
 

Genomics Tutorial 2019. 

Instructors: 
● Josie Paris & the Workshop Team! 
● Konrad Paszkiewicz in absentia (don’t worry he’s not dead). 

Important Notes 
username: genomics 
password: see the whiteboard 

Objectives: 

Part 1: Short Read Genomics: An Introduction 
● Understand how short reads are generated. 
● Understand paired-end reads 
● See possible sources of errors 
● Learn about adaptors 

Part 2: QC, Alignment and Variant Calling 
● Interpret FASTQ quality metrics 
● Remove poor quality data 
● Trim adaptor/contaminant sequences from FASTQ data 
● Count the number of reads before and after trimming and quality control 
● Align reads to a reference sequence to form a SAM file (Sequence AlignMent file) using               

BWA 
● Convert the SAM file to BAM format (Binary AlignMent format) 
● Identify and select high quality SNPs and Indels using SAMtools 
● Identify missing or truncated genes with respect to the reference genome 
● Identify SNPs which overlap with known coding regions 

Part 3: Assembly of Unmapped Reads 
● Extract reads which do not map to the reference sequence 
● Assemble these reads de novo using SPAdes 
● Generate summary statistics for the assembly 
● Identify potential genes within the assembly 
● Search for matches within the NCBI database via BLAST and against the Pfam database 
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● Visualize the taxonomic distribution of BLAST hits 
● Perform gene prediction and annotation using RAST 

Part 4: De-novo Assembly Using Short Reads 
● Perform QC and adaptor-trim Illumina reads. 
● Assemble these reads de novo using SPAdes 
● Generate summary statistics for the assembly 
● Understand how to incorporate long PacBio reads into the assembly. 
● Identify open reading frames within the assembly 
● Search for matches within the NCBI database via BLAST and against the Pfam database 
● Visualize species distribution of potential matches 
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Part 1: Short Read Genomics: An Introduction 

1. Introduction 
Welcome to the genomics tutorial! Generating large amounts of data in biology is easy              

these days. In little more than a fortnight we can generate more data than the entire human                 
genome project generated in over a decade of work. Making biological sense out of that data,                
understanding its limitations and how the analysis algorithms work is now the major challenge for               
researchers. The aim of this workshop is to take you through an example project. On the way, you                  
will learn how to evaluate the quality of data as provided by a sequencing facility, how to align the                   
data against a known and annotated reference genome and how to perform a de-novo assembly.               
In addition you will also learn how to compare results between different samples. 
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This workshop is broken into 4 parts. You should feel free to take as long as you like on each part.                     
It is much more important that you have a thorough understanding of each part, rather than try to                  
race through the entire workshop material. 
 
The four parts are: 
 

1. Short Read Introduction 
2. Remapping a strain of E.coli to a reference sequence 
3. Assembly of unmapped reads 
4. Complete de-novo assembly of all reads 

 
For this tutorial we will assume little background knowledge, except for a basic familiarity with the                
Linux operating system and the cloud. We will cover the basics of how genomic DNA libraries are                 
generated and sequenced, and the principles behind short read paired-end sequencing. We will             
look at why data can vary in quality, why adaptor sequences need to be filtered out and how to                   
quality control data. You may well do similar tasks in other tutorials at this workshop, especially                
quality control and assembly techniques, this is good practice! 
 
Then we will take the plunge and align the filtered reads to a reference genome, call variants and                  
compare them against the published genome to identify missing, truncated or altered genes. This will               
involve the use of a publicly available set of bacterial E.coli Illumina reads and reference genome. 
 
In parts 3 and 4 we will look at how one can identify novel sequences which are not present in the                     
reference genome.  
 
A word on notation. If you see something like this: 
 
cd ~/genomics_tutorial/reference_sequence 

 
It means, type the highlighted text into your terminal. Please type the text, using all the tricks (e.g. tab                   
completion) that you have learnt in the Unix tutorial. Copying and pasting will sometimes not work with                 
certain characters and can cause errors. Also, please keep an eye for underscores! 

