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Why estimate population/species trees?

® May be interested in a phylogeographic
guestion, and need a tree upon which to
infer ancestral locations

® Hypothesis generation (e.g., isolation with
migration models)

® Need a tree for ABBA/BABA statistics

® Interest in the phylogeny/systematics of a
group of organisms



Invariants methods for
phylogenetic inference

Phylogenetic invariants work by examining patterns in the
data in order to determine whether they show relationships
that are predicted by particular tree topologies.

Typically, invariants are linear or polynomial expressions that
evaluate to specific expected values for each possible tree topology.
By tabulating site pattern frequencies, we can calculate the values
of the invariants and ask whether they approximate these expected
values. This information allows selection of a preferred tree, and
rejection of the other possibilities.



Early work on phylogenetic invariants

Journal of Classification 4:57-71 (1987) A Rate-independent Technique for Analysis of Nucleic Acid

lOll.l'nal of . Sequences: Evolutionary Parsimony’
Classification James A. Lake
©1887 Springer-Verlag New York Inc. .

Molecular Biology Institute and Department of Biology,
University of California, Los Angeles

Invariants of Phylogenies in a Simple Case

with Discrete States The method of evolutionary parsimony—or operator invariants—is a technique
of nucleic acid sequence analysis related to parsimony analysis and explicitly de-
signed for determining evolutionary relationships among four distantly related taxa.

James A. Cavender Joseph Felsenstein The method is independent of substitution rates because it is derived from consid-
eration of the group propertics of substitution operators rather than from an analysis
Martin Marietta Denver Aerospace University of Washington of the probabilitics of substitution in branches of a tree. In both parsimony and

cvolutionary parsimony, three patterns of nucleotide substitution are associated
one-10-one with the three topologically linked trees for four taxa. In evolutionary
parsimony, the three quantities are operator invariants. These invanants are the

Abstract: Under a simple model of transition between two states, we can remnants of substitutions that have occurred in the interior branch of the tree and
work out the probabilities of different data outcomes in four species with any are analogous to the substitutions assigned to the central branch by parsimony.
given phylogeny. For a given tree topology, if all characters are evolving The two invariants associated with the incorrect trees must equal zero (statistically),
under the same probabilistic model, there are two quadratic forms in the fre- whcm_s only the correct tree can have a nonzero invariant. The x*-test is used to
quencies of outcomes that must be zero. It may be possible to test the null ascertain the nonzero it'wuimt apd the statistically fnvomdm_l’.umﬂcx obtained
hypothesis that the tree is of a particular topology by testing. whether these using data calculated with evolutionary rates and mmmloumwﬂ*
. . . . the true tree, show that the method accurately predicts the tree, even when substi-
Quadratic forms are zero. One of the tests is a test for independence in 2 : . S . _ .
simple 2 X 2 conti wable. If there are differe of huti tution rates differ greatly in neighboring peripheral branches (conditions under
"“'m"" e f ' S OF SvoREmamy te which parsimony will consistently fail). As the number of substitutions in peripheral
among characters, t quadratic forms will no longer necessarily be zero. branches becomes fewer, the parsimony and the evolutionary-parsimony solutions

. . converge. The method is robust and casy 10 use.
Keywords: Phylogenics: Statistical tests.

Cavender and Felsenstein (1987) Lake (1987)

Quadratic invariants for 2-state data Linear invariants for 4-state nucleotide data



Much subsequent work by mathematicians

The Annals of Statistics
1993, Vol. 21,

INVARIANTS OF SOME PROBABILITY MODELS USED

No. 1, 356-377
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Performance of a New Invariants Method on Homogeneous and
Nonhomogeneous Quartet Trees

M. Casanellas and J. Ferndndez-Sanchez

Department of Matematica Aplicada I, Universitat Politecnica de Catalunya, Barcelona, Spain

An attempt to use phylogenetic invariants for tree reconstruction was made at the end of the 80s and the beginning of the
90s by several researchers (the initial idea due to Lake [1987] and Cavender and Felsenstein [1987]). However, the ef-
ficiency of methods based on inv arnams is sull | in doubt (Huelsenbeck 1995 Jin and Nei 1990) Probablw because these

rawwag fiegt in

Toric Ideals of Phylogenetic Invariants

Bernd Sturmfels and Seth Sullivant
Department of Mathematics, University of California, Berkeley

Abstract

Statistical models of evolution are algebraic varieties in the space of joint probability distri-
butions on the leaf colorations of a phylogenetic tree. The phylogenetic invariants of a model
are the polynomials which vanish on the variety. Several widely used models for biological se-
quences have transition matrices that can be diagonalized by means of the Fourier transform of
an abelian group. Their phylogenetic invariants form a toric ideal in the Fourier coordinates. We
determine minimal generators and Griobner bases for these toric ideals. For the Jukes-Cantor
and Kimura models on a binary tree, our Grobner basis consists of quadrics, cubics and quartics.

