ETE3 Tutorial

http://etetoolkit.org/

B .sﬂ.ﬂ&.ﬂu&.&.ﬂﬁ.__

\n/., / — C !@..WWW.WW&W#E
) _epaazaaaahn
-*3aaaaaaaho

Marina Marcet-Houben

mmarcet@crg.es

How to install ete3

Linux + MAC OS X

Using Conda (no sudo required) MNative

2. Run the following line to activate Anaconda before using E

Tip: you can add the line to your . bashrc to make it permanent

Conda rules!!!

ETE Toolkit

Docs » The ETE tutorial View page source

The ETE tutorial

= The ETE tutorial Contents:

Working With Tree Data Structures
* Working With Tree Data Structures

The Programmable Tree Drawing
© Trees

Engine

=]

Reading and Writing Newick Trees
® Reading newick trees

Phylogenetic Trees

Clustering Trees ® Writing newick trees

Phylogenetic XML standards 2 Understanding ETE Trees
Interactive web tree visualization © Basictree attributes
, i , ® Root node onunrooted trees?
Testing Evolutionary Hypothesis . .
© Browsing trees (traversing)

Dealing with the NCBI Taxonomy

® Getting Leaves, Descendants and Node's Relatives
database

® Traversing (browsing) trees

SCRIPTS: orthoXML

® Advanced traversing (stopping criteria)
® |terating instead of Getting
® Finding nodes by their attributes

| will go through the most normal commands (i.e. the ones | usually
use), but to cover the whole list it's better to refer to the tutorial.

Some terms so that everyone is on the same page

- Up in the tree

—Ii

l

R Leaves

|

Q
— o
N
Root M
N\ FE:L
_ I K
J
|
Nodes H
%:\‘F G

Commc}n ancestor of Hand G

» Down in the tree

Some terms so that everyone is on the same page

o
- / ‘R
Parent y + Sisters

Children

We are going to use a lot of randomly generated trees for the examples,
so don’t be worried if your results don’t exactly match the ones found in
these slides!

Before starting to use ETE, whether in an interactive terminal or in a script,
you need to import it:

Import ete3

If you only need some parts of ete3 you could also import the specific part
such as:

from ete3 import Tree

The difference is that in the first case you’'ll have to always start any
command involving ete3 with ete3. Whereas in the second case you would

directly write Tree.
ete3.Tree(“((A,B),C);")

Tree(“((A,B),C);”

Notice that upper and lower cases are essential!!

First things first: What is a tree in ETE and which basic
characteristics do trees have.

It does not need to be a phylogenetic tree, any hierarchical tree-like structure could in

theory be used as long as it's in newick format.
So, in ETE, trees are just a bunch of interconnected nodes that form a hierarchical

structure.

Tree type ete3.Tree() ete3.PhyloTree()
Leaf names Yes Yes
IE(; rnagntﬁz Yes Yes
Support Yes Yes
Species No Yes

information

How do | load trees in ETE

1.- Input a newick as a string:

ete3d.Tree("((A,B),C):")

2.- Obtain a newick from a file (most common):

t = ete3.Tree("example_tree_1.txt")

3.- Create a random tree: it has options to modify the size of the tree, the leaf
names, branch lengths and branch supports.

t = ete3.Tree()

t.populate(10)

t.populate(20,["A","B","C","D","E" ,"F","G" ,"H" ,"1I","]1"],random_branches=True,reuse names=True)

How do | print trees in ETE
Load the example tree first:

eteld.Tree("example tree 1.txt")

1.- Print on screen

Notice that it only prints
topology.

Writting only t will get you this: Tree node '' (@x7falbb9764d)

2.- Write into a file:

t.write(outfile="example_tree_1.printed.txt")

FORMAT DESCRIPTION

0 flexible with support values

1 flexible with internal node names

2 all branches + leaf names + internal supports
3 all branches + all names

= leaf branches + leaf names

5 internal and leaf branches + leaf names
b internal branches + leaf names

7 leaf branches + all names

8 all names

9 leaf names

100 topology only

SAMPLE

((D:0.723274,F:0.567784)1.000000:0.067192,(B:0.279326,H:0.756049)1.000000:0.807788);