Principles of Illumina-based Sequencing 
There are several sequencers currently on the market. These include PacBio, MinION and the              

various Illumina platforms (HiSeq, NextSeq, NovaSeq, MiSeq etc). Other (now obsolescent) platforms            
included Life Tech SoLID and Roche 454 and many more are likely to appear in the future!                 
Regardless of the sequencer, all of these rely on making hundreds of thousands of clonal copies of a                  
fragment of DNA and sequencing the ensemble of fragments using DNA polymerase or in the case of                 
the SOLiD via ligation. This is simply because the detectors (basically souped-up digital cameras),              
cannot detect fluorescence (Illumina, SolID, 454) or pH changes (Ion Torrent) from a single molecule.               
The 'third-generation' Pacific Biosciences SMRT (Single Molecule Real Time) RSII and Sequel            
sequencers are able to detect fluorescence from a single molecule of DNA. However, the machines               
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are very large (the RSII is almost 2 tons) and produces less than a tenth of the data of an Illumina                     
MiSeq run and for long reads >10kb error rates are generally around 10-12%. The Oxford Nanopore                
MinION is another ‘third-generation’ single-molecule system which measures changes in electrical           
current through a Nanopore as a single molecule is ratcheted through it. Although error rates are also                 
high (5-10%), and per-base costs are higher, the technology has improved rapidly and will probably               
replace second generation systems over the next few years. 
 
We will mainly look at the Illumina sequencing pipeline here, but the basic principles apply to other                 
second-generation sequencers. If you would like further details on other platforms then we             
recommend reading: Mardis ER. Next-generation DNA sequencing methods. Annual Reviews          
Genomics Hum Genet 2008; 9 :387–402.  
 
A typical sequencing run would begin with the user supplying 1ng-1ug of genomic DNA to a                
sequencing facility along with quality control information in the form of an automated electrophoresis              
output (e.g. Agilent Bioanalyser/Tapestation trace) or gel image and quantification information. 
 

DNA Library Preparation 
For most sequencing applications, paired-end libraries are generated. Genomic DNA is           

sheared into 300-500bp fragments (usually via sonication) and size-selected accordingly. Ends are            
repaired and an overhanging adenine base is added, after which oligonucleotide adaptors are ligated.              
In many cases the adaptors contain unique DNA sequences of 6-12bp which can be used to identify                 
the sample if they are 'multiplexed' together for sequencing. This type of sequencing is used               
extensively when sequencing small genomes such as those of bacteria because it lowers the overall               
per-genome cost. 
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A) Steps a through e explain the main steps in Illumina sample preparation: a) the initial genomic 
DNA, b) fragmentation of genomic DNA into 500bp fragments, c) end repair, d) addition of A bases to 
the fragment ends and e) ligation of the adaptors to the fragments. 
 
B) Overview of the automated the size selection protocol: The first precipitation discards fragments 
larger than the desired interval. The second precipitation selects all fragments larger than the lower 
boundary of the desired interval. 
 
Borgström E, Lundin S, Lundeberg J, 2011 Large Scale Library Generation for High Throughput 
Sequencing. PLoS ONE 6: e19119. doi:10.1371/journal.pone.0019119 

Sequencing 
(adapted from Margulis, E.R., reference below) 
 

Once sufficient libraries have been prepared, the task is to amplify single strands of DNA to                
form monoclonal clusters. The single molecule amplification step for the Illumina HiSeq 2500 starts              
with an Illumina-specific adapter library and takes place on the oligo-derivatized surface of a flow cell,                
and is performed by an automated device called a cBot Cluster Station. The flow cell is either a 2 or                    
8-channel sealed glass microfabricated device that allows bridge amplification of fragments on its             
surface, and uses DNA polymerase to produce multiple DNA copies, or clusters, that each represent               
the single molecule that initiated the cluster amplification. 
 
Separate or multiple libraries can be added to each of the eight channels, or the same library can be                   
used in all eight, or combinations thereof. Each cluster contains approximately one million copies of               
the original fragment, which is sufficient for reporting incorporated bases at the required signal              
intensity for detection during sequencing. The Illumina system utilizes a sequencing- by-synthesis            
approach in which all four nucleotides are added simultaneously to the flow cell channels, along with                
DNA polymerase, for incorporation into the oligo-primed cluster fragments (see figure below for             
details). Specifically, the nucleotides carry a base-unique fluorescent label and the 3 -OH group is               
chemically blocked such that each incorporation is a unique event. An imaging step follows each base                
incorporation step, during which each flow cell lane is imaged in three 100-tile segments by the                
instrument optics at a cluster density of 600,000-800,000 per mm2. After each imaging step, the 3'                
blocking group is chemically removed to prepare each strand for the next incorporation by DNA               
polymerase. This series of steps continues for a specific number of cycles, as determined by               
user-defined instrument settings, which permits discrete read lengths of 40–300 bases. A base-calling             
algorithm assigns sequences and associated quality values to each read and a quality checking              
pipeline evaluates the Illumina data from each run. 
 