Keywords: Phylogenetic invariants; Tree; Sequence evolution

and many more




Much subsequent work by mathematicians

[E<Y1, 0>[E<Y2, d’> = [E<Y1a ¢>E<Y2, 0)-

Before closing this discussion of the invariants of the Kimura two-parame-
ter model for the two-leaf tree, it is both of independent interest and conve-
nient for later examples to relate our notation and results to those of Cavender
(1989, 1991). Following Cavender, we let A (resp. G,C,T) double as the
function on G = {A, G, C, T'} which takes the value 1 on A (resp., G,C,T) and
0 elsewhere. We then seethat A — G =(1/2¢ + @) and C — T = (1 /2N —
#); and, letting ® denote the tensor product of functions on G, we see that

(A-G)e(C-T)=14(d+0)®(d—0)
= (d®P—d@0+0®¢—0®0)

and
(C—T)®(A-G)=1(é—0)®(d+0)
= Pp®Pp-00d+d®0—0880).

Despite providing a great deal of recreational opportunities for
mathematicians/algebraic statisticians, these methods were
almost completely ignored by empirical evolutionary biologists!



Lake’s linear invariants
(“Evolutionary Parsimony”)

For each set of 4 sequences (quartet): ;}(Z
For the tree ((1,2),(3,4)), tabulate

E = fanicc + faajmT + feciaa + feciee + feg|cc + foa 1T + frTiAA + fTIG6

U = fag|cT + fag|tc + feTiaG + feTiea + fealcT + fealte + frciac + frc|ea

H = fag|cc + fag|1T + fcriaa + feri66 + feacc + fea|mT + frciaa + ficice

J = fanict + faaitc + fecjac + fecjea + feg et + fog|te + frTiac + frTiGA
Then:

X=E+u-H-J

Calculate similar terms Y and Z for the trees ((1,3),(2,4)) and ((1,4),(2,3)).
Y=F+v-L-N /=G+w-Q-5

(patterns not involving 2 pyrimidines and 2 purines are ignored)

The true tree is expected to take a positive value for one of X, Y, and Z; the
other two are expected to be zero (i.e., the invariants).



Inferring evolutionary trees using matrix rank
and the Singular Value Decomposition(SVD)

e Allman and Rhodes (2003, 2004)

® Eriksson(2005)

e Chifman and Kubatko (2014, 2015)

e Fernandez-Sanchez and Casanellas (2016)

Exploit the fact that there are linear dependencies in
site-pattern frequencies that are tree-topology
specific (the “invariants”)



Site pattern frequencies

A tree for 4 taxa, which may be a
subtree of a larger tree



Site pattern frequencies
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Site pattern frequencies

A
C A A G
C C G C
A A G G



Allman-Rhodes-Erikkson invariants from
Singular Value Decomposition

For each set of 4 sequences (quartet), we can count the
relative frequencies of the 256 possible site patterns

Taxon A Taxon B { Taxon C Taxon D Frequency
2 A A A C pAAAC
3 A A A G DAAAG
4 A A A T DAAAT
129 G G G A PGGGA
130 G G G C pGGae
255 T T T G pTTTG
256 T T T T pTTTT




Flattening matrices

For each set of 4 sequences (quartet):

Represent the pattern frequencies by three “flattening matrices” (one for each

resolution of the quartet):
AA AC AG AT CA CC

AA ( DPAAAA  DPAAAC  DPAAAG  DAAAT DACAA  DACAC - - - \

AC | paaca Dancc Daace DPaact  DPacca  Pacce

AG | panca  DPaacc DPasce  DPaacT  PACGA  PACGC
Flat1a),241(P) = pr DAATA  DPAATC  DPAATG  DPAATT DPACTA  PACTC

CA | Pcaan  DPcaac  DPcaac  PcAAT  DPccar PCCAC

U A T ”5.)

Allman-Rhodes and Eriksson main result:

Under very general Markov assumptions, the flattening matrices are full
rank (16) for the two incorrect trees, but the rank of the matrix
corresponding to the true is tree expected to be 4.

