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OUTLINE

Why study microbes*? 

How do you study microbes?

Directions for microbial ecology

Opinions and research
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* microbes = microscopic organisms; today's focus = bacteria/archaea
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WHY STUDY MICROBES?

Microbial:host cells

Microbial:host genes

Impact ecosystem/host health and function

Host associated: nutrient absorption, immune system, healing...

Environmental: biogeochemical cycling, origins of life...

Highly localized communities; gene/organism transfer
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FUN FACTS
Hard to culture most microbes

Microbes can be categorised into groups

Strains; taxa; x% similarity on some/all genes

Every group has some concentration in every environment

possibly zero

Every individual microbe has many genes

Microbes of the same strain may not have the same genes  7

that make studying 
the microbiome hard



MICROBIAL QUESTIONS

What strains are present?

What genes are present?

What microbes have what genes?

How many microbes are there?

How many different microbes are there?
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MICROBIAL POPULATIONS

Group exercise: (2 minutes) 

Come up with a microbiome-related question that you might 
want to answer 

Preferably one related to your area of interest 

 9



HOW DO YOU STUDY 
MICROBES?

It depends!
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TECHNOLOGY

The technology/technologies that you will use is driven by

The scientific question/questions that you have

Cost constraints

Resource constraints

Literature review, opinion of funding agencies, current trends...
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TECHNOLOGY

The technology/technologies that you will use is driven by

The scientific question/questions that you have

Cost constraints

Resource constraints

Literature review, opinion of funding agencies, current trends...
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NEED TO KNOW 
TECHNOLOGIES

Amplicon profiling

Whole genome profiling

Concentration profiling

Many others...
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AMPLICON PROFILING

Amplify (PCR) & sequence a HOMOLOGOUS MARKER 
(amplicon) shared by all taxa

e.g.,16S rRNA is bacterial marker gene 

e.g.,18S is marker gene for microbial eukaryotes
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Slide used with permission from Sarah Hird
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ACGTGCGTAG…

infer that it        is from         21



16S is a commonly sequenced bacterial marker gene

Universal: Fancy protein reasons… ask Scott!

Balance: same in places; different in places

Not single copy
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AMPLICON PROFILING



16S is a commonly sequenced bacterial marker gene

Universal: Fancy protein reasons… ask Scott!

Balance: same in places; different in places
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Del Chierico et al. 2015 

AMPLICON PROFILING

Slide modified with permission from Sarah Hird



WHY 16S?

16S has highly conserved sequences interspacing hypervariable 
regions

Highly conserved sequence Hypervariable regions
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Slide modified with permission from Sarah HirdDel Chierico et al. 2015 



WHY 16S?

16S has highly conserved sequences interspacing hypervariable 
regions

Primers targeting the conserved regions allow us to pull out 
the hypervariable regions for sequencing

 25

Slide modified with permission from Sarah Hird



WHY 16S?

16S has highly conserved sequences interspacing hypervariable 
regions

Primers targeting the conserved regions allow us to pull out 
the hypervariable regions for sequencing

New(ly more common): full length 16S sequencing 
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Slide modified with permission from Sarah Hird



ACGTGCGTAG…

infer that it        is from         27
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AMPLICON PROFILING

Cheap, easy, popular… historical 
reasons

Most (but not all) taxa amenable

Severe distortions (PCR, primers, 
index hopping)

Discussed later
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WHOLE GENOME PROFILING

Whole genome sequencing (WGS)

Shear all DNA and sequence 
fragments

Functional potential

Commonly called “metagenomics”

metagenome = all the genomes 
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Slide modified with permission from Sarah Hird



 33

Slide modified with permission from Sarah Hird
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ACGTGCGTAG…

infer that it is       from        
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Slide modified with permission from Sarah Hird



WHOLE GENOME PROFILING

Multilocus

Gene content! Not just markers

More expensive (getting cheaper)

Sequence non-microbial genes 

Widely thought to be less 
distortion
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CONCENTRATION PROFILING
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CONCENTRATION PROFILING
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Just believe me that there are more bacteria in some places than 
others, ok?



CONCENTRATION PROFILING

Develop primers to target region

Region determines what concentration

Amplify (qPCR) and count (calibrate) to see how many instances 
of that region there are
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TECHNOLOGY

The technology/technologies that you will use is driven by

The scientific question/questions that you have

Cost constraints

Resource constraints

Literature review, opinion of funding agencies, current trends...
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$$ COMPARISON

Costs can vary wildly… here are some recent ballparks:

16S = $17/sample

WGS = $100-200 per sample

250 samples: 16S = $5k, WGS = $25k-$50k
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$$ COMPARISON

Costs can vary wildly… here are some recent ballparks:

16S = $17/sample

WGS = $100-200 per sample

250 samples: 16S = $5k, WGS = $25k-$50k

 44
Other considerations: non-microbial contamination, storage, 
analysis…



$$ COMPARISON

Costs can vary wildly… here are some recent ballparks:

16S = $17/sample

WGS = $100-200 per sample

250 samples: 16S = $5k, WGS = $25k-$50k
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Other considerations: non-microbial contamination, storage, 
analysis…

Joke stolen without permission from Scott Handley



MICROBIAL POPULATIONS

Group exercise: (2 minutes) 

Come up with a microbiome-related question that you might 
want to answer 

Come up with a microbiome-related question that you could 
answer

How does sequencing technology influence what you can 
study?