The next figures summarise the process: 
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The Illumina sequencing-by-synthesis approach: Cluster strands created by bridge amplification are 
primed and all four fluorescently labelled, 3 -OH blocked nucleotides are added to the flow cell with 
DNA polymerase. The cluster strands are extended by one nucleotide. Following the incorporation 
step, the unused nucleotides and DNA polymerase molecules are washed away, a scan buffer is 
added to the flow cell, and the optics system scans each lane of the flow cell by imaging units called 
tiles. Once imaging is completed, chemicals that affect cleavage of the fluorescent labels and the 3 
-OH blocking groups are added to the flow cell, which prepares the cluster strands for another round of 
fluorescent nucleotide incorporation. Next-Generation DNA Sequencing Methods Mardis, E.R. Annu. 
Rev. Genomics Hum. Genet. 2008. 9:387–402 
 
A short movie of the Illumina sequencing-by-synthesis approach can be found here: 
https://www.youtube.com/watch?v=fCd6B5HRaZ8 

Base-calling 
Base-calling involves evaluating the raw intensity values for each fluorophore and comparing            

them to determine which base is actually present at a given position during a cycle. To call bases on                   
the Illumina platform, the positions of clusters need to be identified during the first few cycles. This is                  
because they are formed in random positions on the flowcell as the annealing process is stochastic.  

If there are too many clusters, the edges of the clusters will begin to merge and the image                  
analysis algorithms will not be able to distinguish one cluster from another (remember, the software is                
dealing with upwards of half a million clusters per square millimeter – that's a lot of dots!). 
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The above figure illustrates the principles of base-calling from cycles 1 to 9. If we focus on the                  
highlighted cluster, one can observe that the colour (wavelength) of light observed at each cycle               
changes along with the brightness (intensity). This is due to the incorporation of complementary              
ddNTPs containing fluorophores. So at cycle 1 we have a T base, at 2 a G base and so on. If the                      
colour or intensity is ambiguous the sequencer will mark it as an N. Other clusters are also visible in                   
the images; these will represent different monoclonal clusters with different sequences. 
 
The base calling algorithms turn the raw intensity values into T,G,C,A or N base calls. There are a                  
variety of methods to do this and the one mentioned here is by no means the only one available, but it                     
is often used as the default method on the Illumina systems. Known as the 'Chastity filter' it will only                   
call a base if the intensity divided by the sum of the highest and second highest intensity is less than a                     
given threshold (usually 0.6). Otherwise the base is marked with an N. In addition the standard                
Illumina pipeline will reject an entire read if two or more of these failures occur in the first 4 bases of a                      
read (it uses these cycles to determine the boundary of a cluster). 
 
Note that these processes are carried out at the sequencing facility and you will not need to                 
perform any of these tasks under normal circumstances. They are explained here as useful              
background information. 
 
 

 

What are paired-end reads and why are they necessary? 
Paired-end sequencing is a remarkably simple and powerful modification to the standard            

sequencing protocol. It is nearly always worth obtaining paired-end reads if performing genomic             
sequencing. Typically sequencers of any type are only able to sequence a portion of DNA (e.g. 100bp                 
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in the case of Illumina) before the fidelity of the enzyme and de-phasing of clusters (see later) increase                  
the error rate beyond tolerable levels. As a result, on the Illumina system, a fragment which is 500bp                  
long will only have the first 100bp sequenced. 
 
If the size selection is tight enough and you know that nearly all the fragments are close to 500bp long,                    
you can repeat the sequencing reaction from the other end of the fragment. This will yield two reads                  
for each DNA fragment separated by a known distance. In the figure below the dashed regions                
represent the complete DNA fragment and the solid lines the regions we are able to sequence: 
  

  

Read 1 

100bp 
 
 
 
 
 
 
 
 
 
 
 
In the diagram below you can see a description of the nomenclature used when talking about paired                 
end reads  

 
The added information gained by knowing the distance between the two reads can be invaluable for                
spanning repetitive regions. In the figure below, the light coloured regions indicate repetitive sections              
of DNA. If a read contains only repetitive DNA, an alignment algorithm will be able to map the read to                    
many locations in a reference genome. However, with paired-end reads, there is a greater chance that                
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at least one of the two reads will map to a unique region of DNA. In this way one of the reads can be                        
used to anchor the other read in the pair and help resolve the repetitive region. Paired-end reads are                  
often used when performing de-novo genome sequencing (i.e. when a reference is not available to               
align against) because they enable contiguous regions of DNA to be ordered, or when characterizing               
variants such as large insertions or deletions. 
 
Other forms of paired-end sequencing with much larger distances (e.g. 10kb) are possible with so               
called 'mate-pair' libraries. These are usually used in specific projects to help order contigs in de-novo                
sequencing projects. We will not cover them here, but the principles behind them are similar. 