“rank” = number of linearly independent rows and columns)



Intuition on reduced rank/linear dependencies

True tree

1 2 3
A C A
A C C
C A A
C A C

E.g., all 4 of these site patterns have

C
A
C

A

the same expected frequency

f(AC| AC)=f(AC| CA)=f(CA| AC)=F(CA|CA)

Incorrect tree

1 3 2 4
A A C C
A C C A
C A A C

C C A A

These patterns are not all expected
to have the same expected
frequency if they evolved on the
other tree

f(AA | CC)£f(AC| CA)#F(CA| AC)#f(CC| AA)



Flattenings for a 2-State Jukes-Cantor model

A\ /A ] G\ /G
7 Na o N\c

AA AG GA GG

AA | a
Flattening matrix  AG
for1,2(3,4 GA

GG a



Flattenings for a 2-State Jukes-Cantor model

>
>

>

N N\

\O
/CD
AN N

>
>

AA AG GA GG

AA | a b b

Flattening matrix  AG | b
for1,2(3,4 GA | b

GG a




Flattenings for a 2-State Jukes-Cantor model

9]
9]

o

N\
\m
/CD

AN N

>
>

AA | a b b

Flattening matrix AG | b b
for1,2|3,4 GA| b b

GG b b a




Flattenings for a 2-State Jukes-Cantor model

A\ /G ] G\ /A
" Ne o/ \4

AA AG GA GG
AA | a b b C
Flattening matrix AG | b b
for1,2(3,4 GA b b
GG | ¢ b b a



Flattenings for a 2-State Jukes-Cantor model

>
>

@
o

N N\
/N N\

>
>

AA AG GA GG
AA | a b b C
Flattening matrix AG | b d d b
for1,2(3,4 GA b d d b
GG | ¢ b b a



| 3
N Y
0.1 AA

Some numbers

Expected flattening matrix for 1,2(3,4

AA

AG GA

GG

0.1 0.1
/ \ AG
g) “True” branch lengths 4 ,

substitutions/site

in expected

GA
GG

Expected site-pattern
frequencies

PAAAA
PAAAG
PAAGA
PAAGG
PAGAA
PAGAG
PAGGA
PAGGG
PGAAA
PGAAG
PGAGA
PGAGG
PGGAA
PGGAG
PGGGA
PGGGG

0.09300841
0.06135527
0.06135527
0.06811487
0.06135527
0.04672782
0.04672782
0.06135527
0.06135527
0.04672782
0.04672782
0.06135527
0.06811487
0.06135527
0.06135527
0.09300841

0.093008
(7061355
0.061355
0.068115

0.061355 0.061355
0.046728 0.04672%2
0.046728 021046728
0.064355 0.061355

etc.

0.068115
0.061355
0.061355
0.093008



Some numbers

Expected flattening matrix for 1,2(3,4

I 3
W V AA AG GA GG
0.1
AA |0.093008 0.061355 0.068115

0.1 0.1
AG | 0.061355 0.046728 0.061355
g) “True” branch lengths 4
in expected GA
substitutions/site GG | 0.068115 0.061355 0.093008
Expected site-pattern Delete redundant 3rd row and column...
frequencies AA AG GG

Panan 0.09300841 AA | 0.093008  0.061355  0.068115
PAAAG 0.06135527
PAAGA 0.06135527 AG 0.061355 0.046728 0.061355
PAAGG 0.06811487 GG 0.068115 0.061355 0.093008
PAGAA 0.06135527
PAGAG 0.04672782 .
PAcer 0.04672782 Note that we can rlow objcam the Ias’F col.umn
PAGGG 0.06135527 of the above matrix as a linear combination
PGAAA 0.06135527 of the first two columns:
PGAAG 0.04672782
Peaca 0.04672782 fAA,GG = 'fAA,AA'l' 2.62617 fAA,AG = (0.068115
PGAGG 0.06135527 fAG,GG = 'fAG,AA"‘ 2.62617 fAG,AG = 0.061355
PGGAA 0.06811487

= - + 2.62617 = (0.093008
PGGAG 0.06135527 fGG'GG fGG'AA fGG'AG
PGGGA 0.06135527 . . .
Deac 0.09300841 . matrix has only two linearly independent

rows and columns; rank is 2



Estimating the rank

To estimate the rank, compute the singular value decomposition (SVD)
of each matrix:

S = [51, S2, 83, ... S16 ]

16 16
For the true tree, E s. = (. Otherwise, E . > 0
i=5 i=5

Thus, for each of the three trees for four taxa, we can compute the
Frobenius distance from each to the nearest rank-4 matrix:

score = \ E 5

=5

where the s; are the 16 singular values resulting from the SVD

Then choose the tree with the lowest score.



