves us forward:


Validated	
insights	refine	
expecta4ons	

&	tests		
	

Valida4on	in	lab	
and	field	

Genes	of	poten4al	
importance	

Evolu4onary	
theory		

Expecta4ons	
&	tests	

Genes	involved	in	
adapta4ons	

Novel		
findings	change	
expecta4ons	&	

tests	
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Robust understanding requires validation:

•  Genetic manipulation

•  Field study manipulations


Hypothesis	
generators	that	

interact	
synergis4cally	

	

Transcriptome	
analyses	

Graph	it	

Metabolomics	

Put the 
     in your informatics
BIO


Simple


A	great	place	to	start,	but	not	stop	
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.  

Posi4on	along	chromosome	4	

Model adaptation:�
the Eda gene


•  Causes loss in body armor

–  Field association

– QTL mapping

– Gain-of-function assay


Fs
t	(
Fr
es
hw

at
er
	v
s.
	

m
ar
in
e)
	

Back to nature: �

do we know what we think we know?


•  Is low armor really adaptive in fresh 
water?


•  Lets replay the selection event

–  Equal frequency Eda alleles in fresh 

water ponds


4	replicate	freshwater	ponds	

?	

?	
Studies in the field can uncover 
unexpected and complex selection 
dynamics


–  Linked effect of other genes in the 
inversion on LG4?


–  Is Eda the target of selection?
 Barrei	et	al.	2008	Science	

What	is	evolu4on?	
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Performance	 Fitness	Genes	 Design	

Design	 Genes	Fitness	 Performance	

Ti
m
e	

repeats	every	
genera4on	

Design	 Genes	Fitness	 Performance	

Adaptation by natural selection


Performance	 Fitness	Design	Genes	

Gene4cs,	developmental	
biology,	EvoDevo	

	
Ecology,	physiology,	

biomechanics	
	

ecological	genomics		
	

Popula4on	gene4cs	
	

Design	Genes	

Performance	Design	

Performance	 Fitness	

Fitness	 Genes	

Insights	at	one	
level	can	be	tested	
at	other	levels	

Feder	&	
Wai	1992	

Assessing 
transcriptome 

assembly


•  Assessment metrics

– Non-biological


•  N50, # of contigs

– Biologically informative


•  # of orthologs identified

•  Ortholog hit ratio (OHR)


Ortholog		
Length	=	β	

Length	=	α	
TA	con4g	

α	/	β	=		α	/	β	:	
1	=	complete	

<	1	=	%	covered	
Hornei	&	Wheat	2012;	O'neil	&	Emrich	2013	BMC	Genomics	
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1				2					3				4				5	

To
ta
l	#
	c
on

4g
s	

To
ta
l		
or
th
ol
og
s	

1				2					3				4				5	

#	
90
%
	c
ov
er
ed

	

•  5 different TAs

•  TA 2


– Best N50, fewest contigs

•  TA 5


– Most full assembled genes


Hornei	&	Wheat	2012	BMC	Genomics	

OHR graphs


•  Shows the number of 
unique orthologs hit


•  Distribution of their 
reconstructed length
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Hornei	&	Wheat	2012	BMC	Genomics	

Comparative OHR

•  Compare longest contig per ortholog for two assemblies

•  Plot them against each other


N50	=	930	

N50	=	610	

Pool-Seq and replication


Zhu	Y,	Bergland	AO,	González	J,	Petrov	DA:	Empirical	Valida&on	of	Pooled	Whole	Genome	
Popula&on	Re-Sequencing	in	Drosophila	melanogaster.	PLoS	ONE	2012,	7:e41901.	
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Assessing MESPA accuracy

•  Input


–  D. virilis AA sequences

–  D. melanogaster DAS 


•  Pool-Seq data (n=50 individuals one population)

•  CLC assembly (kmer = 63, bubble = 2000)

•  N50 = 11,000 (but can work with smaller N50)


•  Output

–  Gene models of D. melanogaster for putative orthologs


•  Assessment:	
–  D.	virils	protein	sequences		&			D.	melanogaster	genome	assembled	from	pooled	n=50	

3721 putative single copy orthologs 

Threshold Pool-Seq de novo genome  
Pre scaffolding Post scaffolding 

> 80% coverage   >90 % accuracy 2458 (66%)  2999 (80.6%)  
> 50% coverage   >90 % accuracy 3289 (88.3%)  3316 (89.1%)  
> 99% coverage >100 % accuracy 422 (11.3%)  805 (21.6%)  

With	AA	set	>	60	My	divergent	from	poor	
genome,	MESPA	can	accurately	scaffold	>	
80%	of	the	length	for	>	80%	of	the	genes	

with	>	95%	accuracy	

Effect	of	filtering	when	
using	sum	method:	

whole	gene	expression	

0	zero-read	samples	
allowed		

3	zero-read	samples	
allowed		

32	zero-read	samples	
allowed		

71	zero-read	samples	
allowed		

CPM	
>	5	

predicted genes from H. melpomene

BLASTx
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What’s the genetic 
difference?


