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Practical Matters

e Environmental Data Sets

e Methods
e SAM

* Dealing with confounding due to
population structure

* BayEnv
e LFMM
e Other Mixed model methods

e Simulation-based comparisons
of methods




Practicalities: Environmental Data

ISRIC — world soil information database

WRB Correlation / Classification System

http://www.isric.org/



Practicalities: Environmental Data

Climatic Research Unit
University of East Anglia

Datasets are available in the following categories:
* Temperature (5°x5° gridded versions)
* Precipitation (5°x5° and 2.5°x3.75° gridded versions)
Pressure and Circulation Indices
UK Climate Indices
Mediterranean climate
Alpine climate data
High-resolution gridded datasets
NCEP/NCAR Reanalysis data - May 2011: updated for 2010
Paleoclimate
Drought indices

http://www.cru.uea.ac.uk/data



Practicalities: Environmental Data

FAO GeoNetwork

e Agriculture and Livestock

Applied Ecology

* Base Maps, Remote Sensing

* Biological and Ecological Resources
* Climate

* Fisheries and Aquaculture

* Forestry

* Human Health

* Hydrology and Water Resources

* Infrastructures

e Land Cover and Land Use

e Population and Socio-Economic Indicators
Soils and Soil Resources

* Topography

http://www.fao.org/geonetwork/srv/en/main.home



Practicalities: Environmental Data

WORLDCLIM Project provides variables
at several resolutions

variable 10 minutes 5 minutes 2.5 minutes 30 seconds
minimum . tmin 10m tmin 5m tmin 2.5m tmin 30s
temperature (°C)

maximum . tmax 10m tmax 5m tmax 2.5m tmax 30s
temperature (°C) -

average tavg 10m tavg 5m tavg 2.5m tavg 30s
temperature (°C) .

precipitation (mm)  prec 10m prec5m prec2.5m prec 30s
so_lzar ra_cilatlon (kJ <rad 10m srad 5m srad 2.5m srad 30s
m-2 day?)

wind speed (ms?)  wind 10m wind 5m wind 2.5m wind 30s
water vapor vaor 10m vapr 5m vapr 2.5m vapr 30s
pressure (kPa) vaRLs .

Fick and Hijmans, 2017
www.worldclim.org



Practicalities: Environmental Data

Bioclim variables are derived from monthly
WORLDCLIM data to create meaningful
variables

BIO1 = Annual Mean Temperature

BIO2 = Mean Diurnal Range (Mean of monthly (max temp - min temp))
BIO3 = Isothermality (BIO2/BIO7) (* 100)

BIO4 = Temperature Seasonality (standard deviation *100)
BIO5 = Max Temperature of Warmest Month

BIO6 = Min Temperature of Coldest Month

BIO7 = Temperature Annual Range (BIO5-BIO6)

BIO8 = Mean Temperature of Wettest Quarter

BIO9 = Mean Temperature of Driest Quarter

BIO10 = Mean Temperature of Warmest Quarter

BIO11 = Mean Temperature of Coldest Quarter

BIO12 = Annual Precipitation

BIO13 = Precipitation of Wettest Month

BIO14 = Precipitation of Driest Month

BIO15 = Precipitation Seasonality (Coefficient of Variation)
BIO16 = Precipitation of Wettest Quarter

BIO17 = Precipitation of Driest Quarter

BIO18 = Precipitation of Warmest Quarter

BIO19 = Precipitation of Coldest Quarter



Practicalities: Methods

An early method: SAM (spatial analysis
method)

* Simple linear model method

* Use geo-referenced environmental data and marker data with

a focus on microsatellite data (for each possible state, set to 0
or 1)

* Test association between each allele and environmental
variable using logistic regression

* Assess significance using two methods:
* Likelihood ratio test

* Wald test !
G = —ZZnP
B;
W =
o(P;)

Joost et al., 2007, 2008, 2009



Practicalities: Methods

But confounding due to population
structure may arise if structure correlates
with the environmental variable

Cold

...even when the SNP has no functional effect




Practicalities: Methods

Population Structure causes correlations
across the genome

2 & s
Pairwise correlation (r*)

%ﬁﬂm{*ﬁ!}.m

Controlling for population structure can provide
power to separate the signal from noise



Practicalities: Methods

Some methods to deal with Population
Structure

e Genomic control: Scale down the test-statistic so that its
median becomes the expected median.

* Use the first n principle components of the genotype matrix
(Price et al., 2006).

* Model the genotype effect as a random term in a mixed model,
by explicitly describing the covariance structure between the
individuals.



Practicalities: Methods

BayEnv: a linear mixed model method to
assess evidence for correlations with

environment

* Models the joint distribution of allele frequencies across populations
for a variant as a function of

* Population ‘history’ (null model)

* Population ‘history’ + environment (alternative model)

* Then asks whether there is evidence a variant is an adaptation to a
particular climate variable by comparing these two models in a
Bayesian framework




Practicalities: Methods

Population history

* Demographic history is included in the model via a
covariance matrix of populations

* This is different from the assumption of quantitative trait
mapping approaches, which include the kinship matrix to
control for other loci that contribute to the trait
(infinitesimal model)!