The Singular Value Decomposition (SVD)

Decompose an initial matrix into 3 new ones,
such that multiplying the new matrices as shown
below returns the original matrix exactly

M =UZV'



f12,34 =

The Singular Value Decomposition (SVD)

0.093008
0.061355
0.061355

0.061355
0.046728
0.046728
0.061355

0.061355
0.046728
0.046728
0.061355

0068115 |

0.061355
0.061355

Check:

=UzV’

f12,34 =UzV'

-0.562539
-0.428427
-0.428427

| -0.562539

| 0068115

-0.562539
-0.428427 0
-0.428427 0
| -0.562539

0.093008
0.061355
0.061355
| 0.068115

[ 0.254578
0.024893

U«eo— __  Last two singular values

0 0+

0.093008 |

0.707107 0.428427 0
-0.562539
-0.562539
0.707107 0.428427 0

0.707107 0.428427

0
0

-0.562539
-0.562539

0.707107 0.428427

0.061355
0.046728
0.046728
0.061355

0
-0.707107
-0.707107

0

-0.707107
-0.707107

0.061355
0.046728
0.046728
0.061355

0068115 |

0.061355
0.061355

0.093008 |

are zero; rank =2

I 0254578

[ 0562539

-0.428427
-0.428427

| -0.562539

0.024893

0.707107 0.428427 0

0
0

-0.562539
-0.562539

0.707107 0.428427 0

0.707107
0.428427
0

0
-0.562539
-0.707107

-0.707107
-0.707107

I 20562539 -0428427 -0428427 -0.562539 |

0 0.707107
-0.562539  0.428427
-0.707107 0



When the flattening corresponds to a
tree that did not generate the data

AA AG GA GG

AA | a b b C

Flattening matrix  AG | b d d b
for1,2|3,4 GA | b d d b
GG | c b b a

AA AG GA GG

AA | a b b
Flattening matrix AG

for1,3(2,4
| GA

GG




When the flattening corresponds to a
tree that did not generate the data

AA AG GA GG

AA | a b b C

Flattening matrix  AG | b d d b
for1,2|3,4 GA b d d b
GG | c b b a

AA AG GA GG

AA | a b b d
Flattening matrix AG

for1,3(2,4
| GA

GG

C




When the flattening corresponds to a
tree that did not generate the data

Flattening matrix
for1,2|3,4

AA AG GA GG

AA
AG
GA
GG

A T T Q
G A a O
- a a O
Q O T n

AA AG GA GG

AA | a b b d
Flattening matrix AG

for13(2.4 b ¢ d b
or 1,312, GAl b d ¢ b
GGl d b b a

No redundant rows;
matrix is full rank (=4)



Demonstration that matrix is full rank:

f13,24 =

When the flattening corresponds to a
tree that did not generate the data

[ 0.093008

0.061355
0.061355

| 0.046728

=UzV’

-0.474101
-0.474101

[ 0.250629

0.061355
0.068115
0.046728
0.061355

[ 0524622 0707107

0
0

| -0.524622 -0.707107

0.046280

All singular values are nonzero;
matrix is full rank (= 4)

0.061355
0.046728
0.068115
0.061355

0

-0.707107
0.707107

0

0 021387

0.046728 |

0.061355
0.061355

0.093008 |

0.474101

-0.524622
0.524622 |’
0474101 |

0 003950

10.524622
0474101
0474101
| 0.524622

0.707107
0
0

-0.707107

0

-0.707107

0.707107
0

0474101 |

-0.524622
-0.524622

0474101 |




Calculation of SVD Scores (4-state data)
K XK DX

16
2
SCore = \) i 1 0.279686 0.278714 0.278716
N =5 2 0.218990 0.219191 0.219191
3 0.109020 0.110392 0.110389
= “Frobenius distance” to
, 4 0.056873 0.057090 0.057090
nearest rank 4 matrix
5 8.00E-05 0.006875 0.006886
6 6.14E-05 0.006315 0.006305
Simulation conditions: 7 4.93E-05 0.003286 0.003286
8 3.80E-05 0.003244 0.003246
. - . . . . . .
tree (((1.9.05,2.0.05).0.05,3.0.1).0.05,4.0.15) 9 3.06E.05 0002905 0002903
e 1,000,000 sites
e HKY model: k=4 1t=(0.1, 0.2, 0.3, 0.4) 10 3.09E-05 0.002499 0.002499
e all sites share same history (no incomplete 11 2.69E-05 0.001471 0.001472
Imea.ge sprtmg, horizontal transfer, gene 1o Y 0.001182 0.001181
duplication and loss, etc.)
13 1.30E-05 0.001009 0.001008
14 1.03E-05 0.000937 0.000937
15 6.19E-06 0.000382 0.000384
16 1.56E-06 0.000377 0.000375
score 0.000133 0.011353 0.011354




Handling >4 taxa

Compute invariant scores for all quartets, choosing the
best resolution for each one.