Group	
1	

Group	
2	

In 2015, how should we 
answer this?


Just sequence it!


What’s the cheapest/easiest experimental design?


•  Sequence the be-jesus out of each group

– >25 X genomic coverage of >50 haploid genomes per group


•  Make a simple genome & map this data to it!

•  Use good stats to ask what regions are different

•  Figure out what those regions are


–  Invest your resources in these regions and their functional role


What’s the genetic 
difference?


Group	
1	

Group	
2	
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Huang	et	al.	2012	PNAS	

Pool-Seq	approach	in	model	species	
Low	pool	(n=300)	

High	pool	(n=300)	
Map	to	genome	 Call	SNPs	

Scan	genome	for	sig.	allele	
freq.	changes	between	

groups	

61	SNPs	show	sig	associa4on	with	startle	response	

Seconds	
flying	

Genome Scans by Mining Exons from Poor Assemblies �
(GS-MESPA) �




De	novo	genome	
assembly		

Map	reads	to	
genome	

Map	reads	to	
genome	

Pool	1	(n=60)	
sequenced	to	30X	

A	
A	
A	
A	
	
	
T	
T	
T	
T	

T	
A	
A	
T	
	
	
T	
A	
A	
T	

A	
T	
A	
T	
	
	
T	
A	
T	
A	

Pool	2	(n=60)	
sequenced	to	30X	

What	regions	are	different?	

con4g	

What	genes	are	in	those	
regions?	

Gene	features	

Call	SNPs	
Scaffold	con4gs,	find	exons	
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Can this really work? 


Kunte	et	al.	2014	Nature	

Case study # 1


Polymorphic, �
sex-limited mimicry


K Kunte et al. Nature 000, 1-4 (2014) doi:10.1038/nature13112 

 

QTL	mapping	
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Made a de novo genome

Vs.	

Si
g	
of
	a
ss
oc
ia
4o

n	
w
ith

	d
iff
er
en

ce
	

Distance	along	chromosome	

Mapped	reads	to	de	
novo	genome	

Sequenced 15 of each morph

Scanned genome for differences


N=15	 N=15	
doublesex	

De	novo	genome	
assembly		

Map	reads	to	
genome	

Map	reads	to	
genome	 A	

A	
A	
A	
	
	
T	
T	
T	
T	

T	
A	
A	
T	
	
	
T	
A	
A	
T	

A	
T	
A	
T	
	
	
T	
A	
T	
A	

What	regions	are	different?	

con4g	

What	genes	are	in	those	
regions?	

Gene	features	

Call	SNPs	

GS-MESPA on only 
their re-sequence 

data


N=30	
60	X	coverage	

N=30	
60	X	coverage	

Scaffold	con4gs,	find	exons	
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Can we find the same 
genomic regions?


Faster & cheaper?





 
If so, this is a game changer ….


 
 



 
 
 
shifts focus from search to functional study


Fst distribution

Vs.	vs.




1/23/18	

60	

Vs.	
Fst distribution


Vs.	vs.


Con4gs	
SNPs	

Fsts by SNP on random contigs


Novel annotation 
Published annotation 

Fs
t	

Genomic	con4gs	
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Results

•  Identified doublesex immediately


•  Found new genes missed in pubication

– p270

– RNA directed DNA polymerase

– Arginine/Serine rich coiled-coil protein 2


– Now searching to see if these are all near each other 


SNPs	
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Distribution of high Fst SNPs

Al
l	S
N
Ps
	

Ci
rc
ad
ia
n	
Cl
oc
k	
ge
ns
	

Best candidate with Fst=1 was Timeless: �

 
 
40 kb region was assembled and scanned�

 
 
timless associated with diapause in flies 


0.00	

0.10	

0.20	

0.30	

0.40	

0.50	

0.60	

0.70	

0.80	

0.90	

1.00	

0	 5000	 10000	 15000	 20000	 25000	 30000	 35000	 40000	
Loca&on	on	Timeless	scaffold	(bp)	

All	SNPs	
sig.	SNPs	
Exon	SNPs	
Gene	
Exon	

Fs
t	v
al
ue

s	
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•   


Zou,	Z.,	and	J.	Zhang.	2015.	No	genome-wide	protein	sequence	convergence	for	echoloca4on.	
Mol	Biol	Evol	32:1237–1241.	

De novo RNA-Seq: Do you need a genome?

