Likelihood and Bayesian Inference

David L. Swofford

Research Associate
Florida Museum of Natural History
University of Florida

With much thanks to:

Paul Lewis (Univ. of Connecticut)

from whom I have stolen many of the slides for this intro (with his permission)

2018 Workshop on Population and Speciation Genomics Český Krumlov, Czechia

Topics covered

- Review of probability
- Principles of maximum likelihood estimation
- Introduction to Bayesian inference and MCMC

This intro will be very basic. I will assume that you have little understanding of (or have forgotten everything you knew about):

- basic probability
- statistics
- calculus

The idea is for everyone to reach a basic starting point before we proceed further.

PLEASE INTERRUPT!

Note: For technical reasons, I'm not on Slack--please use email (<u>david.swofford@duke.edu</u>) to contact me!

Why probability?

We want to estimate biology relevant quantities (parameters) from our data and probability provides the conceptual and analytical basis for this effort

- Mutation rates
- Population sizes
- Recombination rates
- Migration rates
- Selection coefficients
- Gene and species trees
- Branch lengths and divergence times
- Substitution-model parameters
- ... to name a few

Joint probabilities

B = Black S = Solid W = White D = Dotted

$$Pr(B) = 0.6$$
 $Pr(S) = 0.5$

$$Pr(W) = 0.4$$
 $Pr(D) = 0.5$

$$Pr(\bigcirc) = Pr(B, D) = 0.2$$

$$Pr() = Pr(B, S) = 0.4$$

$$Pr(\bullet) = Pr(W, D) = 0.3$$

$$Pr(\bigcirc) = Pr(W, S) = 0.1$$

Conditional probabilities

Maximum likelihood

$$Likelihood(\theta) = Pr(D \mid \theta)$$

To compute a likelihood, we need a model. This model allows us to compute the probability of obtaining our observed data for any given value(s) of the model parameter(s) Θ

Heads (H) Tails (T)

Model: result of each toss is independent of other tosses; Pr(H) is unknown but constant across tosses

$$\theta = Pr(H)$$

Suppose we toss the coin 5 times and get the following result:

Simple model: Pr(H)=Pr(T)=0.5

Under independence assumption, $Pr(H,T,H,H,T) = (0.5) (0.5) (0.5) (0.5) (0.5) = (0.5)^{5}$ = 0.03125

(All other sequences have the same probability)

A more interesting question: how probable is h heads and t tails in N tosses?

Binomial probability

$$\Pr(h \text{ heads } | N \text{ tosses}) = \binom{N}{h} \theta^{h} (1-\theta)^{N-h}$$

If we let $\Theta = 0.5$,

Pr(3 heads | 5 tosses) =
$$\binom{5}{3}$$
 0.5³0.5²
= $\frac{5!}{3!2!}$ 0.5⁵
= 10(.03125)
= 0.3125

What if we aren't willing to assume that $\Theta = 0.5$?

Estimate Θ by maximum likelihood...

Pr(3H,2T|
$$\Theta$$
 = 0.0) = 0.0
Pr(3H,2T| Θ = 0.1) = 0.0081
Pr(3H,2T| Θ = 0.2) = 0.0512
Pr(3H,2T| Θ = 0.3) = 0.1323
Pr(3H,2T| Θ = 0.4) = 0.2304
Pr(3H,2T| Θ = 0.5) = 0.3125
Pr(3H,2T| Θ = 0.6) = 0.3456
Pr(3H,2T| Θ = 0.7) = 0.3087
Pr(3H,2T| Θ = 0.8) = 0.2048
Pr(3H,2T| Θ = 0.9) = 0.0729
Pr(3H,2T| Θ = 1.0) = 0.0

Bayes' rule

Pr(B, D)

Pr(D) Pr(B|D) = Pr(B) Pr(D|B)

$$\frac{1}{2} \times \frac{2}{5} = \frac{3}{5} \times \frac{1}{3}$$
Pr(B|D) = $\frac{Pr(B) Pr(D|B)}{Pr(D)}$

$$= \frac{\frac{3}{5} \times \frac{1}{3}}{\frac{1}{2}} = \frac{2}{5}$$

Probability of "Dotted"

Bayes' rule (cont.)

$$Pr(B|D) = \frac{Pr(B) Pr(D|B)}{Pr(D)}$$
$$= \frac{Pr(D, B)}{Pr(D, B) + Pr(D, W)}$$

Pr(D) is the marginal probability of being dotted To compute it, we marginalize over colors

Bayes' rule (cont.)