Search for a tree that minimizes the number of
inconsistent quartets (i.e., seek a solution to the
Maximum Quartet Consistency problem).

12134 ‘ y
12135 | e quartet
12145 | - qudr
relationships for
14135
5 taxa
23145




Handling >4 taxa

Compute invariant scores for all quartets, choosing the
best resolution for each one.

Search for a tree that minimizes the number of
inconsistent quartets (i.e., seek a solution to the
Maximum Quartet Consistency problem).

12134 3 4

1
s N
1435 2/ .
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Handling >4 taxa

Compute invariant scores for all quartets, choosing the
best resolution for each one.

Search for a tree that minimizes the number of
inconsistent quartets (i.e., seek a solution to the
Maximum Quartet Consistency problem).

12|34 3 .

1235 1
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Handling >4 taxa

Compute invariant scores for all quartets, choosing the
best resolution for each one.

Search for a tree that minimizes the number of
inconsistent quartets (i.e., seek a solution to the
Maximum Quartet Consistency problem).

12|34 3 .

12135 1
12|45 —> \ /
1435 S\

23145




Handling >4 taxa

Compute invariant scores for all quartets, choosing the
best resolution for each one.

Search for a tree that minimizes the number of
inconsistent quartets (i.e., seek a solution to the
Maximum Quartet Consistency problem).

12|34 3 A

1
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Handling >4 taxa

Compute invariant scores for all quartets, choosing the
best resolution for each one.

Search for a tree that minimizes the number of
inconsistent quartets (i.e., seek a solution to the
Maximum Quartet Consistency problem).

12|34 . 3 4
12|35 ‘ /

12|45
14]35 7\

23145




Handling >4 taxa

Compute invariant scores for all quartets, choosing the
best resolution for each one.

Search for a tree that minimizes the number of
inconsistent quartets (i.e., seek a solution to the
Maximum Quartet Consistency problem).

12134 3 4

1
) 2 g
1435 2/ \5

23145

4 consistent quartets, 1 inconsistent quartet




Handling >4 taxa

Compute invariant scores for all quartets, choosing the
best resolution for each one.

Search for a tree that minimizes the number of
inconsistent quartets (i.e., seek a solution to the
Maximum Quartet Consistency problem).

12|34 2 4

1
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Handling >4 taxa

Compute invariant scores for all quartets, choosing the
best resolution for each one.

Search for a tree that minimizes the number of
inconsistent quartets (i.e., seek a solution to the
Maximum Quartet Consistency problem).
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Handling >4 taxa

Compute invariant scores for all quartets, choosing the
best resolution for each one.

Search for a tree that minimizes the number of
inconsistent quartets (i.e., seek a solution to the
Maximum Quartet Consistency problem).

12|34 ) A

1
s — > L
1435 3/ \5

23145




Handling >4 taxa

Compute invariant scores for all quartets, choosing the
best resolution for each one.

Search for a tree that minimizes the number of
inconsistent quartets (i.e., seek a solution to the
Maximum Quartet Consistency problem).

12|34 ) A

1
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14|35 3/ ? \5

23145




Handling >4 taxa

Compute invariant scores for all quartets, choosing the
best resolution for each one.

Search for a tree that minimizes the number of
inconsistent quartets (i.e., seek a solution to the
Maximum Quartet Consistency problem).

12|34 ) A

1
N I
14]35 7\

23145




Handling >4 taxa

Compute invariant scores for all quartets, choosing the
best resolution for each one.

Search for a tree that minimizes the number of
inconsistent quartets (i.e., seek a solution to the
Maximum Quartet Consistency problem).

12|34 , 2 A
N I
14|35 3/ \5
23|45

2 consistent quartets, 3 inconsistent quartet

Now evaluate the remaining 13 trees and choose the one
that maximizes the number of consistent quartets



Handling >4 taxa

While evaluation of each possible tree might work well
for 5-tip trees, the number of possible trees for n tips
grows too quickly to make it a general strategy.