No, but there are important biases & limitations

•  TA mapping limitations


– No exon level resolution but this will change soon

– No coding information on identified SNPs unless you build 

gene feature files on contigs

•  TA mapping biases unique to it


– Spicing may cause mapping problems if locus is collapsed, but 
generally OK to not assume a gene model


•  TA mapping biases shared with genomic mapping

– SNP and indel effects

– gene duplication (are reads mapping to the right place)
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Map to TA vs. Genome:�

 
 
 
 
 
 
 
 
which is better?


Template effects:

•  Mismatch : 


– SNPs (single nucleotide polymorphisms)

–  Indels (insertion or deletion polymorphisms)


•  Pseudo-inflation

– An increase in the copy number of a gene that arise from 

genome assembly errors or TA errors


•  Gene model errors

–  If the models in your genome are bad, this will affect results


Hornei	&	Wheat	2012	BMC	Genomics	

RNA-Seq mapping: 
comparing genome vs. TA




You	can	generate	high	quality	
data	without	a	genome,	for	
much	of	the	transcriptome	

Ge
no

m
e	
m
ap
pi
ng
	

Summed	TA	mapping	

Spearman’s	ρ	=	0.95,	P	<	0.0001	
Genome	mapping	
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Duplication levels in RNA-Seq data


•  Common in transcriptome work


•  Starting with lots of high quality RNA increases

– mRNA amount for sequencing

–  Decreases need of core facility to PCR your sample


•  Moderate amounts of PCR duplication are OK

– ~ 20% expected

–  > 50% perhaps problematic if correlated with experimental design

–  Clone_filter program in STACKS is excellent assessing this


Pipeline Overview
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Assembly	

mRNA to contigs


Alternative splicing complicates everything


H.	sapiens:	>	95%	of	mul4-exonic	genes	are	spliced		
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De novo transcritpome assembly�
�

Reconstructs splice isoforms using PE 
Illumina data


Gabherr	et	al.	2011	Nature	Biotech	

A) At 53M reads, median coverage of lowest 5% quintile is 88%

B) With 53 M reads, of the total genes expressed at the 5% quintile, 47% are in 
the Oracle database and 36% were assembled full length by Trinity


A)	 B)	
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Whole gene level �
�

Exon level

Gene	1	 Gene	2	 Gene	3	

Group	1	

Group	2	

Reads	

Alterna4ve	
splicing	

Expression	
difference	

Could be false posivives.


•  Crows


Poelstra	et	al.	Science;	Ellegren	et	al.	2013.	Nature	.	

Ficedula	
albicollis	 Ficedula	

hypoleuca	

Corvus	c.	
corone	

Corvus	c.	
cornix	
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Islands of speciation or background selection?


Cruickshank	and	Hahn.	2014.	Molecular	Ecology.	

Fst:	
A	rela4ve	measure	
of	differen4a4on,	
increases	due	to	
freq.	change	

πT	-	πS	
πT	

Dxy:	
An	absolute	
measure	of	

differen4a4on,	
increase	due	to	

muta4ons	

The	absence	of	high	Dxy	in	regions	of	high	Fst	suggest	a	role	of	
background	selec4on	driving	these	paierns	rather	than	

genomic	‘islands’	driving	specia4on.	

Tree	Height	=	Tan	a	X	Distance	

a	

Triangulation for building evidence

•  Use more than one independent set of evidence


–  Derived from independent biological replicates

•  Challenge is maintaining genomic scale


–  Genome wide SNP scan for outliers, QTL mapping, RNA-Seq, 
knockouts, manipulations, etc.


Distance	
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a	

Triangulation for building evidence


Outlier	Fst	 Is
	it
	a
n	
ad
ap
ta
4o

n?
	

Out
lier	

SNP
s	fo

llow
	

trai
t	in	

F2	c
ross

	

The
se	
gen

es	
are

	DE
	

Knockout	affects	phenotype		

What	was	ancestral	
state?	
	
Is	there	any	clinal	
varia4on?	
	
Phenotype	respond	to	
chemical	manipula4on?	
	
Response	to	selec4on	
experiment?	

Move	onto	Triangula4on	
quickly	rather	than	jus4fying	
your	P-value	based	on	one	

dataset	

•  Use more than one independent set of evidence

–  Derived from independent biological replicates


•  Challenge is maintaining genomic scale

–  Genome wide SNP scan for outliers, QTL mapping, RNA-Seq, 

knockouts, manipulations, etc.


Colias croceus, the Clouded Yellow


Alba	is	~	5%	in	wild	popula4ons	

Tradeoffs	arise	due	to	abio4c	and	
bio4c	environment	
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But what causes Alba?

VS.	

N=15	 N=15	

GWAS	+	genome	+	QTL	mapping	
(blood,	sweat,	tears)	

Alyssa	Woronik,	Phd	

BarH1	gene	