* The covariance structure is modeled under the
assumption that transformed population allele
frequencies have a multivariate normal distribution



Practicalities: Methods

Bayenv method

Hy: y= Bo+u+e Bszr(DlMl)
Hi: y=Bo+ Bixt+tpte Pr(D|M,)

where y is the vector of allele frequencies,

By is the intercept,

i is the random effect term due to population history, and
€ is the random error

X is the environmental variable,

B, is the effect size of environmental variable on allele
frequencies,



Practicalities: Methods

Bayenv uses the (predicted) variance/
covariance matrix to control for population
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Practicalities: Methods

Generating the kinship matrix

Since the population allele frequency is drawn from a normal
distribution, it could be <0 or >1, which doesn’t make sense, therefore,
a simple transformation is used:

0 if@kl <0
X1 =86k) =<6 0<6<l1
T kl Hkl > 1.

Population allele
frequency variable,
not constrained to
be between Oand 1



Practicalities: Methods

Generating the kinship matrix

Joint posterior over all loci

P(Q.6,,....60;,&,...,en;,my,...,nz,my;)x

Prior on the
Prior on the Prior on the covariance
allele counts  vector of a.f.s matrix

PR ¢ ¢
[ P mix = g@) P12 )Py P

=1 1

Prior on the
ancestral

frequency at a
locus

* MCMC to explore the sample space and sequentially update parameters
* Decide whether to accept 6’, based on the ratio of the alternative to the null
posterior



Practicalities: Methods

The Bayes factor
_ Pr(D|M,)

~ Pr(D|M,)

Interpreting the Bayes factor

K dB bits Strength of evidence
<1:1 <0 Negative (supports M,)
1:1 to 3:1 Oto5 Oto1.6 Barely worth mentioning

3:1 to 10:1 5t0 10 1.6t03.3 Substantial

10:1 to 30:1 10to 15 3.3t0 5.0 Strong
30:1t0 100:1 151020 5.0t0 6.6 Very strong

>100:1 > 20 > 6.6 Decisive Jeffreys 1961

In practice, BayEnv authors recommend using a ranking
approach rather than trusting the BFs are well-calibrated



Practicalities: Methods

Comparison of Bayenv to other methods

Power to detect a correlation between allele frequency and climate

Latitude Summer precipitation
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Practicalities: Methods

Bayenv2

* Allows calculation of a standardized set of allele
frequencies by removing the covariance among
populations and making the residuals available for
further analyses.

e Use these to:

e Conduct non-model based tests of population
differentiation

* Non-parametric tests of correlation (e.g., Spearman's rho)



Practicalities: Methods

Latent factor mixed model approach
(LFMM)

 Similar to BayEnv, but uses factors derived from the
covariance matrix to model population history

* Individual-based rather than population-based

* Simultaneously models correlation with population
structure and environment, so could gain some power
when structure is correlated with the environment

Frichot et al., 2013



Practicalities: Methods

LFMM: The Model

G, =u+6/X.+U'V +¢,

where

G is a response variable in a Bayesian regression model
Gaussian prior distributions on pand B,

U,and V, are scalar vectors with Gaussian priors

B, is a vector of regression coefficients

* Use Gibbs sampler to move through sample space

e Use a stochastic algorithm to compute standard deviations and z-scores
for the environmental effects.

 Compare each locus to the genomic background and retained loci with z-
scores exhibiting the highest absolute values



Practicalities: Methods

Comparison among methods

Simulated genetic data under different models:

Highly Structured Isolation Migration Stepping Stone
Isolation with Migration Model Model

(A)

IR

......... .:'.‘.’

-------- =rs==2z2z

Used 4 approaches: Population Differentiation (Bayescan)
Naive regression

LFMM
Bayenv De Villemereuil et al., 2014




FDR vs. Significance

correlated
Highly Structured
Isolation with
Migration
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Migration Model
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Practicalities: Methods

Statistical Power vs. Significance
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Practicalities: Methods

FDR vs. Significance (polygenic case)

correlated uncorrelated
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Practicalities: Methods

Power vs. Significance (polygenic case)
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Practicalities: Method comparisons

Simulation-based comparison of
methods under different migration
models and selfing vs outcrossing

G Island model H Stepping-stone model | Hierarchical model

De Mita et al., 2013




A Indexes and gradient

B  Sampling scheme S1

c

Sampling scheme S2

Practicalities: Method comparison

Included several sampling schemes
across a grid
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Practicalities: Method comparisons

Diverse methods included in analysis, but
useful to see how BayEnv (CWDRP)
compares to others

Table 1 List of methods

Enwv.