Must use a heuristic algorithm to search for the
best tree:
e The default in PAUP* is a heavily modified
version of “QFM” (Reaz et al., 2014)
e Other algorithms are available in PAUP* and
elsewhere
e Unfortunately, the MQC problem is NP-hard

(i.e., exact solution will be slow for large
numbers of tips)



Allman-Rhodes-Eriksson method (ErikSVD)

Work for extremely general models:

Does assume that all sites in the alignment are

independently and identically distributed according to a
general Markov model.

But:

e No assumption of stationarity/time-reversibility!

e No assumption of homogeneity over the tree!

Each branch may have its own transition matrix, or even
multiple transition matrices along the same branch.

Enables inferences about the tree topology to be made without having to
estimate the parameters of the underlying model(s).

A recent improvement by Jesus Fernandez-Sanches and Marta Casanellas
(Syst. Biol. 2016): Do an additional row and column normalization to reduce

the error associated with low counts for certain entries of the flattening
matrices (“Erik+2")



Ancestral polymorphism and species trees
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Ancestral polymorphism and species trees

A

OQOO0OO0 O000O0Q
QOO O000QQ

Gene tree matches species tree



Ancestral polymorphism and species trees
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Ancestral polymorphism and species trees
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Ancestral polymorphism and species trees
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Ancestral polymorphism and species trees
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Ancestral polymorphism and species trees
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Ancestral polymorphism and species trees
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Ancestral polymorphism and species trees
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Ancestral polymorphism and species trees
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Ancestral polymorphism and species trees
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Ancestral polymorphism and species trees
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Ancestral polymorphism and species trees

“Incomplete lineage
sorting” (ILS)

Gene tree conflicts with
species tree



The multispecies coalescent model

Independence between branches—coalescent events that occur
in one population are independent of what happens in other
oopulations within the phylogeny.

Panmixia—within a population, all pairs of lineages are equally
ikely to coalesce.

Divergence is instantaneous and complete—no gene flow
occurs after speciation

ILS only—no other evolutionary processes (e.g., horizontal
transfer, duplication and loss, . . .) have led to incongruence
between gene trees and the species tree.

No recombination within genes; free recombination between
genes




Some species tree methods that assume
the multispecies coalescent process

» Full data methods
e Fully Bayesian (integrate over gene trees within species trees, estimate posterior
distribution of population sizes, branch lengths, and other model parameters in
addition to the species tree)

BEST (Liu and Pearl, 2007; Liu, 2008)
*BEAST (Heled and Drummond, 2010)
SNAPP (Bryant et al., 2012)
BPP (Yang and Rannala, 2010)

e SVDQuartets (Chifman and Kubatko, 2014, 2015)

» Summary methods (start with estimated gene trees)

e Methods that use branch lengths:
STEM (Kubatko et al., 2009)
STEAC (Liu et al. 2009)

e Methods that only use topology information
STAR (Liu et al. 2009)
Minimize deep coalescences ((PhyloNet; Than & Nakhleh 2009)
MP-EST (Liu et al. 2010)
ST-ABC (Fan and Kubatko 2011)
STELLS (Wu 2011)
ASTRAL (Mirarab et al., 2014; Mirarab and Warnow, 2015)
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https://www.asc.ohio-state.edu/kubatko.2/SpeciesTreeEstimation2017.pdf
https://www.asc.ohio-state.edu/kubatko.2/SpeciesTreeEstimation2017.pdf

Handling incomplete lineage sorting
Chifman and Kubatko (2014, 2015)

When times between species divergences are short (or when
population sizes are large), the history of individual genes may be
discordant from the species tree topology in several (or many) ways:

/&X /A&

Gene tree is ( Gene tree is ( BC)
Gene tree is (C(AB Gene tree is ( AC)

SVDQuartets: Expected rank of flattening matrix is 10 for the true
species tree and 16 for the other two trees, under
GTR+1+G or any of its submodels!



SVDQuartets

Does not need to assume a molecular clock
or constant population size

(Long and Kubatko https://arxiv.org/abs/1701.06871)

3X increase in mutation rate)

015 0.1 0-006 ‘

. . — 12|34
. — 13|24
M A 0.005 | —x 14|23 |

l ':Sf 0.004 |
C o Flattening for true
D & split still has rank 10
£ 0.003
0=0.1 E 0.002
100 sites/locus &
10,000,000 loci 0.001
(1,000,000,000 sites) \

0.000 1 x e T .

