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Topics covered

e Review of probability
® Principles of maximum likelihood estimation
e |ntroduction to Bayesian inference and MCMC

This intro will be very basic. | will assume that you have little understanding of (or
have forgotten everything you knew about):

® Dbasic probability

® statistics

e calculus

The idea is for everyone to reach a basic starting point before we proceed further.

PLEASE INTERRUPT!

Note: For technical reasons, I’'m not on Slack--please use email (david.swofford@duke.edu) to contact me!
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Why probability?

We want to estimate biology relevant quantities
(parameters) from our data and probability provides the
conceptual and analytical basis for this effort

Mutation rates

Population sizes

Recombination rates

Migration rates

Selection coefficients

Gene and species trees

Branch lengths and divergence times
Substitution-model parameters

.. to name a few
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Pr(B) =0.6 Pr(S)=0.5
Pr(W) =04 Pr(D) = 0.5

Pr(@Q) = Pr(B, D) =0.2
Pr(@) =Pr(B, S) =0.4
Pr((®))=Pr(W,D)=0.3
Pr(QO)=Pr(W, S) =0.1
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Conditional probabilities

@ Pr(B|D) = 2 - 0.4
®¢ 5
Hide all solid r:lz@
o (leaving 5 with dot)

o Of those left, 2 are black
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Maximum likelihood

Likelihood(0) = Pr(D | 9)

To compute a likelihood, we need a model. This model
allows us to compute the probability of obtaining our
observed data for any given value(s) of the model
parameter(s) O




Coin tossing as an example

Heads (H) Tails (T)

Model: result of each toss is independent of other tosses; Pr(H) is
unknown but constant across tosses

6 = Pr(H)



Coin tossing as an example

Suppose we toss the coin 5 times and
get the following result:

N N Ta ey
- N TRy o

Simple model: Pr(H)=Pr(T)=0.5
Under independence assumption,
Pr(H,T,H,H,T) = (0.5) (0.5) (0.5) (0.5) (0.5) = (0.5)°
=0.03125

(All other sequences have the same probability)



Coin tossing as an example

A more interesting question: how probable is
h heads and t tails in N tosses?

HHHHH 5H,0T TTTHH
TTHTH
HHHHT THTTH
HHHTH HTTTH
HHTHH AH,1T 2H.3T TTHHT
HTHHH THTHT
THHHH HTTHT
THHTT
HHHTT HTHTT
HHTHT HHTTT
HTHHT
THHHT TTTTH
HHTTH 3H 2T TTTHT
HTHTH 1H,4T TTHTT
THHTH THTTT
HTTHH HTTTT
THTHH
TTHHH OH,5T TTTTT




Coin tossing as an example

Binomial probability

Pr(h heads | N tOSSGS):( 1;’ )Hh(l_H)N—h

If we let © = 0.5,

=0.3125



Coin tossing as an example

What if we aren’t willing to assume that © = 0.5?

Estimate © by maximum likelihood...

0.35

Pr(3H,2T| ©=0.0) = 0.0
Pr(3H,2T| © = 0.1) = 0.0081 030
Pr(3H,2T| ©=0.2) = 0.0512
Pr(3H,2T| ©=0.3) = 0.1323
Pr(3H,2T| © = 0.4) = 0.2304
Pr(3H,2T| © = 0.5) = 0.3125
Pr(3H,2T| © = 0.6) = 0.3456
Pr(3H,2T| © = 0.7) = 0.3087
Pr(3H,2T| © = 0.8) = 0.2048
Pr(3H,2T| © = 0.9) = 0.0729 005
Pr(3H,2T| ©=1.0)=0.0

0.25

0.20

0.15

Pr(3H,2T| )

0.10

0.00 — .
0.0 0.2 0.4 0.6 0.8 1.0

Maximum likelihood estimate



Bayes’ rule
Pr(B, D) -&k \

Pr(D) Pr(B|D) = Pr(B) Pr(D|B)
1 2 3 1

— — = — X —

2 * 5 5 3

!
|
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Probability of "Dotted"”

Pr(D) = Pr(D,W) + Pr(D,B)
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Bayes' rule (cont.)