 46



ONCE YOU HAVE YOUR DATA...
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ONCE YOU HAVE YOUR DATA...
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ONCE YOU HAVE YOUR DATA...

preprocessing

cleaning

(iterating)

analysis
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CLEANING AND 
PREPROCESSING

Preprocessing

sometimes the same as cleaning

more often: processing the data into biological units

Cleaning

Basic checks: determine whether sequencing went entirely/a 
little/not at all wrong
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BIOLOGICAL UNITS

The units that come off your sequence are usually not immediately useful:

… AAACTCTATCTATCTACTXTCGCGCGTACGCGTCAT…

…AAACTCTAGCTATCTACTTTCGCXGGTACGCCTCAT…

…AACCCCTCGCACGACCAGCACAACACAACTACCA…

…AACTCCGTAAAACTACAACTACTACTACCATACACG…

Idea: group data into units that simplify analysis and are biologically 
meaningful
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BIOLOGICAL UNITS: 
TAXONOMIC PROFILING

If two sequences are the same, should be grouped together

Very unlikely that two sequences are the same 

If two sequences are the same enough, should be grouped 
together

Idea: clustering!
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BIOLOGICAL UNITS: 16S

 53

= observed 16S sequence

= similar sequences

= less similar sequences

Slide modified with permission from Scott Handley
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= observed 16S sequence

= similar sequences

= less similar sequences

Slide modified with permission from Scott Handley
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= observed 16S sequence

= similar sequences

= less similar sequences

Slide modified with permission from Scott Handley
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OTU clustering: Make 
operational taxonomic units 
by clustering at x% 
similarity 

97% is common for 16S, 
but a little arbitrary

OTU 1

OTU 3
OTU 2

Slide modified with permission from Scott Handley
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OTU 1

OTU 3
OTU 2

Slide modified with permission from Scott Handley
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OTU 1

OTU 3
OTU 2
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OTU 1

OTU 3
OTU 2

OTU clustering: Make 
operational taxonomic units 
by clustering at x% 
similarity 

Assign OTU the 
taxonomy of “most 
central” sequence

BIOLOGICAL UNITS: OTUS
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OTU 1

OTU 3
OTU 2

Why are A and B different?

Option 1: sequencing errors

Option 2: actually different

BIOLOGICAL UNITS: 16S DATA

A B
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OTU 1

OTU 3
OTU 2

Why are A and B different?

Option 1: sequencing errors

Option 2: actually different

BIOLOGICAL UNITS: 16S DATA

These options 
should be 

distinguished!



• We can estimate 
sequencing error rates

• So can estimate how 
much observed 
sequences should vary 
around “true” 
sequence 

BIOLOGICAL UNITS: ASVS

A B

C
D
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BIOLOGICAL UNITS: ASVS

A B

C
D

 63

A & B are from the 
same 16S sequence

• We can estimate 
sequencing error rates

• So can estimate how 
much observed 
sequences should vary 
around “true” 
sequence 



BIOLOGICAL UNITS: ASVS

A & B are from the 
same 16S sequence

A B

C
D

C & D are similar but are from different 16S sequences
(observed difference more than explainable by error rate) 
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• We can estimate 
sequencing error rates

• So can estimate how 
much observed 
sequences should vary 
around “true” 
sequence 



• Source sequences are 
called Amplicon 
Sequence Variants 
(ASVs)

• DADA2
• ASV construction
• Less spurious diversity

BIOLOGICAL UNITS: ASVS

A & B are from the 
same 16S sequence

A B

C
D

 65C & D are similar but are from different 16S sequences
(observed difference more than explainable by error rate) 



64 sequences

DADA2: ASV ALGORITHM
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Slide modified with permission from Scott Handley



Biological unit of 16S is 16S sequence

i.e. 16S amplicon sequence variants

16S sequences need to be clustered…

Old: into operational clusters

Modern: into sequence variants

BIOLOGICAL UNITS: 16S
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BIOLOGICAL UNITS: WGS

Many options

Genomes

Genes

Co-abundant genes

Others

 68



GENES/GENOMES FROM WGS 
DATA
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ASSEMBLY

Every genome is a puzzle, break into pieces, put pieces back together

Different microbes contain same genes

Microbes of same strain can have very similar genomes 

e.g., SNVs, same genome but missing gene/operon 

Can’t assume equal coverage across genomes/samples 

low coverage => can’t piece puzzle together 

high coverage => expensive
 70



ASSEMBLY

Assemblers turn reads into (~104 - 106) contigs

No single assembler “best”

Many use de Bruijn graphs: break reads into k-mers; find path

Inconsistent coverage is huge challenge

Options: MEGAHIT, MetaSPAdes, others

MEGAHIT: “more genes that can be annotated in complex communities”

Review article: “Use more than one!”
 71



BINNING
Contigs come from what genomes? How many genomes?