4 6 8 10 12 14
Rank (r)


https://arxiv.org/abs/1701.06871
https://arxiv.org/abs/1701.06871

SVDQuartets

But more data may be needed to achieve the same level of
accuracy (the price of generality)

3X increase in mutation rate)

0.15 0.1

C 4
D g e—e astral P
::,; v—v svdq_ P
& =& ML-concat P
0=0.1
100 sites/locus
10,000,000 loci 0.2}
(1,000,000,000 sites)
TE 10° 10

Number of loci



SVDQuartets

Can also handle migration between pairs of sister lineages
(IM model)

Long and Kubatko 2017 https://arxiv.org/abs/1710.03806

T3 = 10.0



https://arxiv.org/abs/1710.03806
https://arxiv.org/abs/1710.03806

SVDQuartets

Chifman and Kubatko (2014, 2015)

A disadvantage.:

e No estimates of node ages (branch lengths) or theta parameter
e But we're working on that...

» Can calculate (analytically) 2 Plisisis 520 = D /pcf(mzms)l(ct)
. X € [K] (Gt)eg4(Gt)|(G5t )€ Gs
expected site pattern <f((Gs,t:)| (S5, 74)) dt,
probabilities as a function of _ GZ G GZ /t/t*pa(ilizms)'(at)
. ,t € Uy ,t 5,t* € Us
the species tree, node age, OGO e
and theta parameters by <bel;[\3f’°"(t)>f” (t,t%) de™dt
integrating over th
teg atl go e t e /pa(111214l5)|(Gt) H be(t)
coalescent times and (G egst
summing over all labeled x< /fp t, t*)dt)dt
(Gt)l(Gst )€ s

histories (Chifman and

Kubatko, 2015) = 2 / Potirizisin G0 (G, D (S, 7)) dt

(Gt e gyt

= p11121415 | (S,7)"

» Perform a ML optimization of node ages and theta, maximizing fit of observed
to expected pattern frequencies under a multinomial model

» Recently, we have derived equations for computing the first and second order
derivatives for node ages and theta, allowing estimation of sampling variance
via the Fisher Information Matrix.



SVDQuartets

1,000 loci
sites/locus=50
theta=0.1

estimated © = 0.101 (0.0044)

Chifman and Kubatko (2014, 2015)
A
X
B
C
Y
D
Estimated
Age

0.5 0.5206 0.0623

1.0 0.9714 0.0822

|.5 1.4980 0.1024

(need to test bigger trees)



Gorilla  Chimp -

: Chimp Gorilla Gorilla Chimp
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p1 = 30% p2 =30%

Orang. Chimp Gorilla Chimp

—

Human Gorilla Human Orang.

Dominant

—

ASTRAL

For 4 species, the dominant quartet
topology is the species tree [Aliman, et al. 2010]

For >4 species, the dominant topology

may be different from the species tree
[Degnan and Rosenberg, 2006]

Human Orang.
Orang.  Chimp -
Human Gorilla -

pP3 = 40%

Chimp Gorilla

—

Human Orang.

http://tandy.cs.illinois.edu/siavash-astral2-ISMB.pdf

1. Break up input each gene tree into (Z)
trees on 4 taxa (quartet trees)

2. Find all @ dominant quartet
topologies

3. Combine dominant quartet trees


http://tandy.cs.illinois.edu/siavash-astral2-ISMB.pdf
http://tandy.cs.illinois.edu/siavash-astral2-ISMB.pdf

ASTRAL with >4 species

Find the species tree with the maximum number of induced
quartet trees shared with a collection of gene trees

Three example gene trees and their induced quartets:

(trees are considered to be unrooted)

Number of loci
with this tree

(human,chimp),(gorilla,orang)
(human,chimp),(gorilla,gibbon)
(human,chimp),(orang,gibbon)
(human,gorilla),(orang,gibbon)
(chimp,gorilla),(orang,gibbon)

(chimp,gorilla),(human,orang)
(human,gibbon),(chimp,gorilla)
(human,chimp),(orang,gibbon)
(human,gorilla),(orang,gibbon)
(chimp,gorilla),(orang,gibbon)

1

(human,orang),(chimp,gorilla)
(human,chimp),(gorilla,gibbon)
(human,orang),(chimp,gibbon)
(human,orang),(gorilla,gibbon)
(chimp,orang),(gorilla,gibbon)



ASTRAL with >4 species

Compute the total number of times each resolved
guartet was found over all input gene trees

Resolved quartet

Induced by tree(s)