Pr(B)Pr(D|B)
Pr(D)
Pr(D, B)
Pr(D, B) + Pr(D, W)

Pr(B|D) =

Pr(D) is the marginal probability of being dotted
To compute it, we marginalize over colors

Paul O. Lewis (2017 Woods Hole Molecular Evolution Workshop)



Bayes' rule (cont.)

It is easy to see that Pr(D) serves as a normalization
constant, ensuring that Pr(B|D) + Pr(W|D) = 1.0

B Pr(D, B)
PrBID) = 50D, B) + pr(D, W) «— Pr(D)
Pe(W|D) = — b W)

Pr(D,B) + Pr(D,W) <— Pr(D)

Pr(B|D) 4+ Pr(W|D) =

Paul O. Lewis (2017 Woods Hole Molecular Evolution Workshop) 9



Marginalizing over colors

Marginal probability of
being a dotted marble
1s the sum of all joint

probabilities involving

dotted marbles

Paul O. Lewis (2017 Woods Hole Molecular Evolution Workshop)



Marginal probabilities

B w0 e
D 1;1:(1) B) + Pr(D, W)
S Pr(SB) + Pr(Sm\.%;j ......
Pr(S).;;;g.g..l;lal probability
of being solid
Paul 0. Lewis (2017 Woods Hole Molecular Evolution Workshop)
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Joint probabilities

B "\

Paul O. Lewis (2017 Woods Hole Molecular Evolution Workshop)
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Paul O. Lewis

Marginalizing over "dottedness”

s (2017 Woods Hole Molecular Evolution Workshop)

W

Pr(S W)

Marginal
probability of
being a white

Pr(D W) <L marble

14



Bayes' rule (cont.)

Pr(B)Pr(D|B)
Pr(D, B) + Pr(D, W)

Pr(B) Pr(D|B)

Pr(B|D) =

Pr(B)Pr(D|B) 4+ Pr(W) Pr(D|W)

Pr(B)Pr(D|B)
Zee{B,W} Pr(0) Pr(D|0)

Paul O. Lewis (2017 Woods Hole Molecular Evolution Workshop)
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Bayes’ rule in statistics

Likelihood of hypothesis 6 Prior probability of hypothesis 6

.

Pr(D|0) Pr(0)
2o Pr(D|0) Pr(6)

N\

. - Marginal probability
Posterior probability of the data (marginalizing
of hypothesis 6 over hypotheses)

Pr(0|D) =

Paul O. Lewis (2017 Woods Hole Molecular Evolution Workshop) 17



Practical application of Bayes’ rule
(modified from Durbin et al. 1998 Biological Sequence Analysis)

A rare genetic disease is discovered. Although only one in a million people carry it, you
consider getting screened. You are told that the genetic test is extremely good; it is 100%
sensitive (it is always correct if you have the disease), and it has a false positive rate of only

1%. If you have the disease, a new drug can save your life if taken before the onset of
symptomes; it costs $10,000/year.

Pr(+disease)x Pr(disease)
Pr (+| disease) x Pr(disease) + Pr (+|healthy) x Pr (healthy)

) 1x 0.000001
1x0.000001 + 0.01 x 0.999999

=0.00009999

Pr (disease| +) =

Pr (+| healthy) x Pr(healthy)
Pr(+|disease)x Pr(disease) + Pr(+ healthy)x Pr(healthy)

) 0.01 x 0.999999
1x0.000001 + 0.01 x 0.999999

=0.99990001

Pr (healthy| +) =

If test positive, approximately 10,000 times more likely to NOT have the disease than to have it!
(Is it worth $10,0007?)