Binning groups contigs into genomes

Supervised & unsupervised

Choice dictated by reliability/availability of reference genomes

Balance between automation and refinement 

Anvi’o: helps with manual refinement 

(More later)  72



UNSUPERVISED BINNING

Mini review

Bioinformatics strategies for taxonomy independent binning and
visualization of sequences in shotgun metagenomics

Karel Sedlar ⁎, Kristyna Kupkova, Ivo Provaznik
Department of Biomedical Engineering, Brno University of Technology, Technicka 12, Brno, Czech Republic

a b s t r a c ta r t i c l e i n f o
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One of main steps in a study of microbial communities is resolving their composition, diversity and function.
In the past, these issues were mostly addressed by the use of amplicon sequencing of a target gene because of
reasonable price and easier computational postprocessing of the bioinformatic data.With the advancement of se-
quencing techniques, themain focus shifted to the wholemetagenome shotgun sequencing, which allowsmuch
moredetailed analysis of themetagenomic data, including reconstruction of novelmicrobial genomes and to gain
knowledge about genetic potential andmetabolic capacities of whole environments. On the other hand, the out-
put ofwholemetagenomic shotgun sequencing ismixture of short DNA fragments belonging to various genomes,
therefore this approach requires more sophisticated computational algorithms for clustering of related se-
quences, commonly referred to as sequence binning. There are currently two types of binning methods: taxono-
my dependent and taxonomy independent. The first type classifies the DNA fragments by performing a standard
homology inference against a reference database, while the latter performs the reference-free binning by
applying clustering techniques on features extracted from the sequences. In this review, we describe the strate-
gies within the second approach. Although these strategies do not require prior knowledge, they have higher
demands on the length of sequences. Besides their basic principle, an overview of particular methods and tools
is provided. Furthermore, the review covers the utilization of themethods in contextwith the length of sequences
and discusses the needs for metagenomic data preprocessing in form of initial assembly prior to binning.

© 2016 The Authors. Published by Elsevier B.V. on behalf of Research Network of Computa-
tional and Structural Biotechnology. This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/).
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1. Introduction

Direct sequencing of genomic material from an environment, com-
monly referred to as metagenomics, helped to provide a full insight

into entire microbial communities that could not have been studied be-
fore for a majority of the organisms are uncultivable [1]. Nowadays,
there are thousands of metagenomic projects compared with only few
studies published in early 2000s [2,3]. The aim of these projects is to ex-
plore microbiologically diverse environments such as soil [4], marine
water [5], gut or other niches of human [6] or other higher eukaryotes.
Each of these habitats is characterized by specific taxonomic
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and palindromes [33]. Another parameter that is possible to use for se-
quence comparison is the guanine-cytosine (GC) content, since studies
confirmed difference of GC content among unrelated populations [34].
The common workflow of binning strategies is shown in Fig. 2.

TETRA [35], a tool for statistical analysis and comparison of se-
quences based on tetranucleotide pattern frequencies, can be consid-
ered as a predecessor of modern binning methods. The computing
capacity of the tool, however, does not meet the needs of current
metagenomics and the tool is no longer available. One example of the
current methods using composition based binning is LikelyBin [36],
which utilizes the Markov Chain Monte Carlo approach for binning se-
quences based on k-mers of lengths between k = 2 and k = 5. Despite
the fact that themethod is fully automatic, its use is limited only on low
complexity metagenomes (2–10 species), where the method reaches
high accuracy given sufficient genomic divergence. Better result in
terms of precision and accuracy were reached by use of the SCIMM
[37] technique, which uses interpolated Markov models (IMM) on
initial clusters for production of higher quality bins. Unfortunately,
initial bins need to be formed before the application of IMM on the
data. This can be done either by k-means clustering, which needs a
predicted number of clusters as an input, or by running another binning
algorithm, e.g. LikelyBin [36] or CompostBin [38]. Although SCIMM can
improve the quality of clusters, the final results are highly dependent
on this initial step. Also use of SCIMM is limited to lower complexity
metagenomes, as both recall, and especially precision values are lower
with increasing number of genomes presented within a sample.