It is easy to see that Pr(D) serves as a *normalization* constant, ensuring that Pr(B|D) + Pr(W|D) = 1.0

$$\Pr(B|D) = \frac{\Pr(D,B)}{\Pr(D,B) + \Pr(D,W)} \quad \longleftarrow \Pr(D)$$

$$\Pr(W|D) = \frac{\Pr(D,W)}{\Pr(D,B) + \Pr(D,W)} \quad \longleftarrow \Pr(D)$$

$$\Pr(B|D) + \Pr(W|D) = \underbrace{\frac{\Pr(D,B) + \Pr(D,W)}{\Pr(D,B) + \Pr(D,W)}}_{\Pr(D,B) + \Pr(D,W)} = 1$$

Marginalizing over colors

Marginal probabilities

Joint probabilities

Marginalizing over "dottedness"

Bayes' rule (cont.)

$$Pr(B|D) = \frac{Pr(B) Pr(D|B)}{Pr(D,B) + Pr(D,W)}$$

$$= \frac{Pr(B) Pr(D|B)}{Pr(B) Pr(D|B) + Pr(W) Pr(D|W)}$$

$$= \frac{Pr(B) Pr(D|B)}{\sum_{\theta \in \{B,W\}} Pr(\theta) Pr(D|\theta)}$$

Bayes' rule in statistics

Practical application of Bayes' rule

(modified from Durbin et al. 1998 Biological Sequence Analysis)

A rare genetic disease is discovered. Although only one in a million people carry it, you consider getting screened. You are told that the genetic test is extremely good; it is 100% sensitive (it is always correct if you have the disease), and it has a false positive rate of only 1%. If you have the disease, a new drug can save your life if taken before the onset of symptoms; it costs \$10,000/year.

$$Pr(disease|+) = \frac{Pr(+|disease) \times Pr(disease)}{Pr(+|disease) \times Pr(disease) + Pr(+|healthy) \times Pr(healthy)}$$
$$= \frac{1 \times 0.000001}{1 \times 0.000001 + 0.01 \times 0.999999}$$
$$= 0.00009999$$

$$Pr(\text{healthy}|+) = \frac{Pr(+|\text{healthy}) \times Pr(\text{healthy})}{Pr(+|\text{disease}) \times Pr(\text{disease}) + Pr(+|\text{healthy}) \times Pr(\text{healthy})}$$

$$= \frac{0.01 \times 0.999999}{1 \times 0.000001 + 0.01 \times 0.999999}$$

$$= 0.99990001$$

If test positive, approximately 10,000 times more likely to NOT have the disease than to have it! (Is it worth \$10,000?)

Simple (albeit silly) paternity example

 θ_1 and θ_2 are assumed to be the only possible fathers, child has genotype Aa, mother has genotype aa, so child must have received allele A from the true father. Note: the data in this case is the child's genotype (Aa)

Possibilities	θ_1	θ_2	Row sum
Genotypes	AA	Aa	
Prior	1/2	1/2	1
Likelihood	1	1/2	
Prior X Likelihood	1/2	1/4	3/4
Posterior	2/3	1/3	1

Bayes' rule: continuous case

Integration of densities

Usually there are many parameters...

A 2-parameter example

$$f(\theta, \phi|D) = \frac{f(D|\theta, \phi) f(\theta)f(\phi)}{\int_{\theta} \int_{\phi} f(D|\theta, \phi) f(\theta)f(\phi) d\theta}$$

Posterior probability density

Marginal probability of data

An analysis of 100 sequences under the simplest model (JC69) requires 197 branch length parameters. The denominator is a 197-fold integral in this case! Now consider summing over all possible tree topologies! It would thus be nice to avoid having to calculate the marginal probability of the data...

Markov chain Monte Carlo (MCMC)

For more complex problems, we might settle for a

good approximation

to the posterior distribution

MCMC robot's rules

(Actual) MCMC robot rules

Cancellation of marginal likelihood

When calculating the ratio R of posterior densities, the marginal probability of the data cancels.

$$\frac{f(\theta^*|D)}{f(\theta|D)} = \frac{\frac{f(D|\theta^*)f(\theta^*)}{f(D|\theta)f(\theta)}}{\frac{f(D|\theta)f(\theta)}{f(D)}} = \frac{f(D|\theta^*)f(\theta^*)}{f(D|\theta)f(\theta)}$$

Posterior odds

Likelihood ratio

Prior odds

Cancellation of marginal likelihood

When calculating the ratio R of posterior densities, the marginal probability of the data cancels.