Foll & Gaggictti (2008)

Method and reference Technique Underlying model variable Controllbbc  Sampling S1 S2 S3 S4 S5

LR GIM Independence Yes No Ind ivid uals + 0+ o+ o+ o+
Joost et al. (2007) of observations

GEE GEE Independence Yes No Sevenal individuak - + + + 4

afchugters Pelpomulaticon
| CWDRP MOMC Idand maodel Yes Yes Froquencies - & 4+ + 4 I
et al. (2010) ~

FLK Forward Multiple No Yes Frequencies - + + + +

Bonhomme e al. smulations  divergence
(2010) model

BN Coalescent Isdand model No Yes Frequencies + + + +

Beaumont & smulations
Nichols (1996)

EHF Coalescent Hierarchial No Yes Frequencies + + o+ o+
Excoffier e al. (2009) smulations  island model

VDB Coalescent Pairwise No Yes Frequencies - A pair of
Vitalis et al (2001) smulations  divergence populations

maodel of 24
individuals
FG RI-MOCMC Isdand model No No Frequencies + o+ o+ 4

De Mita et al., 2013



Practicalities: Method comparisons
There is some variation in the performance of
different methods across demographic

models
HM
Simple
linear
model
D BayEnv
la!i?li.,—r

GEE PWORR X BN EMF VD rG

De Mita et al., 2013




Practicalities: Method comparisons

Several methods perform very poorly
in models with selfing

HM

Simple
linear
model

D BayEnv

Simple BayEnv
linear

model




Practicalities: Method comparisons

Depending on the migration model and
sampling scheme, different methods perform

best
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Lotterhos and Whitlock 2015

IM: isolation migration

IBD: isolation by distance

1R: expansion from 1 refugium
2R: expansion from 2 refugia



Practicalities: Method comparisons

PCA Adapt also performs well

90 Locs &6 Ind 90 Locs & 20 Ind
(B)
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Practicalities: Environmental Data

Sampling and Scale

Linear model-based methods assume the residuals are
normally distributed and have a constant variance

Cases where a single sample or population is divergent
from the others genetically and resides in a divergent
environment are especially problematic and can strongly
affect the results.

Possible solutions:
e try transforming the data
* |eave out outliers

e use a non-parametric method (e.g., BayEnv, Partial
Mantel)



Practicalities: Sampling

How does power compare across
different sampling schemes?

Random vs. paired vs. transects

Random (90 locations) 9 Transects by 10 locations each
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Lotterhos and Whitlock 2015




Practicalities: Sampling

Paired > transects > random

(B) 1-
3y
. §~§ IM: isolation migration
Q Eg IBD: isolation by distance
% R IBD 1R 1R: expansion from 1 refugium
o

2R
2R: expansion from 2 refugia
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[] Random E Transects [l Pairs



Practicalities: Sampling

For some migration models, BayEnv has
power at a low selection coefficient

90 locations: 6 individuals
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Practicalities: An alternative approach

Genotype-phenotype association studies
("GWAS") are similar to genotype-
environment association studies

* Genotype-phenotype association:

Calculate a correlation between a SNP and a phenotype
while controlling for other SNPs in the genome

* Genotype-environment association:

Calculate a correlation between a SNP and an
environmental variable controlling for population structure

Y=XB+u+e u~N(00,K) €~ N(0,0.])



Practicalities: An alternative approach

Genotype-phenotype association studies
("GWAS") are similar to genotype-
environment association studies

* Genotype-phenotype association:

Calculate a correlation between a SNP and a
phenotype while controlling for other SNPs in the genome

Mixed model approach for genotype-phenotype mapping
Y=XB+u+e u~N(00,K) €~ N(0,0.])

Phenotype SNP ‘Error’ Kinship Other
effect terms matrix random error



Practicalities: An alternative approach

Q:
But why is a covariance matrix used in G-P
association mapping to represent other SNPs

contributing to the phenotype??

A:

Fisher’s infinitesimal model states that traits
are shaped by many many small effect loci
scattered across the genome

This means that the error term in a G-P mixed model
is similar to the error terms used in G-E associations



Practicalities: An alternative approach

Q:
Why is this cool?

A:

Because a lot more work has been done to
speed up G-P association methods
compared to G-E association methods

Using G-E methods facilitates large-scale genome-
wide analyses



Practicalities: An alternative approach

GEMMA

* We will use GEMMA for conducting climate correlation
analyses in the tutorial

* GEMMA uses a linear mixed model approach to remove the
effects of kinship before estimating the correlation between
a SNP and a phenotype (here climate variable)

* GEMMA is based on the earlier EMMA software and gives
equivalent results, but is much faster (linear in the number
of individuals versus quadratic).

* This speed is accomplished by replacing the eigen
decomposition of the K(inship) matrix with a set of recursion
equations



Practicalities: An alternative approach

GEMMA

* GEMMA provides an estimate of B (PVE) and can conduct
several tests to assess significance for the explanatory
power of the SNP:

* LRT requires calculation of ML estimate, but is generally considered
more reliable than Wald or score

* Wald (A Wald test is conducted by comparing the coefficient's
estimated value with the estimated standard error for the coefficient
— assumes normality)

 Score test (Cochran-Armitage test for trend assuming additive effect)