Complex microbial samples can be analyzed by use of different
forms of self-organizing maps (SOMs) [39–43]. A SOM is an artificial
neural network proposed by Kohonen (1990) [44] for data clustering.
Its properties are making it an ideal tool for clustering and visualization
of high-dimensional data like genomic signatures by mapping them on
a two-dimensional map. One form of SOM is batch-learning SOM
(BLSOM) specifically modified for genome informatics to make the
learning process and resulting map independent of the order of data
input [41,42]. In order to lower computational demands of BLSOM,
a novel method Self-Compressing BLSOM (SC-BLSOM) was invented,
which rapidly fastens the clustering process [43]. Although SOM
can be an effective tool for cluster analysis, it also has its drawbacks.
Firstly, the contour definition and therefore the final clustering can be
hard task that significantly affects the results of taxonomic profiling.
Secondly, the kernel transformation suffers from quadratic time

complexity therefore it is time consuming. A solution to the second
addressed problem is offered by VizBin [45] which also reduces the
high-dimensional k-mers into two-dimensional space by use of the
Barnes-Hut Stochastic Neighbor Embedding (BH-SNE) algorithm with
time complexity only O(nlogn) compared to O(n2) of SOM [46,47].
One of themajor advantages of VizBin is that it provides rather distinct-
ly bounded clusters in satisfactory time. On the other hand, the final
binning is not automatic and the results are therefore purely dependent
on human assessment which can be especially problematic with high-
complexity metagenomic data.

Several parameters were combined in 2Tbinning [48], these include
GC content, oligonucleotide frequency derived error gradient (OFDEG)
[49] and tetramer frequency. 2Tbinning stands for 2-tier binning, as in
the first tier sequences are separated into preliminary groups based on
GC content and OFDEG parameter, and in the second tier, these groups
are then separately divided into finer bins utilizing k-mer frequencies.
Also MetaWatt [50] is a tool that bins sequences in two steps, where
sequences are firstly separated into clusters regarding to an empirical
relationship between the mean and standard deviation of tetramer
frequencies. The optimal bins are then selected by an expert and used
for creation of IMMs, which are then used for improvement of the bin-
ning results obtained in thefirst step, similarly to SCIMM.However, com-
pared with SCIMM, which uses fully automatically defined bins for IMM
modeling, MetaWatt requires human input.

2.2. Abundance based binning

One of the problems with the composition based methods is the
binning of species with low abundance, as sequences belonging to
these species form smaller indistinct clusters, which can then be easily
misclassified as part of a larger bin belonging to highly abundant species.
This issue can be solved by use of abundance based binning methods,
which can be further subdivided intomethods forworkingwith one sam-
ple (AbundanceBin [51],MBBC [52]), andmethodsworkingwith series of
metagenomic samples (Canopy [53]). The key idea of the first group is
that the distribution of sequenced reads follows the Lander-Waterman
model, where coverage of each nucleotide can be computed by the appli-
cation of the Poisson distribution [54]. The workflow of these methods is
therefore somewhat similar to the composition based binning tech-
niques, with the main difference in cluster formation being defined by
k-mer abundance (content) instead of their similarity (composition).
The second group of methods is based on the assumption that coverage
profiles of contigs from the same genomes should be highly correlated
across multiple samples. The necessary step lies in de novo assembly of
raw reads into contigs, as shown in the schematic workflow in Fig. 2.

The second problem with composition based methods is that they
usually provide reasonably accurate results onlywhen longer sequences
are used (e.g. 800 bp). AbundanceBin, the one-sample abundance based
method, gives solution to this issue and can work accurately even with
sequence reads that are only 75 bp long. The technique extracts l-tuples
(lwas experimentally estimated to 20) from all reads and then by use of
the Expectation–Maximization (EM) algorithm, finds the parameters
for the Poisson distributions, which reflect the relative abundance levels
of the species. Since AbundanceBin uses a recursive binning approach
for bin number estimation, there is no need for human input, which
makes the method fully automatic. A user can still possibly change the
initial conditions for the EM algorithm for the initial estimation of abun-
dance levels and genome sizes, which are determined empirically for
default mode. A similar pipeline to AbundanceBin is introduced in
MBBC,where the initial binning is also performedbyfindingparameters
for Poisson distributions by the EM algorithm; however, the outcome is
then used for training Markov models, based on which the preliminary
bins are refined. Although both of the methods work well even on very
short sequences (e.g. 75 bp), the setting of initial conditions can be cru-
cial for the outcome. Moreover, in MBBC, the user is required to enter a
large number as an estimation of number of bins. While the number is

Fig. 1. Schematic distribution of current taxonomy independent binning methods into
three categories; the eye symbol highlights the methods that enable visualization of
datasets.
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UNSUPERVISED BINNING
ANALYSIS

NATURE METHODS | VOL.14 NO.11 | NOVEMBER 2017 | 1063

Methods for assembly, taxonomic profiling and binning are 
key to interpreting metagenome data, but a lack of consensus 
about benchmarking complicates performance assessment. 
The Critical Assessment of Metagenome Interpretation (CAMI) 
challenge has engaged the global developer community to 
benchmark their programs on highly complex and realistic data 
sets, generated from ~700 newly sequenced microorganisms 
and ~600 novel viruses and plasmids and representing common 
experimental setups. Assembly and genome binning programs 
performed well for species represented by individual genomes 
but were substantially affected by the presence of related 
strains. Taxonomic profiling and binning programs were 
proficient at high taxonomic ranks, with a notable performance 
decrease below family level. Parameter settings markedly 
affected performance, underscoring their importance for 
program reproducibility. The CAMI results highlight current 
challenges but also provide a roadmap for software selection to 
answer specific research questions.