$$\frac{f(\theta^*|D)}{f(\theta|D)} = \frac{\frac{f(D|\theta^*)f(\theta^*)}{f(D|\theta)f(\theta)}}{\frac{f(D|\theta)f(\theta)}{f(D)}} = \frac{f(D|\theta^*)f(\theta^*)}{f(D|\theta)f(\theta)}$$

Posterior odds

Likelihood ratio

Prior odds

MCRobot (or "MCMC Robot")

https://phylogeny.uconn.edu/mcmc-robot/

Bayesian coin-tossing with MCMC

```
# A tiny little Python program to demonstrate MCMC
# Dave Swofford, 22 January 2018
# NOTE: This code is written for clarity/readability, not efficiency! Do NOT use it as the
       basis for a real MCMC program.
from math import exp, sqrt
from scipy.stats import binom, beta
import numpy as np
from numpy import random
do monte carlo sim = False
do mcmc = True
sample from prior = False
                                 # run "without data" if true
def reflect_back(x, xmin, xmax):
       while x < xmin or x > xmax:
              if x < xmin:
                     x = 2*xmin - x
              else:
                     x = 2*xmax - x
       return x
# Simulation of coin tossing #
if do monte carlo sim:
       num iters = 1
       num tosses = 5
       p = 0.5
       print "\n%10s%10s%12s\n%s" % ("H", "T", "p(H)", '-'*32)
       for iter in range(num iters):
              num heads = random.binomial(num tosses, p, 1)
              print "%10d%10d%12.5f" % (num_heads, num_tosses - num_heads, float(num_heads)/num_tosses)
# Generate a data set:
num tosses = 5
true theta = 0.5
num heads = random.binomial(num tosses, true theta, 1)
num tails = num tosses - num heads
print "\nSimulation of coin tossing performed: %d heads, %d tails" % (num heads, num tails)
```