Simple (albeit silly) paternity example

6, and 6, are assumed to be the only possible fathers, child has genotype Aa,

mother has genotype aa, so child must have received allele A from the true
father. Note: the data in this case is the child’s genotype (Aa)

Possibilities 91 92 Row sum
Genotypes AA Aa
Prior 1/2 1/2 1
Likelihood 1 1/2
Posterior 2/3 1/3 1

Paul O. Lewis (2017 Woods Hole Molecular Evolution Workshop) 18



Bayes’ rule: continuous case

Likelihood Prior probability
\ density
£(DIO)f
f0|D) =
VAl o
Posterior probability Marginal probability

density of the data

Paul O. Lewis (2017 Woods Hole Molecular Evolution Workshop)
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Integration of densities

0.8

074 4\

0.6 - ﬁ / f(6)do

05 - I )

04 - The density curve is scaled so
db that the value of this integral

0.3 - (i.e. the total area) equals 1.0

0.2 -
L\
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Integration of a probability density
yields a probability
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Usually there are many parameters...

Prior probability
Likeli hood density

F(DI0.6) F(0) (9
e f ) LT, 1(00.0) [0)1(6) dids

A 2-parameter example

Marginal probability of data

Posterior . N
prObability An analysis of 100 sequences under the simplest
density model (JC69) requires 197 branch length parameters.

The denominator is a 197-fold integral in this case!
Now consider summing over all possible tree topologies!
It would thus be nice to avoid having to calculate the

marginal probability of the data...
N J

Paul O. Lewis (2017 Woods Hole Molecular Evolution Workshop) 32




Markov chain Monte Carlo (MCM(C)

3.0
241
1.8 {

1.2 1

0.6 {

0.0 ; : ' : :
0.0 0.2 0.4 0.6 0.8 1.0

For more complex problems, we might settle for a
good approximation

to the posterior distribution

Paul O. Lewis (2017 Woods Hole Molecular Evolution Workshop)
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MCMC robot’s rules

Drastic “off the cliff”
downhill steps are almost
never accepted

Slightly downhill steps -

7/

are usually accepted ,

With these rules, it
is easy to see why the
robot tends to stay near

the tops of hills
N J

Uphill steps are
always accepted

Paul O. Lewis (2017 Woods Hole Molecular Evolution Workshop) 35



(Actual) MCMC robot rules

10T
Slightly downhill steps Drastic “off the cliff”
are usually accepted downhill steps are almost
s+ because R is near 1 never accepted because
, Ris near 0
Currently at 6.2 m ) N
Proposed at 5.7 m “\
6T R=57/6.2 =0.92 = Currently at 6.2 m
. Proposed at 0.2 m
R=0.2/6.2 =0.03
4--
Currently at 1.0 m
Proposed at 2.3 m
ol R=2.3/1.0=2.3 .
Uphill steps are of s \‘_\_Y_
0+ always accepted 1 n€ robot takes a step if it draws

because R > 1 a Uniform(0,1) random deviate
that is less than or equal to R

Paul O. Lewis (2017 Woods Hole Molecular Evolution Workshop) 36



Cancellation of marginal likelihood

When calculating the ratio R of posterior densities, the marginal
probability of the data cancels.

rorp)  TEEEE F(D)er) £(6)

FOID) ~ IEar@ (D] f(0)

Posterior Likelihood Prior odds
odds ratio

Paul O. Lewis (2017 Woods Hole Molecular Evolution Workshop)



Cancellation of marginal likelihood

When calculating the ratio R of posterior densities, the marginal
probability of the data cancels.

rorp)  TEEEE p(Djer) £(0)

FOID) ~ L@@ " (D] f(0)

Posterior Likelihood Prior odds
odds ratio

Paul O. Lewis (2017 Woods Hole Molecular Evolution Workshop)



MCRobot (or "MCMC Robot")

https://phylogeny.uconn.edu/mcmc-robot/



https://phylogeny.uconn.edu/mcmc-robot/
https://phylogeny.uconn.edu/mcmc-robot/

Bayesian coin-tossing with MCMC

# A tiny little Python program to demonstrate MCMC
# Dave Swofford, 22 January 2018

# NOTE: This code is written for clarity/readability, not efficiency! Do NOT use it as the
# basis for a real MCMC program.