The biological interpretation of metagenomes relies on sophisti-
cated computational analyses such as read assembly, binning and 
taxonomic profiling. Tremendous progress has been achieved1, 
but there is still much room for improvement. The evaluation of 
computational methods has been limited largely to publications 
presenting novel or improved tools. These results are extremely 
difficult to compare owing to varying evaluation strategies, 
benchmark data sets and performance criteria. Furthermore, the 

state of the art in this active field is a moving target, and the 
assessment of new algorithms by individual researchers consumes 
substantial time and computational resources and may introduce 
unintended biases.

We tackle these challenges with a community-driven initia-
tive for the Critical Assessment of Metagenome Interpretation 
(CAMI). CAMI aims to evaluate methods for metagenome anal-
ysis comprehensively and objectively by establishing standards 
through community involvement in the design of benchmark data 
sets, evaluation procedures, choice of performance metrics and 
questions to focus on. To generate a comprehensive overview, 
we organized a benchmarking challenge on data sets of unprece-
dented complexity and degree of realism. Although benchmarking 
has been performed before2,3, this is the first community-driven 
effort that we know of. The CAMI portal is also open to submis-
sions, and the benchmarks generated here can be used to assess 
and develop future work.

We assessed the performance of metagenome assembly, bin-
ning and taxonomic profiling programs when encountering major 
challenges commonly observed in metagenomics. For instance, 
microbiome research benefits from the recovery of genomes for 
individual strains from metagenomes4–7, and many ecosystems 
have a high degree of strain heterogeneity8,9. To date, it is not clear 
how much assembly, binning and profiling software are influ-
enced by the evolutionary relatedness of organisms, community 
complexity, presence of poorly categorized taxonomic groups 
(such as viruses) or varying software parameters.

Critical Assessment of Metagenome Interpretation—a 
benchmark of metagenomics software
Alexander Sczyrba1,2,48, Peter Hofmann3–5,48, Peter Belmann1,2,4,5,48, David Koslicki6, Stefan Janssen4,7,8, 
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ANALYSIS

Performance trends
We employed commonly used metrics (Online Methods) to 
assess the quality of taxonomic profiling submissions with regard  
to the biological questions outlined above. The reconstruction 

fidelity for all profilers varied markedly across metrics, taxo-
nomic ranks and samples. Each had a unique error profile and 
different strengths and weaknesses (Fig. 3a,b), but the profil-
ers fell into three categories: (i) profilers that correctly predicted  
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Figure 2 | Binning results for the CAMI data sets. (a) ARI in relation to the fraction of the sample assigned (in bp) by the genome binners. The ARI 
was calculated excluding unassigned sequences and thus reflects the assignment accuracy for the portion of the data assigned. (b) Number of genomes 
recovered with varying completeness and contamination (1-purity). (c,d) Average purity (precision) and completeness (recall) for genomes reconstructed 
by genome binners for genomes of unique strains with ANI <95% to others (c) and common strains with ANI q95% to each other (d). For each program 
and complexity data set (Supplementary Table 2), the submission with the largest sum of purity and completeness is shown. In each case, small 
bins adding up to 1% of the data set size were removed. Error bars, s.e.m. (e,f) Taxonomic binning performance metrics across ranks for the medium-
complexity data set, with results for the complete data set (e) and smallest predicted bins summing up to 1% of the data set (f) removed. Shaded areas, 
s.e.m. in precision (purity) and recall (completeness) across taxon bins.
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UNSUPERVISED BINNING
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ASSEMBLY-FREE WGS

Can map reads to genomes (often not faster than assembly; high FP)

Better idea: use specific genes (not all genes)

MetaPhlAn

Core & marker genes

Great for human mb
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BIOLOGICAL UNITS: GENES

From genomes… genes!

Adapt tools from single-genome world

Challenge: microbial genes mostly uncharacterized  
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BIOLOGICAL UNITS

Challenges with WGS include 

lots of genes

Choice of database has enormous impact

Advantage: lots of redundancy = genes that occur together

Genes that consistently occur together arguably biological unit

CAGs = co-abundant genes; grouping of genes that are 
consistently present/absent together across samples
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CAGS AS BIOLOGICAL UNITS

CAG grouping

Work lead by Sam Minot 
(Fred Hutch) 

Co-abundant gene (CAG) 
construction algorithm

No databases

Reproducibly associated 
with disease
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BIOLOGICAL UNITS TO 
CLEANING

Once you have your data sorted into biological units, you may need to 
do some cleaning

Often cleaning = filtering

e.g., low yield

e.g., low quality score data 

e.g., likely sequencing errors (sometimes low abundance        )

e.g., contaminants (e.g., with decontam)
 80



SUMMARY: FIRST HALF

Microbes, their relevance, questions

Technology to study microbes

Processing data into meaningful units

Next up: analysis; open problems
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BREAK