Bayesian coin-tossing with MCMC

```
# Estimate theta=Pr(H) via MCMC #
if do mcmc:
                                                                                                                                                            # alpha parameter of Beta distribution
                         a = 0.2
                         b = 0.2
                                                                                                                                                            # beta parameter of Beta distribution
                         w = 0.5
                                                                                                                                                            # width for sliding window proposal
                                                                                                       # set number of MCMC iterations (generations)
                         mcmc iters = 10000
                         hastings ratio = 1.0
                                                                                                       # we're using a symmetric proposal distribution
                         # Open a file to receive the posterior samples:
                         fp = open("samples.txt", "w")
                         # We'll use a random draw from the prior as the starting point
                         theta = random.beta(a, b)
                          fp.write("%s\t%s\t%s\t%s\t%s\t%s\t%s\t%s\t%s\n" %
                                                ("iter", "theta", "thetaStar", "prior_theta", "prior_thetaStar", "like_theta",
                                                 "like_thetaStar", "post_theta", "post_thetaStar", "R"))
                          fp.write("%d\t%.10f\t%.10f\t%.10f\t%.10f\t%.10f\t%.10f\t%.10f\t%.10f\t%.10f\t%.10f\t%.10f\t%.10f\t%.10f\t%.10f\t%.10f\t%.10f\t%.10f\t%.10f\t%.10f\t%.10f\t%.10f\t%.10f\t%.10f\t%.10f\t%.10f\t%.10f\t%.10f\t%.10f\t%.10f\t%.10f\t%.10f\t%.10f\t%.10f\t%.10f\t%.10f\t%.10f\t%.10f\t%.10f\t%.10f\t%.10f\t%.10f\t%.10f\t%.10f\t%.10f\t%.10f\t%.10f\t%.10f\t%.10f\t%.10f\t%.10f\t%.10f\t%.10f\t%.10f\t%.10f\t%.10f\t%.10f\t%.10f\t%.10f\t%.10f\t%.10f\t%.10f\t%.10f\t%.10f\t%.10f\t%.10f\t%.10f\t%.10f\t%.10f\t%.10f\t%.10f\t%.10f\t%.10f\t%.10f\t%.10f\t%.10f\t%.10f\t%.10f\t%.10f\t%.10f\t%.10f\t%.10f\t%.10f\t%.10f\t%.10f\t%.10f\t%.10f\t%.10f\t%.10f\t%.10f\t%.10f\t%.10f\t%.10f\t%.10f\t%.10f\t%.10f\t%.10f\t%.10f\t%.10f\t%.10f\t%.10f\t%.10f\t%.10f\t%.10f\t%.10f\t%.10f\t%.10f\t%.10f\t%.10f\t%.10f\t%.10f\t%.10f\t%.10f\t%.10f\t%.10f\t%.10f\t%.10f\t%.10f\t%.10f\t%.10f\t%.10f\t%.10f\t%.10f\t%.10f\t%.10f\t%.10f\t%.10f\t%.10f\t%.10f\t%.10f\t%.10f\t%.10f\t%.10f\t%.10f\t%.10f\t%.10f\t%.10f\t%.10f\t%.10f\t%.10f\t%.10f\t%.10f\t%.10f\t%.10f\t%.10f\t%.10f\t%.10f\t%.10f\t%.10f\t%.10f\t%.10f\t%.10f\t%.10f\t%.10f\t%.10f\t%.10f\t%.10f\t%.10f\t%.10f\t%.10f\t%.10f\t%.10f\t%.10f\t%.10f\t%.10f\t%.10f\t%.10f\t%.10f\t%.10f\t%.10f\t%.10f\t%.10f\t%.10f\t%.10f\t%.10f\t%.10f\t%.10f\t%.10f\t%.10f\t%.10f\t%.10f\t%.10f\t%.10f\t%.10f\t%.10f\t%.10f\t%.10f\t%.10f\t%.10f\t%.10f\t%.10f\t%.10f\t%.10f\t%.10f\t%.10f\t%.10f\t%.10f\t%.10f\t%.10f\t%.10f\t%.10f\t%.10f\t%.10f\t%.10f\t%.10f\t%.10f\t%.10f\t%.10f\t%.10f\t%.10f\t%.10f\t%.10f\t%.10f\t%.10f\t%.10f\t%.10f\t%.10f\t%.10f\t%.10f\t%.10f\t%.10f\t%.10f\t%.10f\t%.10f\t%.10f\t%.10f\t%.10f\t%.10f\t%.10f\t%.10f\t%.10f\t%.10f\t%.10f\t%.10f\t%.10f\t%.10f\t%.10f\t%.10f\t%.10f\t%.10f\t%.10f\t%.10f\t%.10f\t%.10f\t%.10f\t%.10f\t%.10f\t%.10f\t%.10f\t%.10f\t%.10f\t%.10f\t%.10f\t%.10f\t%.10f\t%.10f\t%.10f\t%.10f\t%.10f\t%.10f\t%.10f\t%.10f\t%.10f\t%.10f\t%.10f\t%.10f\t%.10f\t%.10f\t%.10f\t%.10f\t%.10f\t%.10f\t%.10f\t%.10f\t%.10f\t%.10f\t%.10f\t%.10f\t%.10f\t%.10f\t%.10f\t%.10f\t%.10f\t%.10f\t%.10f\t%.10f\t%.10f\t%.10f\t%.10f\t%.10f\t%.10f\t%.
                                                   (0, theta, 0, 0, 0, 0, 0, 0, 0))
                         # Begin MCMC iterations using this starting point
                         num accepted = 0
                          for iter in range(mcmc iters):
                                                    # Propose a new theta using sliding window proposal with window width w
                                                    thetaStar = random.uniform(theta - w/2.0, theta + w/2.0)
                                                    if thetaStar < 0 or thetaStar > 1:
                                                                             thetaStar = reflect_back(thetaStar, 0.0, 1.0)
                                                    # Calculate acceptance probability and decide whether or not to accept