from math import exp, sqrt

from scipy.stats import binom, beta
import numpy as np

from numpy import random

do_monte_carlo_sim = False
do_mcmc = True
sample_from _prior = False # run "without data" if true

def reflect_back(x, xmin, xmax):
while x < xmin or x > xmax:
if x < xmin:
X = 2*¥xmin - X
else:
X = 2*¥xmax - X
return x

HHHFHAHHHHEH A H SR
# Simulation of coin tossing #
R R R R R
if do_monte carlo sim:
num_iters = 1
num_tosses = 5
p =0.5
print "\n%10s%10s%12s\n%s" % ("H", "T", "p(H)", '-'*32)
for iter in range(num_iters):
num_heads = random.binomial(num_tosses, p, 1)
print "%10d%10d%12.5f" % (num_heads, num_tosses - num_heads, float(num_heads)/num_tosses)

# Generate a data set:

num_tosses = 5

true_theta = 0.5

num_heads = random.binomial(num_tosses, true_theta, 1)

num_tails = num_tosses - num_heads

print "\nSimulation of coin tossing performed: %d heads, %d tails" % (num_heads, num_tails)



Bayesian coin-tossing with MCMC

HiHH
# Estimate theta=Pr(H) via MCMC #
HHHAHHAHHAHHAHH A
if do_mcmc:

a =0.2 # alpha parameter of Beta distribution
b=20.2 # beta parameter of Beta distribution
w=0.5 # width for sliding window proposal
mcmc_iters = 10000 # set number of MCMC iterations (generations)
hastings_ratio = 1.0 # we're using a symmetric proposal distribution

# Open a file to receive the posterior samples:
fp = open("samples.txt", "w")

# We'll use a random draw from the prior as the starting point
theta = random.beta(a, b)
fp.write("%s\t%s\t%s\t%s\t%s\t%s\t%s\t%s\t%s\t%s\n" %
("iter", "theta", "thetaStar", "prior_theta", "prior_thetaStar", "like_theta",
"like_thetaStar", "post_theta", "post_thetaStar", "R"))
fp.write("%d\t%.10f\t%.10f\t%.10f\t%.10F\t%. 10 \t%. 10f\t%. 10F\t%.10F\t%.16f\n" %
(0, theta, @, @, 8, 0, 0, 0, 0, 0))

# Begin MCMC iterations using this starting point
num_accepted = 0
for iter in range(mcmc_iters):

# Propose a new theta using sliding window proposal with window width w
thetaStar = random.uniform(theta - w/2.0, theta + w/2.0)
if thetaStar < © or thetaStar > 1:

thetaStar = reflect_back(thetaStar, 0.0, 1.0)

# Calculate acceptance probability and decide whether or not to accept
prior_theta = beta.pdf(theta, a, b)
prior_thetaStar = beta.pdf(thetaStar, a, b)
if sample_from_prior:
like_theta = 1.0
like_thetaStar = 1.0
else:
like_theta = binom.pmf(num_heads, num_tosses, theta)
like_thetaStar = binom.pmf(num_heads, num_tosses, thetaStar)
post_theta = prior_theta * like_theta
post_thetaStar = prior_thetaStar * like_thetaStar
posterior_odds = post_thetaStar / post_theta
r = posterior_odds * hastings_ratio
if r >=1.0:
theta = thetaStar
num_accepted += 1
else:
u = random.random() # random draw from Uniform(@, 1)
if r > u:
theta = thetaStar
num_accepted += 1
fp.write("%d\t%.10f\t%.10f\t%.10f\t%. 10 \t%. 10F\t%. 10f\t%. 10 \t%. 10f\t%.10f\n" %
(iter + 1, theta, thetaStar, prior_theta, prior_thetaStar, like_theta,
like_thetaStar, post_theta, post_thetaStar, r))

fp.close()
acceptanceRate = float(num_accepted)/mcmc_iters
print "\nMCMC completed; acceptance ratio for theta proposals =", acceptanceRate