((D:0.723274 F:0.567784)E:0.067192,(B:0.279326 H:0.756049)B:0.807788);

((D:0.723274,F:0.567784)1.000000:0.067192,(B:0.279326,H:0.756049)1.000000:0.807788);

((D:0.723274,F.0.567784)E:0.067192,(B:0.279326,H:0.756049)B:0.807788);

((D:0.723274 F:0.567784),(B:0.279326,H:0.756049));

((D:0.723274 F:0.567784):0.067192,(B:0.279326,H:0.756049):0.807788);

((D,F):0.067192,(B,H):0.807788);

((D:0.723274,F.0.567784)E,(B:0.279326,H:0.756049)B);

((D,FIE(B,H)B);

((D,F).(BH));

(WMWK

t.write(outfile="example_tree_1.printed9.txt",format=9)

You can also use the write format to print the tree on screen

15 t.write(format=9)
"((I,H),((c,(F,(E,D))),((C,(B,A)),])));"

16 t.write(format=1)

'((I:0.923216,H:0.342116):0.0423769,((G:0.692463,(F:0.879506, (
,D:0.848668):0.403444):0.769384):0.382905,((C:0.348613,(B:0.826942,A:
592955):0.759188,7:0.397484):0.628313):0.719488); "

3.- Get newick from the graphical interface

E ol | {5l NW

@@ Dialog

Newick formz [0 - ((1:0.923216,H:0.342116)0.286342
:0.0423769,((G:0.692463,
Node's attribute (NHX Form: (F:0.879506,
(E:0.797463,D:0.848668)0.179164
Add Del :0.403444)0.407932:0.769384)0.5

50994:0.382905,((C:0.348613,

(B:0.826942,A:0.24771)0.554889:

0.592955)0.14276:0.759188,J:0.3

97484)0.714295:0.628313)0.1697
[54:0.719488);

H
G
F
E
D
—C
1 l_~—-B Include all attributes in node
A

0.98

Node attributes

All nodes in a tree structure have space for three attributes although they may
be 0 depending on the tree. We can access them simply by:

.dist
.6

.support

.0

Additional attributes can be added to a node, but we will explore this option
later on.

How to move through the tree structure

When you load a tree you will be always placed at the root of the tree. You can
check that by typing:

t.is root()

True

To go one node down in the tree structure, you need to 23
call the children.

children = t.get children()

For a rooted tree and for any other bifurcating nodes,
there will be two children.

print children[®]

/-1
-~
\-H

24]: print children[1]

22 len(children)
.

You could now assign each child to a variable and search for their own
children (grandchildren).

25]: ch1l,ch2 = children

26 : grandchildren1l = chi.get _children()

271: grandchildren2 = ch2.get_children()

30]: print grandchildren1[0] print grandchildren2[0]

print grandchildreni[1]

/-E
\-1
\-D

print grandchildren2[1]

The grandchildrenl are now leaves, if we
try to go farther down the tree it will return
an empty list. To see whether one of the
nodes is a leaf you can use:

35 grandchildren1[1].1is leaf()

True

We can also get a leaf by its name

leaf = t.get leaves by name("A")[0]

To move up in the tree hierarchy we can simply:

40 parent = leaf.up

41 print parent

44 sister = leaf.get sisters()[0]

45 print sister

With these tree you can go to any place in the tree that you want, but it
may not be very efficient if you want to cover the whole tree structure.

Finally we can search nodes that are the common ancestor of a set of leaves:

anc = t.get _common_ancestor("A","B","I")

Original tree

WARNING: Getting the common ancestor of a single leaf will return the
whole tree!!

Iter through the tree

The traverse function will allow you to go through each one of the tree
nodes in a given order.

3 num = 1

4 for node in t.traverse():
if node.is leaf():
print num,node.name
num += 1

DoOmMmMaMuO I A

1
2
3
4
5
6
7
8
9
1

@
=

10 for node in t.traverse(strategy="postorder"):
if node.is leaf():
print num,node.name

1
1
1
1
1
1
1
1
1
1

b PEmOoOD9DMmMmTe I A

Iter through the leaves

If you only want to go through each leave, you can use these two options:

for leaf in t.iter leaves():

print leaf

You can also go through the leaf names:

for leaf in t.iter_leaf _names():

print leaf

The first returns a node whereas the second returns only a string with
the name.