                                                    prior theta = beta.pdf(theta, a, b)
                                                    prior thetaStar = beta.pdf(thetaStar, a, b)
                                                    if sample from prior:
                                                                             like theta = 1.0
                                                                             like thetaStar = 1.0
                                                                             like theta = binom.pmf(num heads, num tosses, theta)
                                                                             like thetaStar = binom.pmf(num_heads, num_tosses, thetaStar)
                                                    post theta = prior theta * like theta
                                                    post thetaStar = prior thetaStar * like thetaStar
                                                    posterior odds = post thetaStar / post theta
                                                    r = posterior odds * hastings ratio
                                                    if r >= 1.0:
                                                                             theta = thetaStar
                                                                             num_accepted += 1
                                                    else:
                                                                             u = random.random()
                                                                                                                                                                                     # random draw from Uniform(0, 1)
                                                                             if r > u:
                                                                                                        theta = thetaStar
                                                                                                        num accepted += 1
                                                    fp.write("%d\t%.10f\t%.10f\t%.10f\t%.10f\t%.10f\t%.10f\t%.10f\t%.10f\t%.10f\t%.10f\t%.10f\t%.10f\t%.10f\t%.10f\t%.10f\t%.10f\t%.10f\t%.10f\t%.10f\t%.10f\t%.10f\t%.10f\t%.10f\t%.10f\t%.10f\t%.10f\t%.10f\t%.10f\t%.10f\t%.10f\t%.10f\t%.10f\t%.10f\t%.10f\t%.10f\t%.10f\t%.10f\t%.10f\t%.10f\t%.10f\t%.10f\t%.10f\t%.10f\t%.10f\t%.10f\t%.10f\t%.10f\t%.10f\t%.10f\t%.10f\t%.10f\t%.10f\t%.10f\t%.10f\t%.10f\t%.10f\t%.10f\t%.10f\t%.10f\t%.10f\t%.10f\t%.10f\t%.10f\t%.10f\t%.10f\t%.10f\t%.10f\t%.10f\t%.10f\t%.10f\t%.10f\t%.10f\t%.10f\t%.10f\t%.10f\t%.10f\t%.10f\t%.10f\t%.10f\t%.10f\t%.10f\t%.10f\t%.10f\t%.10f\t%.10f\t%.10f\t%.10f\t%.10f\t%.10f\t%.10f\t%.10f\t%.10f\t%.10f\t%.10f\t%.10f\t%.10f\t%.10f\t%.10f\t%.10f\t%.10f\t%.10f\t%.10f\t%.10f\t%.10f\t%.10f\t%.10f\t%.10f\t%.10f\t%.10f\t%.10f\t%.10f\t%.10f\t%.10f\t%.10f\t%.10f\t%.10f\t%.10f\t%.10f\t%.10f\t%.10f\t%.10f\t%.10f\t%.10f\t%.10f\t%.10f\t%.10f\t%.10f\t%.10f\t%.10f\t%.10f\t%.10f\t%.10f\t%.10f\t%.10f\t%.10f\t%.10f\t%.10f\t%.10f\t%.10f\t%.10f\t%.10f\t%.10f\t%.10f\t%.10f\t%.10f\t%.10f\t%.10f\t%.10f\t%.10f\t%.10f\t%.10f\t%.10f\t%.10f\t%.10f\t%.10f\t%.10f\t%.10f\t%.10f\t%.10f\t%.10f\t%.10f\t%.10f\t%.10f\t%.10f\t%.10f\t%.10f\t%.10f\t%.10f\t%.10f\t%.10f\t%.10f\t%.10f\t%.10f\t%.10f\t%.10f\t%.10f\t%.10f\t%.10f\t%.10f\t%.10f\t%.10f\t%.10f\t%.10f\t%.10f\t%.10f\t%.10f\t%.10f\t%.10f\t%.10f\t%.10f\t%.10f\t%.10f\t%.10f\t%.10f\t%.10f\t%.10f\t%.10f\t%.10f\t%.10f\t%.10f\t%.10f\t%.10f\t%.10f\t%.10f\t%.10f\t%.10f\t%.10f\t%.10f\t%.10f\t%.10f\t%.10f\t%.10f\t%.10f\t%.10f\t%.10f\t%.10f\t%.10f\t%.10f\t%.10f\t%.10f\t%.10f\t%.10f\t%.10f\t%.10f\t%.10f\t%.10f\t%.10f\t%.10f\t%.10f\t%.10f\t%.10f\t%.10f\t%.10f\t%.10f\t%.10f\t%.10f\t%.10f\t%.10f\t%.10f\t%.10f\t%.10f\t%.10f\t%.10f\t%.10f\t%.10f\t%.10f\t%.10f\t%.10f\t%.10f\t%.10f\t%.10f\t%.10f\t%.10f\t%.10f\t%.10f\t%.10f\t%.10f\t%.10f\t%.10f\t%.10f\t%.10f\t%.10f\t%.10f\t%.10f\t%.10f\t%.10f\t%.10f\t%.10f\t%.10f\t%.10f\t%.10f\t%.10f\t%.10f\t%.10f\t%.10f\t%.10f\t%.10f\t%.10f\t%.10f\t%.10f\t%.10f\t%.10f\t%.10f\t%.10f\t%.10f\t%.10f\t%.10f\t%.10f\t%.10f\t%.10f\t%.
                                                                             (iter + 1, theta, thetaStar, prior theta, prior thetaStar, like theta,
                                                                             like thetaStar, post theta, post thetaStar, r))
                         fp.close()
                          acceptanceRate = float(num accepted)/mcmc iters
                         print "\nMCMC completed; acceptance ratio for theta proposals =", acceptanceRate
```