Metropolis-coupled Markov chain Monte Carlo
(MCMCMC)

 MCMCMC involves running several chains
simultaneously

 The cold chain is the one that counts, the rest
are heated chains

* Chain is heated by raising densities to a power
less than 1.0 (values closer to 0.0 are warmer)

Geyer, C. J. 1991. Markov chain Monte Carlo maximum likelihood for dependent data. Pages 156-163 in Computing Science and
Statistics (E. Keramidas, ed.).

Paul O. Lewis (2017 Woods Hole Molecular Evolution Workshop) 45



Heated chains act as scouts for the
cold chain

Cold chain robot can easily

make this jump because it is

uphill

Hot chain robot can also
make this jump with high
probability because it 1s only
slightly downhill

Paul O. Lewis (2017 Woods Hole Molecular Evolution Workshop)
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Hot chain and cold chain
robots swapping places

Swapping places means
both robots can cross
the valley, but this 1s

more important for the
cold chain because its
valley 1s much deeper

*».  heated

Paul O. Lewis (2017 Woods Hole Molecular Evolution Workshop) 47



Back to MCRobot...

Paul O. Lewis (2017 Woods Hole Molecular Evolution Workshop)
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The Hastings ratio

If robot has a greater tendency

to propose steps to the right as
opposed to the left when choosing 2
its next step, then the /
acceptance ratio must

counteract this
tendency.

Suppose the probability of
proposing a spot to the right
is twice that of proposing a spot
to the left

In this case, the Hastings ratio

decreases the chance of accepting moves to the right by half, and
increases the chance of accepting moves to the left (by a factor of 2),
thus exactly compensating for the asymmetry in the proposal distribution.

Hastings, W. K. 1970. Monte Carlo sampling methods using Markov chains and their applications. Biometrika 57:97-109.

Paul O. Lewis (2017 Woods Hole Molecular Evolution Workshop)

49



The Hastings ratio

Example where MCMC
Robot proposed moves to the
right 80% of the time, but Lo,
Hastings ratio was not used
to modify acceptance
probabilities

Paul O. Lewis (2017 Woods Hole Molecular Evolution Workshop)
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R —

Hastings Ratio

f(D]6") f(0)
| f(D]0) f(0)

‘

cceptanc
ratio

q(0107)

q(0%]0)

ej [ Posterior ratio j [Hastings ratioj

Note that if g(06|0*) = gq(6*|0), the Hastings ratio is 1



Moving through treespace

Paul O. Lewis (2017 Woods Hole Molecular Evolution Workshop)

The Larget-Simon move

Step 1:

Pick 3 contiguous edges
randomly, defining two
subtrees, X and Y

*Larget, B., and D. L. Simon. 1999. Markov chain monte carlo algorithms

for the Bayesian analysis of phylogenetic trees. Molecular Biology and

Evolution 16: 750-759. See also: Holder et al. 2005. Syst. Biol. 54:

961-965. 54



Moving through treespace

The Larget-Simon move

Step 1:
Pick 3 contiguous edges
\ randomly, defining two
' subtrees, X and Y
/I Step 23
Shrink or grow selected
3-edge segment by a
random amount

Paul O. Lewis (2017 Woods Hole Molecular Evolution Workshop) 55



Moving through treespace

The Larget-Simon move

Step 1:
Pick 3 contiguous edges

\ randomly, defining two
,: subtrees, X and Y

/ Step 2:
Shrink or grow selected
3-edge segment by a
random amount

Paul O. Lewis (2017 Woods Hole Molecular Evolution Workshop) 56



Moving through treespace

Paul O. Lewis (2017 Woods Hole Molecular Evolution Workshop)