Weight

(human,chimp),(gorilla,orang)
(human,chimp),(gorilla,gibbon)
(human,chimp),(orang,gibbon)
(human,gorilla),(orang,gibbon)
(chimp,gorilla),(orang,gibbon)
(chimp,gorilla),(human,orang)
(human,gibbon),(chimp,gorilla)
(human,orang),(chimp,gorilla)
(human,orang),(chimp,gibbon)
(human,orang),(gorilla,gibbon)
(chimp,orang),(gorilla,gibbon)

I
1,3
1,2
1,2
1,2
2

2
3
3
3
3




ASTRAL with >4 species

Find the species tree that maximizes the number of
consistent quartets (a /a SVDQuartets)

For each species tree evaluated, we sum the weights of all satisfied quartets

,
0/7;7:;9/7 C./)Z:?Q/;
0 0
‘Zof/'//a score=10+11+15+15+15=66 ‘gf’/'//e score=1+5+15+15+15=51
9:'2/79 (best tree) Q/Z’{q
60 %o,
" N
/7(/ /7(/
& &
90,77 Ory. 7
0/7/:///6 0/76./79
e score=0+0+15+15+15=45 e score=1+1+1+5+15=23
Or- gO/-
Ny &/
9’%00 9/%0/7

Could also evaluate 11 more species trees (have to search over all unrooted
species trees, including trees that never appeared as a gene tree)



ASTRAL

Where do the gene trees come from?

That’s your problem! Typically, people run RAXML or IQ-TREE to
estimate gene trees. ASTRAL is a very fast method once you have the
gene trees, but the gene-tree estimation typically dominates the total
run time.

ASTRAL makes a consistent estimate of the species tree, as long as the
input gene trees themselves are estimated using a consistent method.
If the gene trees estimates are biased, there is no guarantee of
consistency.

Astral provides exact and heuristic algorithms for the MQC tree search.
The exact method will be too slow if there are very many tips.

Download at: https://github.com/smirarab/ASTRAL



https://github.com/smirarab/ASTRAL
https://github.com/smirarab/ASTRAL

Selected References

Alliman E.S., Rhodes J.A. 2003. Phylogenetic invariants for the general Markov model of sequence mutation. Math Biosci.
186:113—144.

Allman E.S., Rhodes J.A. 2004. Quartets and parameter recovery for the general Markov model of sequence mutation. Appl Math
Res Express. 2004:107—-131.

Bryant D., Bouckaert R., Felsenstein J., Rosenberg N.A., RoyChoudhury A. 2012. Inferring Species Trees Directly from Biallelic
Genetic Markers: Bypassing Gene Trees in a Full Coalescent Analysis. MBE. 29:1917-1932.

Chifman J., Kubatko L.S. 2014. Quartet inference from SNP data under the coalescent model. 30:3317-3324.

Chifman J., Kubatko L.S. 2015. Identifiability of the unrooted species tree topology under the coalescent model with time-reversible
substitution processes, site-specific rate variation, and invariable sites. J Theor Biol. 374:35—47.

Eriksson N. 2005. Tree Construction using Singular Value Decomposition. In: Pachter L., Sturmfels B., editors. Algebraic Statistics
for Computational Biology. Cambridge University Press. p. 347-358.

Fernandez-Sanchez J., Casanellas M. 2016. Invariant versus classical quartet inference when evolution is heterogeneous across
sites and lineages. Syst Biol. 65:280—291.

Heled J., Drummond A.J. 2010. Bayesian inference of species trees from multilocus data. MBE. 27:570-580.
Liu L. 2008. BEST: Bayesian estimation of species trees under the coalescent model. Bioinformatics. 24:2542—-2543.

Liu L., Pearl D.K. 2007. Species trees from gene trees: reconstructing Bayesian posterior distributions of a species phylogeny
using estimated gene tree distributions. Syst Biol. 56:504-514.

Mirarab S., Reaz R., Bayzid M.S., Zimmermann T., Swenson M.S., Warnow T.J. 2014. ASTRAL: genome-scale coalescent-based
species tree estimation. 30:i1541-8

Mirarab S., Warnow T.J. 2015. ASTRAL-II: coalescent-based species tree estimation with many hundreds of taxa and thousands of
genes. 31:i44-52.

Yang Z., Rannala B. 2010. Bayesian species delimitation using multilocus sequence data. PNAS. 107:9264—-9269.

Zhang C., Sayyari E., Mirarab S. 2017. ASTRAL-III: Increased Scalability and Impacts of Contracting Low Support Branches. In:
Meidanis J., Nakhleh L. (eds) Comparative Genomics. RECOMB-CG 2017. Lecture Notes in Computer Science, vol 10562.
Springer.