Metropolis-coupled Markov chain Monte Carlo (MCMCMC)

- MCMCMC involves running several chains simultaneously
- The cold chain is the one that counts, the rest are heated chains
- Chain is heated by raising densities to a power less than 1.0 (values closer to 0.0 are warmer)

Geyer, C. J. 1991. Markov chain Monte Carlo maximum likelihood for dependent data. Pages 156-163 *in* Computing Science and Statistics (E. Keramidas, ed.).

Heated chains act as scouts for the

Back to MCRobot...

The Hastings ratio

Hastings, W. K. 1970. Monte Carlo sampling methods using Markov chains and their applications. Biometrika 57:97-109.

The Hastings ratio

Example where MCMC Robot proposed moves to the right 80% of the time, but Hastings ratio was not used to modify acceptance probabilities

Hastings Ratio

$$R = \left[\frac{f(D|\theta^*) f(\theta^*)}{f(D|\theta) f(\theta)} \right] \left[\frac{q(\theta|\theta^*)}{q(\theta^*|\theta)} \right]$$

Acceptance ratio

Posterior ratio

Hastings ratio

Note that if $q(\theta | \theta^*) = q(\theta^* | \theta)$, the Hastings ratio is 1

The Larget-Simon move

Step 1:

Pick 3 contiguous edges randomly, defining two subtrees, X and Y

*Larget, B., and D. L. Simon. 1999. Markov chain monte carlo algorithms for the Bayesian analysis of phylogenetic trees. Molecular Biology and Evolution 16: 750-759. See also: Holder et al. 2005. Syst. Biol. 54: 961-965.

The Larget-Simon move

Step 1:

Pick 3 contiguous edges randomly, defining two subtrees, X and Y

Step 2:

Shrink or grow selected 3-edge segment by a random amount

The Larget-Simon move

Step 1:

Pick 3 contiguous edges randomly, defining two subtrees, X and Y

Step 2:

Shrink or grow selected 3-edge segment by a random amount

The Larget-Simon move

Step 1:

Pick 3 contiguous edges randomly, defining two subtrees, X and Y

Step 2:

Shrink or grow selected 3-edge segment by a random amount

Step 3:

Choose X or Y randomly, then reposition randomly

The Larget-Simon move

Step 1:

Pick 3 contiguous edges randomly, defining two subtrees, X and Y

Step 2:

Shrink or grow selected 3-edge segment by a random amount

Step 3:

Choose X or Y randomly, then reposition randomly

Paul O. Lewis (2017 Woods Hole Molecular Evolution Workshop)

Moving through parameter space

Using k (ratio of the transition rate to the transversion rate) as an example of a model parameter.

Proposal distribution is the uniform distribution on the interval $(\kappa-\delta, \kappa+\delta)$

The "step size" of the MCMC robot is defined by δ : a larger δ means that the robot will attempt to make larger jumps on average.

Putting it all together

- Start with random tree and arbitrary initial values for branch lengths and model parameters
- Each generation consists of one of these (chosen at random):
 - Propose a new tree (e.g. Larget-Simon move) and either accept or reject the move
 - Propose (and either accept or reject) a new model parameter value
- Every *k* generations, save tree topology, branch lengths and all model parameters (i.e. sample the chain)
- After *n* generations, summarize sample using histograms, means, credible intervals, etc.

Marginal Posterior Distribution of K

Histogram created from a sample of 1000 kappa values.

Common Priors

- Discrete uniform for topologies
 - exceptions becoming more common
- Beta for proportions (http://eurekastatistics.com/beta-distribution-pdf-grapher/)
- Gamma or Log-normal for branch lengths and other parameters with support [0,∞)
 - Exponential is common special case of the gamma distribution
- Dirichlet for state frequencies and GTR relative rates

Gamma(a,b) distributions

*Note: be aware that in many papers the Gamma distribution is defined such that the second (scale) parameter is the *inverse* of the value b used in this slide! In this case, the mean and variance would be a/b and a/b^2 , respectively.

Paul O. Lewis (2017 Woods Hole Molecular Evolution Workshop)

Beta (α,β) distribution

http://eurekastatistics.com/beta-distribution-pdf-grapher/

Dirichlet(a,b,c,d) distribution

https://phylogeny.uconn.edu/dirichlet-prior/