 

Inherent Sources of Error 
No measurement is without a certain degree of error. This is true in sequencing. As such there                 

is a finite probability that a base will not be called correctly. There are several possible sources: 

Frequency Cross-talk and Normalisation Errors 
When reading an A base, a small amount of C will also be measured due to frequency overlap and                   
vice-versa. Similarly with G and T bases. Additionally, from the figure below, it should be clear that the                  
extent to which the dyes fluoresce differs. As such it is necessary to normalize the intensities. This                 
normalisation process can also introduce errors. 
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Frequency response curve for A and C dyes 
(Intensity y-axis and frequency on the x-axis) 

Phasing/Pre-phasing 
This occurs when a strand of DNA lags or leads the other DNA strands within a cluster. This                  

introduces additional background noise into the signal and reduces the intensity of the true base. In                
the example below we have a cluster with 7 strands of DNA (very small, but this is just an example).                    
Five strands are on a C-base, whilst 1 is lagging behind (called phasing) on a G base and the                   
remaining strand is running ahead of the pack (confusingly called pre-phasing) on an A base. As such                 
the C signal will be reduced and A and G boosted for the rest of the sequencing run. Too much                    
phasing or pre-phasing (i.e. > 15-20%) usually causes problems for the base calling algorithm and               
result in clusters being filtered out. 

 
Other issues: 

● Biases introduced by sample preparation – your sequencing is only as good as your              
experimental design and DNA extraction. Also, remember that sometimes samples will be            
put through several cycles of PCR before sequencing (unless they are PCR-free libraries).             
This also introduces a potential source of bias. 

● High AT or GC content sequences – this reduces the complexity of the sequence and               
can result in higher error rates. 

● Homopolymeric sequences – long stretches of a single base can make it difficult to              
determine phasing and pre-phasing rates. This can introduce errors in determining the            
precise length of a hompolymeric stretch of sequence. (This much more of a problem on               
the old 454 and Ion Torrent than Illumina platforms but still worth bearing in mind).               
Especially if you encounter indels which have been called in homopolymeric tracts. 

● Some motifs can cause loops and other steric clashes. 
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See Nakamura et al, Sequence-specific error profile of Illumina sequencers Nuc. Acid Res. first              
published online May 16, 2011 doi:10.1093/nar/gkr344 

Reads Containing Adaptors 
Some reads will contain adaptor sequences after sequencing, usually at the end of the read.               

This is usually because of short sample DNA fragments, which result in the polymerase reading into                
the adaptor region. Occasionally this can also happen because of mis-priming. It is important to               
remove or trim sequences containing these reads as the adaptor sequences can prevent reads              
mapping to a reference sequence and will adversely affect de-novo assembly. 

Part 2: QC, Alignment and Variant Calling 

Introduction 
In this section of the workshop we will be analysing a strain of E.coli which was sequenced at 

the Exeter Sequencing Service. It is closely related to the K-12 substrain MG1655 
(http://www.ncbi.nlm.nih.gov/nuccore/U00096). We want to obtain a list of single nucleotide 
polymorphisms (SNPs), insertions/deletions (indels) and any genes which have been deleted. 

Quality Control 
In this section of the workshop we will be learning about evaluating the quality of an Illumina                 

MiSeq sequencing run. The process described here can be used with any FASTQ formatted file from                
any platform (e.g. Illumina, PacBio etc). 
 
Sequencers produce vast quantities of data. A single Illumina MiSeq lane can produce up to 15                
Gigabases (Gbp) of data. However, the error rates of these platforms are 10-100x higher than Sanger                
sequencing. They also have very different error profiles. Unlike Sanger sequencing, where the most              
reliable sequences tend to be in the middle, NGS platforms tend to be most reliable near the                 
beginning of each read. 
 
Quality control usually involves: 

● Calculating the number of reads before quality control 
● Calculating GC content, identifying overrepresented sequences 
● Remove or trim reads containing adaptor sequences 
● Remove or trim reads containing low quality bases 
● Calculating the number of reads after quality control 
● Rechecking GC content, identifying overrepresented sequences 

 
Quality control is necessary because: 

● CPU time required for alignment and assembly is reduced 
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● Data storage requirements are reduced 
● Reduce potential for bias in variant calling and/or de-novo assembly 

Quality scores 
To account for the possible errors and provide an estimate of confidence in a given base-call,                

the Illumina sequencing pipeline assigns a quality score to each base called. Nowadays, all quality               
scores are calculated using the Phred scale (Ewing B, Green P: Basecalling of automated sequencer traces                
using phred. II. Error probabilities. Genome Research 8:186-194 (1998)). Each base call has an associated               
base call quality which estimates chance that the base call is incorrect. 
 