The same options can be used with “get” in which case they will
return a list: t.get_leaves(), t.get_leaf_names|()

Check whether a set of leaves are monophyletic

results = t.check monophyly(["A","B","I"],"name")

This function outputs:

1.- Whether the leaf names provided form a monophyletic
clade (values True / False)

2.- Which relationship they have (monophyletic or
polyphyletic)

3.- The set of leaf names that break the monophyly.

Add features to nodes

Additional information can be added to nodes by adding features. Imagine
that in our example tree, we want to annotate whether the leaf is a vowel:

ete3.Tree("example _tree 1.txt")

for leaf in t.iter leaves():

if leaf.name == "A" or leaf.name == "I":
leaf.add feature("vowel"”,True)

else:

leaf.add feature("vowel",False)

We can access this new feature in the same way we access the normal
attributes.

60 leaf.name
III

61 leaf.vowel
True

Once created an attribute can also be modified:

62 leaf.vowel = "Something Else”

63 leaf.vowel
'Something Else’

You can also create multiple features at the same time

leaf.add features(featurel=0,featurez=[])

To know which features are assigned to your node, you can simply:

66 leaf.features

{'dist', 'featurel',6 'feature2', 'name', 'support’

Tree comparison

ETE3 can be used to compare the topologies of two trees. It implements different
measures of distance such as the Robinson Foulds distance.

Lets first get two trees:

ete3.Tree("example tree 1.txt")

ete3d.Tree()

tz,pljpl_l-l_at[i‘{ 1@, ["A" . FIBFI , flcfl . "D” , Ll E" I'HFFI , fIGFI I'HHFI , Ll I" I'H.]fl] , randt}m_hranChESzTrUE)

Now lets run the RF distance and print the results:

12 results = tl.robinson foulds(t2)

13 for r in results:
print r

The output of the command gives you:
The RF distance

The maximum RF distance
The list of common leaves
The partitions found in t1 not found in t2
The partitions found in t2 not found in t1
Discarded partitions in t1
Discarded partitions in t2

In this case there was a RF = 12, which means there were 12
partitions not shared between the two trees.

—-:I(-; e

E
D
— C
—?B
— A
J
.

For trees with duplications you can try out the t.compare option. It will first
divide the tree in all possible orthologous trees and then compare them all
against all.

Distances between branches in a tree.

Distances can be calculated based on branch lengths or on the number of
nodes in the tree that you need to traverse to go from one node to another

one.
0.699,
r SLUIF N [N 0.568)
t.get distance("A", H
4.210401892450086 0.775,¢
0.194, 0.143 5
0.801
0.988,
0.486 A
1 0.883, |
et distance("A","F",topology only=True)
| 0.56 0'842=G

istance("A") 0'58F
36695678423 0.622

0.736,
When only one leaf name is provided, it will calculate the distance from the leaf to the
root.

Modifying tree topologies

You could create a tree from scratch if you wanted to with the options
add_child or add_sister.

t = ete3.Tree()

chl = t.add child(name="A",dist=0.9,support=70)

ch2 = t.add child(name="B",dist=0.5,support=80)

ch3 = ch2.add child(name="C",dist=0.3,support=10)

ch4 = ch2.add child(name="D",dist=0.8,support=90)

— ﬂ-ﬂ)

You can do exactly the same from the graphical interface by right
clicking on any node and using the add_children option.

With the same command you could also insert a populated node inside
another one.

t3 = ete3d.Tree()

t3‘p:]pu'l-atE{ 5} [H 1" . "2" . H3H . PI4FI . Ll 5"]}

ch5 = ch4.add child(t3)

[]
llm
AN

We can also remove nodes or partitions. There’s two ways of doing this:
- Detach: you separate one subtree from the tree structure.
- Delete: you just remove the nodes but it will not affect its descendants (very

usefull when you want to collapse nodes with less than 50% bootstrap support).

anc = t.get_common_ancestor("2","4")

subtree = anc.detach()

ol
Detached subtree: # + 3

Remaining tree: + C
- » -5

We have at least one node in the tree that only has one child, we probably want
to remove this node but we don’t want to delete its descendants:

for node in t.traverse():
if not node.is leaf():

if len(node.get children()) == 1:
node.delete()

| 5

Note that the branch lengths of the deleted nodes are also
deleted! If you want to keep them you will have to compute the
total length and then modify the branch length of leaf 5.