☕☕☕☕☕☕☕☕🍪☕

☕☕☕☕☕☕☕☕☕☕

☕☕☕☕☕☕☕☕☕☕
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ANALYSIS

The type of data that you have affect how you will analyse

e.g., compositional/relative/absolute

The questions that you have affect how you analyse

e.g., exploratory/confirmatory
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SCENARIO
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ABSOLUTE 
ABUNDANCE

S

MICROBE A MICROBE B MICROBE C

ENVIRO 1 5 5 20

ENVIRO 2 10 10 40

observe

# OBSERVED MICROBE A MICROBE B MICROBE C TOTAL

ENVIRO 1 1.01 / 6 1/6 3.99 / 6 1

ENVIRO 2 0.99 / 6 0.99/6 4.02 / 6 1

PROPORTION
DATA

Can compare across rows & columns



SCENARIO
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ABSOLUTE 
ABUNDANCE

S

MICROBE A MICROBE B MICROBE C

ENVIRO 1 5 5 20

ENVIRO 2 10 10 40

observe

# OBSERVED MICROBE A MICROBE B MICROBE C TOTAL

ENVIRO 1 4 5 18 27

ENVIRO 2 9 9 37 55

ABSOLUTE
DATA

Can compare across rows & columns



SCENARIO
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ABSOLUTE 
ABUNDANCE

S

MICROBE A MICROBE B MICROBE C

ENVIRO 1 5 5 20

ENVIRO 2 10 10 40

observe

# OBSERVED MICROBE A MICROBE B MICROBE C TOTAL

ENVIRO 1 499 500 2001 3000

ENVIRO 2 250 251 1010 1511

COMPOSITIONAL/RELATIVE
DATA

Can compare across rows only



DATA

16S and WGS data are compositional/relative

Can compare observed values within samples

Common (users/software): convert to proportions

ADW: Disagree, this loses information about precision

ADW: Good statistical methods model precision

Implications for analysis
 87



PARAMETERS
Estimation: using information about the sample to estimate 
something about the population

 88
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PARAMETERS

something about the population = “parameter”

Genus-level relative abundance of Streptococcus in your saliva 
right now

Proportion of Krumlovians with MRSA infections

Mean phylum-level diversity on the hands of #evomics19 
faculty
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PARAMETERS FOR 
COMPOSITIONAL DATA

Diversity parameters: α, β

sometimes called diversity "indices"

ADW: this terminology reflects a lack of understanding of 
statistical concept of parameters

Relative abundance of taxon/gene

Relative abundance within an environment ("enrichment")
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DIVERSITY

 91

Low dimensional summaries of entire communities

α-diversity: one community

e.g., species richness, Shannon diversity 

β-diversity: multiple communities

e.g., UniFrac, Bray-Curtis

Diversity is relevant in lots of contexts... not just 
the microbiome!



DIVERSITY & PARAMETERS
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There are multiple choices to make when talking about diversity

Which taxonomic level? (strain/species/genus...)

Which diversity parameter?

Which estimate of the diversity parameter?



DIVERSITY & PARAMETERS
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There are multiple choices to make when talking about diversity

Which taxonomic level? (strain/species/genus...)

Which diversity parameter?

Which estimate of the diversity parameter?



ALPHA DIVERSITY

Suppose we have C groups in our environment in proportions p1, 
p2, …, pC

Any function of 

p1, p2, …, pC  OR

p1, p2, …, pC  and some info about relationships amongst groups

is a valid α-diversity parameter

 94

phylogeny



Some examples of α-diversity measures include

Species richness:

Simpson’s index: 

Shannon diversity:

Shannon's E: 
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ALPHA DIVERSITY



YOUR CHOICE

Think:  What difference do you want to highlight?

taxonomic
richness

taxonomic
evenness
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taxonomic
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YOUR CHOICE

taxonomic
richness

taxonomic
evenness

This is a question of parameter choice:                          
Which parameter highlights the differences I care about?  100

species
richness

Shannon

Shannon's E

Simpson



Richness 10 7 4
Shannon 2.21 1.75 1.33
Evenness 0.96 0.90 0.96
Simpson’s 0.88 0.80 0.72

Inverse 
Simpson’s 8.17 4.98 3.60

 101



THE PROBLEM

In practice, we don't observe the entire community, just a sample 
from it

we don't know C or p1, p2, …, pC
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We need to estimate them 
using the data we collected

Research interest of ADW: how to 
estimate diversity 



THE "CLASSICAL" APPROACH

Substitute the observed abundances                  for the unknown, 
true abundances p1, p2, …, pC and pretend nothing happened

e.g. Estimate the richness with: 

e.g. Estimate the Simpsons index: 
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p̂1, . . . , p̂c

cX

i=1

p̂2i

c = #{i : p̂i 6= 0}

naive 



ONE PROBLEM (OF MANY)

Species richness: plug-in estimate underestimates 

Simpson: estimate overestimates

Need new indices      

Need new estimators
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HOW TO FIX

2 things are wrong here:

The bias (under/overestimation)

The variance (how big are the error bars — you’ll never be 
exactly right)
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SPECIES RICHNESS
The "species problem": how many species 
were missing from the sample