Q10 = 1 in 10 chance of incorrect base call 
Q20 = 1 in 100 chance of incorrect base call 
Q30 = 1 in 1000 chance of incorrect base call 
Q40 = 1 in 10,000 chance of incorrect base call 
 
For most Illumina runs you should see quality scores between Q20 and Q40. 
Note that these as only estimates of base-quality based on calibration runs performed by the 
manufacturer against a sample of known sequence with (typically) a GC content of 50%. Extreme 
GC biases and/or particular motifs or homopolymers can cause the quality scores to become 
unreliable. Accurate base qualities are an essential part in ensuring variant calls are correct. As a                
rough and ready rule we generally assume that with Illumina data anything less than Q20 is not useful                  
data and should be excluded. 
 
Once you understand the FASTQ format try to work out what is happening to the quality scores here                  
and why: 

FASTQ Format 
A FASTQ entry consists of 4 lines 
 

 
 
 
 
 
1. A header line beginning with '@' containing information about the name of the sequencer, and               
the position at which the originating cluster was located and whether it passed purity filters. 
2. The DNA sequence of the read 
3. A header line or line beginning with just '+' 
4. Quality scores for each base encoded in ASCII format 
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To reduce storage requirements, the FASTQ quality scores are stored as single characters and              
converted to numbers by obtaining the ASCII quality score and subtracting either 33 or 64. For                
example, the above FASTQ file is Sanger formatted and the character ‘!’ has an ASCII value of 33.                  
Therefore the corresponding base would have a Phred quality score of 33-33=Q0 (i.e. totally              
unreliable). On the other hand a base with a quality score denoted by ‘@’ which has an ASCII value                   
of 64 would have a Phred quality score of 64-33=Q31 (i.e. less than 1/1000 chance of being incorrect). 
 
Just to confuse matters, there are several different methods of encoding quality scores in the ASCII                
format. Although as of 2011, Illumina 1.8+/Phred+33 is used universally (and most likely, this will not                
change in the future).  
 

 

SSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSS............................................
......... 

 

..........................XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX.............

......... 

  ............................... IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII ...................... 
  ................................. JJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJ ...................... 
  LLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLL .................................................... 
  !"#$%&'()*+,-./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_`abcdefghijklmnopqrstuvwxyz{|}~ 

  |                         |    |        |                              |                     | 

 33                        59   64       73                            104                   126 

  0........................26...31.......40  

                           -5....0........9.............................40  

                                 0........9.............................40  

                                    3.....9.............................40  

  0.2......................26...31.........41  

 

 S - Sanger        Phred+33,  raw reads typically (0, 40) 
 X - Solexa        Solexa+64, raw reads typically (-5, 40) 
 I - Illumina 1.3+ Phred+64,  raw reads typically (0, 40) 
 J - Illumina 1.5+ Phred+64,  raw reads typically (3, 40) 
     with 0=unused, 1=unused, 2=Read Segment Quality Control Indicator (bold)  

     (Note: See discussion above). 

 L - Illumina 1.8+ Phred+33,  raw reads typically (0, 41) 
 

 
Note that the latest Illumina CASAVA 1.8 pipeline (released June 2011), outputs in fastq-sanger rather               
than Illumina 1.3+. Thus Illumina 1.3+ and other Illumina scoring metrics are unlikely to be               
encountered if you are using Illumina sequencing data generated after July 2011.  

Quality control – Evaluating the Quality of Illumina Data 
The first task when one receives sequencing data is to evaluate its quality and determine               

whether all the cash you have handed over was well-spent! To do this we will use the FastQC toolkit                   
(https://www.bioinformatics.babraham.ac.uk/projects/fastqc/). FastQC offers a graphical visualisation      
of QC metrics, but does not have the ability to filter data. 
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Task 1 
Open a terminal window. From your home directory change into: 
workshop_materials/genomics_tutorial/data/sequencing/ecoli_exeter/ directory and list the directory 
contents, e.g. 

 

cd ~/workshop_materials/genomics_tutorial/data/sequencing/ecoli_exeter/ 

ls -l  
 

***Note that you will also see two other directories here as well: blast_precompute and 
denovo_assembly. Don’t worry about these directories for now as we will come back to them later in 
the tutorial. 