Prune trees

Given a tree, you may want to keep only certain leaves.

Lets start again from a random tree:

ete3.Tree()

t*pI)pU]_atE'{ 1@, [”Fl.” , "B" , "E" , HDH , Ll EH , Ll FH , "G" , HHH , Ll IH , Ll] Ll] , randl}m_branchES:TrUE‘)

Now we will prune the tree so that we only keep leaves A,D and F.

t.,prunE'l::["]Eﬁ","D","F"])

Note again that branch lengths are

rB
W J ‘A affected by this!
I
H

PhyloTree

Until now we have worked with tree structures that could come from any given data.
There is a special class in ETE that was developed to work specifically with
phylogenetic trees. By default, a PhyloTree incorporates information about the
species related to the leaf.

To load a PhyloTree:

t = ete3.PhyloTree("example tree 2.txt")

sped_J By default, ETE3 will

sped | assume that the first

spe1 H three letters of the leaf
pe5 G name show the species

¢ sped F name. So for this
;spe2_E - example:
’ spe2 D
pe3_C 3 t.get species()
SpE1_B {'spe'}

spel A

To make sure the species name is loaded correctly you need to:

1.- Make sure all the leave names in your tree have the same format and that a
part of it is the species tag.

2.- Create a function that will cut the leaf name and only return the species tag

4 def get species name(node):

return node.split(" ")[0]

3.- Load the tree again with the newly created function

ete3.PhyloTree("example tree 2.txt",sp _naming function=get species name)

t.get_species()
{'spel’', 'spe2', 'spe3', 'sped4', 'spes'}

Rooting phylogenetic trees

To properly interpret a phylogenetic trees, an usual requirement is that they are
rooted. When working with one single tree, this can easily be done manually

through the virtual interface. But to apply it on a large set of trees, we need
automatic methods.

1.- How to know if a tree is rooted or unrooted: in ETE unrooted trees are
represented with a trifurcation at the tree base, so you can know if a tree is
rooted or unrooted just by counting the number of children

len(t.get children())

£

Even when a tree is rooted like this one, you may want to make sure the root is
placed correctly because some programs return a rooted tree without knowing
anything about where the root should really be placed.

_ _ sped _J
To root the tree, the first thing you P ssped |
have to do is to choose the rooting spel1 H
place. pe5 G €+

‘ sped F
spe2 E
spe2 D

Root tree at a given leaf or node:

root _point = t.get leaves by name("spe5 G")[0]

t.set outgroup(root point)

Root at midpoint: this is an automatic method that will search for the two most distant
branches and place the root at the middle.

14 root point = t.get _midpoint outgroup()

15 t.set outgroup(root point)

44:‘8[384_F
pe2 E

— sspe2 D
spe3 C
o spel B
spel A
r-spe4_J
sped |
pel H

sped G

Root by a preferred list of species.

ETES3 allows you to define a python dictionary with a preferred order of
species:

, spe5":3}

The higher the number the more chance that the tree will be rooted there. So
you should usually use 1 for your species of interest, and the highest
numbers for your outgroups. More than one species can have the same
number if you think that either option can serve as outgroup.

root_point = t.get farthest oldest leaf(preference_dictionary)

t.set outgroup(root point) —-spe4_F
o —espe2 E
pe2 D
o spe3 C
pel B
S spel1 A
spe4d J
o L-spedr_l

Epe‘l_H
sped G

Detect evolutionary scenarios

Species overlap algorithm:

events = t.get descendant evol events()

You can then iter through the events and obtain information about each
event:

print events[4].node
/-sped]
\-sped I
/-spel H

\-spe5 G

print events[4].etype

You can also obtain the evolutionary events for a single lineage (path from a
species of interest to the root)

t.get leaves by name("sped I1I")[0]

events = seed.get my evol events()