Idea

If many rare species in sample, likely there 
are many missing species

If few rare species in sample, likely there 
are few missing species

Use data on rare species to predict # 
missing species

 106

I haz C = 1



SPECIES RICHNESS

CatchAll: mixed Poisson models

stable, restrictive, hard to use

breakaway: non-mixed Poisson models

Higher variance, flexible models, in R

 107

Kendrick Li Alex Paynter



SPECIES RICHNESS ESTIMATION
Good options

breakaway::breakaway(); QIIME2 breakaway plug-in

breakaway::chao_bunge()

breakaway:: objective_bayes_*()

CatchAll

Bad options

QIIME2: chao1; scikitbio… 

R:vegan::…         108

Pauline Trinh
(Q2 wizard)



ALPHA DIVERSITY: SHANNON 
DIVERSITY, SIMPSON, ETC.

Slightly different approach:

Share strength across 
multiple samples to 
estimate C and p1, p2, …, pC, 
then use network models 
to get variance
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DIVNET

This idea works for estimating any diversity index (α or β) that 
is a function of relative abundances

It can also be used to estimate any diversity index that is a 
function of the tree

github.com/adw96/DivNet

Coming soon...
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Bryan Martin Pauline Trinh



BETA DIVERSITY

Community 1: p1(1), p2(1), …, pC 
(1); Community 2: p1(2), p2(2), …, pC 

(2)

β-diversity parameters are usually distances between 
compositional vectors

Bray-Curtis:

Jaccard:             % taxa not shared 

UniFrac: Weights phylogeny
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�BC = 1�
CX

i=1

min(p(1)i , p(2)i )
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DIVERSITY: HYPOTHESIS TESTING

Sometimes diversity is analysed as an exploratory tool

e.g., ordination

Other times you want to do inference

e.g., H0: two communities have zero dissimilarity

e.g., H0: communities A & B have same dissimilarity as 
communities A & C
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HYPOTHESIS TESTING FOR 
DIVERSITY

Common approach: PERMANOVA 

Critical issue: adjust for different resolution

Good solution = use error bars 

breakaway::betta(); DivNet::testDiversity

(Bad solution = rarefy)
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VARIANCE AND HYPOTHESIS 
TESTS

Why is estimating variance important?

Hypothesis testing

Most hypothesis tests take the form

 114

estimate

standard error
⇠ N(0, 1)
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VARIANCE AND HYPOTHESIS 
TESTS

If your estimate was 1, and the (true) standard deviation is 1…

 115

STANDARD
ERROR 1 0.5 0.33 0.25

P-VALUE 0.318 0.046 0.002 <0.001



BIAS AND DIVERSITY

Alternative approach that I loathe: rarefaction

Idea: 

Discover more diversity with more sequencing

Can’t directly compare samples with different depths

Randomly throw away reads until all samples have same depth

Better idea: 

Statistical estimation accounts for different sequencing depths!
 116
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BIAS AND DIVERSITY
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Better idea: 

Statistical estimation accounts for different sequencing depths!
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DIVERSITY

Very useful summary of (high-dimensional) compositional data… 
in many settings!

Diversity is a useful first question

Drawback: Changes in diversity don’t indicate what 
composition(s) are changing…. 
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ABUNDANCE

How do we talk about changes in the amount of something?

Fraction of environments with a characteristic

Relative abundance: proportions only

Relative abundance: count data

Absolute abundance (same tools for DE analysis e.g., DESeq2, 
edgeR)
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ABUNDANCE: ENRICHMENT

enrichment of genes/functions/pathways: higher presence in one 
group vs another group

Need to know: anvi’o

Amazingly powerful tools for lots of things, including WGS

Fantastic workflows and tutorials for all things WGS
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merenlab.org/

Image credit:  anvi’o development team



ENRICHMENT

If samples the genomes came from were observed 
independently,  the enrichment analysis in anvi’o gives a 
hypothesis test for enrichment

Key points: adjusts for different numbers of genomes in each 
group; hypothesis testing & false discovery control
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RELATIVE ABUNDANCE: COUNTS

Observe Wi counts out of Mi total counts for samples i=1…n 

For each sample have Xi, information about treatment/disease/
source environment

Goal: Hypothesis test for changes in mean relative abundance 
with Xi 

Options: CORNCOB, LEFse, ANCOM, MaAsLin, gneiss, 
DESeq2, ALDEx2, many others
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CORNCOB

Latent variable model & hypothesis testing for 
relative abundance

Adjusts for different depths

Flexible model: individual microbes correlated

Bonus: Mean and variance ("dysbiosis") testing

COmpositional RegressioN for Correlated Observations with the Beta-binomial

Bryan Martin

Daniela Witten, UW
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CORNCOB AND DESEQ2
corncob

Designed for marker gene 
(compositional) data

Models relative abundance, 
overdispersion, and correlation 
parameters

Different structure for different 
taxa

Uses within-taxon correlation 
to model zeros

DESeq2

Designed for RNAseq 
(different data structure) 