For the purposes of this tutorial, we have already cleaned the data so you will see four files 

Raw reads: 

● read 1 (E_Coli_CGATGT_L001_R1_001.fastq)  

● read 2 (E_Coli_CGATGT_L001_R2_001.fastq) 

Cleaned reads:  

● read 1 (E_Coli_CGATGT_L001_R1_001.filtered.fastq) 
● read 2 (E_Coli_CGATGT_L001_R2_001.filtered.fastq) 

These are paired-end data and so reads from the same pair can be identified because they will have                  
the same header. Many programs require that the read 1 and read 2 files have the reads in the same                    
order. We will look at the raw reads. To view the first few headers we can use the head and grep                     
commands: 

head E_Coli_CGATGT_L001_R1_001.fastq | grep MISEQ 

head E_Coli_CGATGT_L001_R2_001.fastq | grep MISEQ 
 

 

The only difference in the headers for the two reads is the read number. Of course this is no guarantee                    
that all the headers in the file are consistent. To get some more confidence repeat the above                 
commands using 'tail' instead of 'head' to compare reads at the end of the files.  

 

You can also check that there is an identical number of reads in each file using cat, grep and wc –l: 

cat E_Coli_CGATGT_L001_R1_001.fastq | grep MISEQ | wc -l 

18 of 88 



 

cat E_Coli_CGATGT_L001_R2_001.fastq | grep MISEQ | wc -l 
 

Now, let's run the fastqc program on the data. Unlike the QC lab, we will open up a Graphical User                    
Interface (GUI) and load the data this way. To do this, run:  

fastqc &  

 

Load the E_Coli_CGATGT_L001_R1_001.fastq file from the 
~/workshop_materials/genomics_tutorial/data/sequencing/ecoli_exeter directory. 
The fastqc program performs a number of tests which determines whether a green tick (pass),               
exclamation mark (warning), or red cross (fail) is displayed. However, it is important to realise that                
fastqc has no knowledge of what your library is or should look like. All of its tests are based on a                     
completely random library with 50% GC content. Therefore if you have a sample which does not                
match these assumptions, it may 'fail' the library. For example, if you have a high AT or high GC                   
organism it may fail the per sequence GC content. If you have any barcodes or low complexity                 
libraries (e.g. small RNA libraries) they may also fail some of the sequence complexity tests. 

The bottom line is that you need to be aware of what your library is and whether what fastqc is                    
reporting makes sense for that type of library. 
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In this case we have a number of errors and warnings which at first sight suggest there has been a                    
problem - but don't worry too much yet. Let's go through them in turn. 

Quality Scores 
This is one of the most important metrics. If the quality scores are poor, either the wrong                 

FASTQ encoding has been guessed by fastqc (see the title of the chart), or the data itself is poor                   
quality. This view shows an overview of the range of quality values across all bases at each position in                   
the FASTQ file. Generally anything with a median quality score greater than Q20 is regarded as                
acceptable; anything above Q30 is regarded as 'good'. For more details, see the help documentation               
in fastqc. 

 

 

In this case this check is red - and it is true that the quality drops off at the end of the reads. It is                         
normal for read quality to get worse towards the end of the read. You can see that at 250 bases the                     
quality is still very good.  
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Per tile Sequence Quality 
This is a purely technical view on the sequencing run, it is more important for the team running                  

the sequencer. The sequencing flowcell is divided up into areas called cells. The colour of the tiles                 
indicate the read quality and you can see that the quality drops off in some cells faster than others.                   
This maybe because of the way the sample flowed over the flowcell or a mark or smear on the lens of                     
the optics. 

 

Per-base Sequence Content: 
For a completely randomly generated library with a GC content of 50% one expects that at any                 

given position within a read there will be a 25% chance of finding an A,C,T or G base. Here we can                     
see that our library satisfies these criteria, although there appears to be some minor bias at the                 
beginning of the read. This may be due to PCR duplicates during amplification or during library                
preparation. It is unlikely that one will ever see a perfectly uniform distribution. See              
http://sequencing.exeter.ac.uk/guide-to-your-data/quality-control/ for examples of good vs bad runs as         
well as the fastqc help for more details. 
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Sequence Duplication Levels: 
In a library that covers a whole genome uniformly most sequences will occur only once in the                 

final set. A low level of duplication may indicate a very high level of coverage of the target sequence,                   
but a high level of duplication is more likely to indicate some kind of enrichment bias (e.g. PCR                  
over-amplification). 