Delete species specific duplications

To build a concatenated tree the chosen genes need to be in single copy in
each of the species. In some cases, that may be complicated (i.e. we have a
hybrid). One way to increase the gene sampling is to check out the gene trees
and delete species specific duplications and select one of the copies at
random. ETE3 implements a function that can do that:

ete3d.PhyloTree("example tree 2.txt",sp naming function=get species name)

collaps_tree = t.collapse_ lineage specific_expansions()

sped J

1 H
sped | Spel_
spe1 H HT.‘_.—‘SpES_G
pe5 G sped J

{Ispe4_F {'SD(%-_F
spe2_E spe2_E

spe2_D sspe2 D
o3 C R
spe1 B | | spe1 B

spel A

Tree visualization

How to visualize a tree and print it to a file:

eted.Tree("example tree 1.txt")

t.show()

This command will simply open the visual interface. From the interface you
can print the image into a PDF file by pressing on the PDF icon.

You can print the image in different formats by using the render function:
t.render("image.png")

t.render("image.svg")

t.render("image.pdf")

Just by changing the extension of the output file, you tell ETE in
which format you want to print your image.

Tree style

To change the visualization format of a tree, you first need to create a tree style,
that will be applied to the tree:

ts = ete3.TreeStyle()

The tree style controls the main visualization features of the tree.

ts.show branch length=True We can for instance ask for
the branch lengths and

ts.show_branch_support=True supports to be shown and

ts.show leaf name=False tell the tree not to show the
tree names.

To apply the style you just created, you need to use a tree_style=ts either in .show()
or in .render()

0.842
0.574
0.357__0.837

0.0408,

t.show(tree style=ts)

0.754

44 19
0.132)0.0355,

0668

0.61 1.295,

Tree style

Other things the tree style can control:

Example

Is.arc_span = 180

P |y [+

ts.title.add face(ete3.TextFace("Example",fsize=20),column=0)

Node faces

Faces can be used to add additional information to the trees. Their position in relation
to the tree can be found in this graph:

laligned cold rowl gligned coll rowl
Bligned colo rowd aligned coll rowo)

[Fight_colo_rowd
ST L) — Iright coll rowl]
bottom_cel0_rowd [rght_colo_rewl]
Iright coll row2| Bligned_col0_rowl Bligned coll_rowl|
lbottorm_col0_row ——®fight colo_rowd
Bligned cold rowd gligned coll rowd|

Iright coll rowol

To add faces to a tree, you first need to create a Face object and then you need to
add it to one or several nodes in the tree (can be internal nodes or leaves).

Here are the main kinds of faces (this assumes you have exported the
Faces module from ete3: from ete3 export Faces):

N = AttrFace("name", fsize=30)

(faces. 2899 (" "Drawing your own Qt Faces", fsize=15)

chimpFace = faces.ImgFace(img path+"chimp.png")
C = CircleFace(radius=node.weight, color="RoyalBlue", style="sphere")

seqFace = SeqMotifFace(seq, gapcolor="red")

Each face has a set of parameters that can be modified to adapt the image to
what you would like to draw.

class | TexXtFace (text, ftype="Verdana', fsize=10, fgcolor="black’, penwidth=0, fstyle='normal’,
tight text=False, bold=False)

Static text Face object

Parameters: e text - Textto be drawn
e ftype - Font type, e.g. Arial, Verdana, Courier
e fsize - Fontsize,e.g. 10,12,6, (default=10)

e fgcolor - Foreground font color. RGB code or color namein SvG_COLORS

e penwidth - Penwdith used to draw the text.
e fstyle - “normal” or “italic”

class ImgFace(img_ file, width=None, height=None, is_url=False)

Creates a node Face using an external image file.