Tests changes in abundance

Constrained dispersion

Individual microbes are 
assumed independent
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OTHER ANALYSIS APPROACHES

Networks

Can be very interesting… if your data is very good

Source tracking

Can be very interesting… if your data is very good

Many, many others
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COMMON IDEA

"I didn't collect the data that I really wanted, so I will use what I 
have to try to reconstruct the data that I really wanted"

e.g., microbial concentration (16S qPCR x 16S rel abundance)

e.g., functional information (PiCRUST)

Very very serious caveats! Use with extreme 
caution!
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CONSIDERATIONS FOR 
MICROBIOME SCIENCE

Too many microbiome papers list significant associations

Taxon A, B C; genes X, Y, Z are significantly higher/lower abundance in 
[folks with disease D]

Observations are interesting, often unhelpful

Does the microbiome cause the disease, or the other way around?

Studies involving (intelligent) interventions can help

e.g., paired data/longitudinal sampling
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EXPERIMENTAL DESIGN

The population that you want to study may not be 
the population that you get to study

Before undertaking a microbiome study, think carefully about

the question you want to answer,

the data you have access to, and

the questions you can answer with the data that you have 
access to
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WHAT CAN WE DO?

Replicate, replicate, replicate

Independently repeating the experiment is the gold standard 
for confirming a result is “real”

Think critically

Use plots, not p-values
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WHAT ELSE CAN WE DO?

Be honest 

Keep all analyses that you ran, not just the final one

Write down all of the hypotheses that you care about 

Before doing the experiment

Before doing the analysis

Your university might house a statistician; try to involve them...

...in the entire process, not just calculating p-values 
 132



SUMMARY
Technology: Taxonomic, functional, concentration profiling

Data cleaning & preprocessing: organising data into biological units 
(16S = ASVs; WGS = genomes/genes/CAGs)

Statistical estimation & hypothesis testing

Diversity analysis: α, β

Abundance analysis: enrichment, proportions (count/
proportion), abundance

and many other things that couldn't be fit into this lecture  133



RESOURCES: 
HOW DO YOU STUDY MICROBES?

 134

Your university probably has a microbiology department

Your university probably has a statistical consulting service

STAMPS: Strategies and Techniques for Analyzing Microbial 
Population Structures at the MBL (Marine Biological Laboratory)

Apply by April 19

The Statistical Diversity Lab @ UW 

statisticaldiversitylab.com

http://statisticaldiversitylab.com
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DIRECTIONS FOR MICROBIAL 
ECOLOGY

Research

Reproducibility

Calibrating sequencing results with reality

Lab goals & wrap up
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REPRODUCIBILITY

Microbiome Quality Control Project

Sent same set of samples to 10+ sequencing labs, 8 
bioinformatics labs

Compared results

Question for you: what is the best case scenario?
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REPRODUCIBILITY

Reproducibility evaluation

Ideal: every lab gets identical results 

Good enough: Not identical, but consistent ability to discriminate

Our qtn: Are technical replicates of Sample A more similar to each 
other than technical replicates from Sample B? 

Within lab? Across lab?

How likely are results obtained from one lab to be reproduced in 
another lab?  138

David Clausen



REPRODUCIBILITY: WITHIN-LAB

What percentage of the time can we determine 
sample type based on within-lab replicates?

~95%+

David 
Clausen
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REPRODUCIBILITY: WITHIN-LAB

What percentage of the time can we determine 
sample identifier based on within-lab replicates? ~90% 

(good labs)
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REPRODUCIBILITY: ACROSS LABS
What percentage of the time can we determine 

sample type based on another lab’s results? ~80-90%
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~60% 
(good labs)

REPRODUCIBILITY: ACROSS LABS
What percentage of the time can we determine 
sample identifier based on another lab’s results?
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HOW MUCH WORSE IS REPRODUCIBILITY 
ACROSS VS WITHIN LABS?
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MODELING EFFICIENCY

Big picture goal: correct cross-lab differences

Current step: understand how taxon abundances are 
distorted by sequencing process 

Approach: mock communities!
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David Clausen

Michael McLaren 
(NCSU)

Ben Callahan 
(NCSU)



MODELING EFFICIENCY
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MODELING EFFICIENCY
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MODELING EFFICIENCY
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MODELING EFFICIENCY
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David Clausen

Michael McLaren 
(NCSU)

Ben Callahan 
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STATISTICAL DIVERSITY 
LAB GOALS

Develop statistical and computational tools for reproducible 
microbiome science

Address model misspecification

Make use of existing data (yours and others')

Model sequencing process and errors

Outreach: why statistical estimation and good statistical 
practice matters
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MICROBIOME DATA & ANALYSIS
Research Group: Statistical Diversity Lab
PI:  Amy D Willis PhD,  Assistant Professor,  Department of Biostatistics,  UW
         @AmyDWillis               adwillis@uw.edu
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Photo credit:  T.D. Berry, Whitman lab, UW Madison
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