This module counts the degree of duplication for every sequence in the set and creates a plot showing                  
the relative number of sequences with different degrees of duplication.  
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Overrepresented Sequences 
This checks for sequences that occur more frequently than expected in your data. It also               

checks any sequences it finds against a small database of known sequences. In this case it has found                  
that a small number of reads 4000 out of 600000 appear to contain a sequence used in the                  
preparation for the library. A typical cause is that the original DNA was shorter than the length of the                   
read - so the sequencing overruns the actual DNA and runs in to the adaptors used to bind it to the                     
flowcell. 
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There are other reports available: 

Have a look at them and at what the author of FastQC has to say here: 
https://www.bioinformatics.babraham.ac.uk/projects/fastqc/Help/3%20Analysis%20Modules/ or check 
out their youtube tutorial video: https://www.youtube.com/watch?v=bz93ReOv87Y. 

 

Remember the error and warning flags are his (albeit experienced) judgement of what typical data               
should look like. It is up to you to use some initiative and understand whether what you are seeing is                    
typical for your dataset and how that might affect any analysis you are performing. 

Task 2 
Do the same for the raw read 2 as we have for raw read 1. Open fastqc and analyse the read 2 file.                       
Look at the various plots and metrics which are generated. How similar are they? 
 
Also look at the cleaned reads. How do they differ? You should notice very little change (since                 
comparatively few reads were filtered). However, you should notice a significant improvement in             
quality and the absence of adaptor sequences. 
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We can perform a quick check (although this by no means guarantees) that the sequences in read 1                  
and read 2 are in the same order by checking the ends of the two files and making sure that the                     
headers are the same. 

 
head E_Coli_CGATGT_L001_R1_001.filtered.fastq | grep MISEQ 

head E_Coli_CGATGT_L001_R2_001.filtered.fastq | grep MISEQ 

tail E_Coli_CGATGT_L001_R1_001.filtered.fastq | grep MISEQ 

tail E_Coli_CGATGT_L001_R2_001.filtered.fastq | grep MISEQ 

 
Check the number of reads in each filtered file. They should be the same. To do this use the grep                    
command to search for the number of times the header appears, e.g. 
 
grep -c “MISEQ” E_Coli_CGATGT_L001_R1_001.filtered.fastq  
 

Do the same for the E_Coli_CGATGT_L001_R2_001.filtered.fastq file. 

Note: Typically when submitting raw Illumina data to NCBI or EBI you would submit unfiltered data, so                 
don't delete your original fastq files! 
 
A note on quality control using MultiQC 
 
MultiQC (https://multiqc.info/) is software which will aggregate reports (such as fastqc) across a whole              
experiment. For example, it will aggregate fastqc reports for multiple samples. Say you have 1000               
samples in an experiment, you’re not going to want to open 1000 tabs on an internet browser! MultiQC                  
supports many other QC softwares (such as outputs from qualimap, quast, bcftools). At the time of                
writing (2019), MultiQC supports 72 commonly-used bioinformatics tools. Take a look!  
 
A note on checking for contaminants: 
 
A number of tools are available now which also enable to you to quickly search reads and assign them                   
to particular species or taxonomic groups. These can serve as a quick check to make sure your                 
samples or libraries are not contaminated with DNA from other sources. If you are performing a                
de-novo assembly for example and unwittingly have DNA sequence present from multiple organisms,             
you will risk poor results and chimeric contigs. 
 
Some ‘contaminants’ can turn out to be inevitable by-products of sampling and DNA extraction. This is                
often the case with algae or other symbionts. In addition, some groups have made some amazing                
discoveries such as the discovery of a third symbiont (which turned out to be a yeast) in lichen.                  
http://science.sciencemag.org/content/353/6298/488.full  
 
Some tools you can use to check the taxonomic classification of reads include: 
 

● Kraken 
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● Centrifuge 
● Blobology 
● Kaiju 
● Blast (in conjunction with subsampling your reads) and Krona to plot results. 

 
Blobtools is also a useful tool for quality control post assembly. Blobtools visualizes the GC content,                
coverage, and taxonomic classification of assembled contigs to enable screening for potential            
contaminants. You can read more about Blobtools here , but we won’t do either of these steps today.  

Aligning Illumina Data to a Reference Sequence 
Now that we have checked the quality of our raw data, we can begin to align the reads against                   

a reference sequence. In this way we can compare how the reference sequence and the strain we                 
have sequenced compare to one another. 
 