Parameters: e img_file - path to the image file.
e width (None) - if provided, image will be scaled to this width (in pixels)
e height (None) - if provided, image will be scaled to this height (in pixels)
e is_url (False) - if True, img_file is considered a URL and the image is automatically

downloaded

Node faces: how to place them

Once you have created a face, you will have to add it to the tree. To do
that you first need to select a node where the face needs to be placed.
And then decide where you will want to place it.

gligned_colo_rowl] aligned_coll_rowl]
gligned_col0_rowd| aligned_coll_rowd|

op col0 rowd

tlght coll row0

[ight_colo_rowd
- s tlght coll rowl
lbottom colo mwg Inght cold rnw;l

tlght coll rowz

TR HHI) —————@ffight colo_rowg -
Bligned col0 rowd aligned coll row0|

gligned_col0_row1| aligned_col1_rowl)

Here is how we would place a node in the first column and asked it to be aligned
faces.add face to node(descFace, node, column=0, aligned=lrue)

Another way to add a face to the tree, in this case it will be placed above and
below a branch.

t.add face(hola, column=0, position = "branch-top")
t.add face(mundo, column=1, position = "branch-bottom")

Layouts
The layouts are functions that allow you to make modifications on each node before

they have been drawn. These functions accept as input a given node and allow you
to decide what to do with that node.

Example layout:

def mapped_data_layout(node):
if "loss" in node.features:
F = ete3.AttrFace("loss",fgcolor="red")
ete3.add_face_to_node(F,node,column=0,position="branch-top")
if "gain" in node.features:
F = ete3.AttrFace("gain",fgcolor="green")
ete3.add_face_to_node(F,node,column=0,position="branch-top")

if "nodeName" 1n node.features and not node.is_leaf():
F = ete3.AttrFace("nodeName")
ete3.add_face_to_node(F,node,column=0,position="branch-bottom")
if node.is_leaf():
N = ete3.AttrFace("name"
ete3.add _face_to_node(N,node,column=0)

This layout prints the number of gained genes in a lineage on top of a branch
In green, the loss of genes in a lineage also on top of the branch but in red,
the internal node on the bottom of the branch, and finally the node name.

1876

N14 | O

Another example:

1.- Delete all node with support < 50 (create polytomies)

2.- Create several node styles, each slightly different in terms of colour and thickness,
so that it can be assigned to branches with different supports.

nstyle90S = ete3.NodeStyle()
nstyleQGS[”size”] =0
nstyle90S["vt line width"]
nstyle90S["hz line width"]

nstyle90S["vt_line_type"] O # 0 solid, 1 dashed, 2 dotted
nstyle90S["hz_line_type"] 0

nstyle90S["vt_line_color"] "#0000aa"
nstyle90S["hz_line_color"] "#0000aa"

def bootstrap_layout(node):
node.img_style["size"] = 0
if node.support >= 90.0:
if node.evoltype == "S": The layout will be
node.set_style(nstyle90S) the one in charge to
elif node.evoltype == "D": assign the different
node.set style(nstylegﬁlD) node styles to each
elif node.support >= 75.0: node according to

if node.evoltype == "S":
node.set style(nstyle755) the support and the
evolutionary

elif node.evoltype == "D":
node.set _style(nstyle75D) support.
elif node.support >= 50.0:
if node.evoltype == "S":
node.set _style(nstyle50S)
elif node.evoltype == "D":
node.set_style(nstyle50D)

SCHCO_6_02571
FISHE_100_02151
PANBI_167_05058
MYCCH_10574
MYCCI_3432_0905(
OMPOL_73_01104
EOGA_63 04364
NEONA_2938 09445
GUYNE_68 07549
ARMME_677 02384
ARMFU_ 6797 12269
ARMGA_115_10240
ARMOS 132_15708
MYCCH_11409
PANBI_36_ 01981
PANNB_186_02452
HYMRA_809 17874
UDMU_324_11174

ARMOS 86_06197
ARMGA_185 23119
ARMME_1540_ 05598
GUYNE_101_13321
ARMGA_148_18565
ARMOS_89 09163
ARMME 3397 11298
RMFU_1949 03411
ARMFU_2673_04684
RMGA_90_ 05875
ARMOS_138_18003

Once the layout has been created, it needs to be assigned to the
TreeStyle so that it will be used when drawing the tree. This is as simple
as:

ts = ete3.TreeStyle()
ts.layout fn = bootstrap_ layout i
ts.show branch_support = True

Some tips:

1.- In some cases, if you want to change the leaf names in the layout,
you will have to ask the TreeStyle to omit showing leaf names. This is
because they are included as a new face by the layout.

2.- If, after assigning your layout to the TreeStyle, you change
something on the function, you will have to re-assign it again, else it
will not detect those modifications.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51