The Larget-Simon move

Step 1:
Pick 3 contiguous edges

randomly, defining two
subtrees, X and Y

Step 2:

Shrink or grow selected
3-edge segment by a
random amount

Step 3:

Choose X or Y randomly,

then reposition

randomly



Moving through treespace

The Larget-Simon move

Step 1:
Pick 3 contiguous edges

randomly, defining two
subtrees, X and Y

Step 2:

Shrink or grow selected
3-edge segment by a
random amount

Step 3:

Proposed new tree: Choose X or Y randomly,

3 edge lengths have changed and then reposition
the topology differs by one NNI rearrangement

randomly
Paul O. Lewis (2017 Woods Hole Molecular Evolution Workshop) 58



Moving through parameter space

current value of Using K (ratio of the transition rate to

K the transversion rate) as an example
of a model parameter.
, - .- . L
00 10 20 30 40 50 60 Prop(.)sal.distributiop is the uniform
Y S distribution on the interval (k-0, K+0)

new value chosen
from this interval

The “step size” of the MCMC robot
is defined by 0: a larger 0 means

Cu"en;(va'ue of that the robot will attempt to make
larger jumps on average.

\

[ : : : : i —

0.0 1.0 2.0 3.0 4.0 5.0 6.0

—— if new value falls in this region, excess reflected
back into valid range

Paul O. Lewis (2017 Woods Hole Molecular Evolution Workshop) 60



Putting it all together

» Start with random tree and arbitrary initial
values for branch lengths and model parameters

« Each generation consists of one of these (chosen at

random):
- Propose a new tree (e.g. Larget-Simon move) and either accept
or reject the move
- Propose (and either accept or reject) a new model parameter

value

e Every k generations, save tree topology, branch lengths
and all model parameters (i.e. sample the chain)

e After n generations, summarize sample using
histograms, means, credible intervals, etc.

Paul O. Lewis (2017 Woods Hole Molecular Evolution Workshop) 61



Marginal Posterior Distribution of «

»- lower = 2.907 upper = 3.604  Histogram created

] - from a sample of
95% credible interval 1000 kappa values.

60

50

40

30

20

10 -

mean = 3.234

Paul O. Lewis (2017 Woods Hole Molecular Evolution Workshop) Data from Lewis, L., and Flechtner, V. 2002. Taxon 51: 443-451. 62



Common Priors

e Discrete uniform for topologies
- exceptions becoming more common

o Beta fOr proportiOnS (http://eurekastatistics.com/beta-distribution-pdf-grapher/)

« Gamma or Log-normal for branch lengths
and other parameters with support [0,«)

- Exponential is common special case of the
gamma distribution

e Dirichlet for state frequencies and GTR
relative rates

Paul O. Lewis (2017 Woods Hole Molecular Evolution Workshop) 64


http://eurekastatistics.com/beta-distribution-pdf-grapher/
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probability density

Gamma(a,b) distributions

Gamma(400, 0.01)
Gamma(0.1, 10) Cpeak>01fa>1)
< shoots off to infinity
ifa<1 .. .
Gamma distributions
are ideal for
o parameters that range
- : from O to infinity (e.g.
Exponential(1)
- Gamma(1,1) branch lengths)
o _ hits y-axis at b a = shape
© ifa=1 b = scale
mean* = ab
variance* = ab?

| | | | | |
0 1 2 3 4 S

*Note: be aware that in many papers the Gamma distribution is defined such that the second (scale) parameter is the inverse of
the value b used in this slide! In this case, the mean and variance would be a/b and a/b?, respectively.

Paul O. Lewis (2017 Woods Hole Molecular Evolution Workshop) 67



Beta(a,) distribution

http://eurekastatistics.com/beta-distribution-pdf-grapher/



http://eurekastatistics.com/beta-distribution-pdf-grapher/
http://eurekastatistics.com/beta-distribution-pdf-grapher/

Dirichlet(a,b,c,d) distribution

https://phylogeny.uconn.edu/dirichlet-prior/
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