To do this we will be using a program called BWA (Burrows Wheeler Aligner Li H. and Durbin R. (2009)                    
Fast and accurate short read alignment with Burrows-Wheeler Transform. Bioinformatics, 25:1754-60.). This            
uses an algorithm called (unsurprisingly) Burrows Wheeler to rapidly map reads to the reference              
genome. BWA also allows for a certain number of mismatches to account for variants which may be                 
present in strain 1 vs the reference genome. Unlike other alignment packages such as Bowtie (version                
1) BWA allows for insertions or deletions as well. (Note, there is now a Bowtie2 tool that allows for insertions and                     
deletions, but we’ll continue to use BWA here). There are also a host of newer aligners such as minimap2                   
(https://github.com/lh3/minimap2) that allow for long-read sequencing and employ different algorithms.          
In fact, Heng Li (creator of both BWA and minimap2) suggests that minimap2 is now superior,                
although bwa is still recommended for short read genomic data. For information on this, please see                
Heng Li’s post here: http://lh3.github.io/2018/04/02/minimap2-and-the-future-of-bwa  
 
By mapping reads against a reference, what we mean is that we want to go from a FASTQ file listing                    
lots of reads, to another type of file (which we'll describe later) which lists the reads AND where/if it                   
maps against the reference genome. The figure below illustrates what we are trying to achieve here.                
Along the top in grey is the reference sequence. The coloured sequences below indicate individual               
sequences and how they map to the reference. If there is a real variant in a bacterial genome we                   
would expect that (nearly) all the reads would contain the variant at the relevant position rather than                 
the same base as the reference genome. Remember that error rates for any single read on second                 
generation platforms tend to be around 0.5-1%. Therefore a 300bp read is on average likely to contain                 
at 2-3 errors. 
 
Let's look at 2 potential sources of artefacts. 
 

Sequencing Error 
The region highlighted in green on the right shows that most reads agree with the reference                

sequence (i.e. C-base). However, 2 reads near the bottom show an A-base. In this situation we can                 
safely assume that the A-bases are due to a sequencing error rather than a genuine variant since the                  
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‘variant’ has only one read supporting it. If this occurred at a higher frequency however, we would                 
struggle to determine whether it was a genuine variant or an error. 

PCR Duplication 
The highlighted region in red on the left shows where there appears to be a variant. A C-base                  

is present in the reference and half the reads, whilst an A-base is present in a set of reads which all                     
start at the same position. 
 

  
Is this a genuine difference or a sequencing or sample prep error? What do you think? If this was a                    
real sample, would you expect all the reads containing an A to start at the same location? 
 
The answer is probably not. This 'SNP' is in fact probably an artefact of PCR duplication. I.e. the same                   
fragment of DNA has been replicated many times more than the average and happens to contain an                 
error at the first position. We can filter out such reads during alignment to the reference (see later). 
 
Note that the entire region above seems to contain lots of PCR duplicates with reads starting at the                  
same location. In the case of the region highlighted in red, this will likely cause a false SNP call. The                    
area in green also contains PCR duplicates – the As at these positions are probably either sequencing                 
errors or errors introduced during PCR. 
 
It's always important to think critically about any finding - don't assume that whatever bioinformatic               
tools you are using are perfect. Or that you have used them perfectly. 
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Indexing a Reference Genome 
Before we can start aligning reads to a reference genome, the genome sequence needs to be                

indexed. This means sorting the genome into easily searched chunks, a bit like an index in a book. 

Task 3: Genera ting an index file from the reference sequence 
Change directory to the reference directory: 
 

cd ~/workshop_materials/genomics_tutorial/data/reference/U00096/ 
 
In this directory we have 2 files. U00096.fna is a FASTA file which contains the reference genome                 
sequence. The U00096.gff file contains the annotation for this genome. We will use this later. 
 
First, let's looks at the bwa command itself. Type: 
 
bwa 
 
This should yield something like: 
 

 
BWA is actually a suite of programs which all perform different functions. We are only going to use two                   
during this workshop, bwa index, bwa mem 
 
If we type: 
bwa index  
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We can see more options for the bwa index command: 
 

 
 
By default bwa index will use the IS algorithm to produce the index. This works well for most                  
genomes, but for very large ones (e.g. vertebrate) you may need to use bwtsw. For bacterial genomes                 
the default algorithm will work fine. 
 
Now we will create a reference index for the genome using BWA: 
 
bwa index U00096.fna 
 
If you now list the directory contents, you will notice that the BWA index program has created a set of                    
new files. These are the index files BWA needs. 

Task 4: Aligning Reads to the Indexed Reference Sequence 
 

Now we can begin to align read 1 and read 2 to the reference genome. First of all change back                    
into the ~/workshop_materials/genomics_tutorial/data/sequencing/ecoli_exeter/ directory    
and create a subdirectory to contain our remapping results. 
 
cd ~/workshop_materials/genomics_tutorial/data/sequencing/ecoli_exeter/ 

 

mkdir remapping_to_reference 

 

cd remapping_to_reference 
 
We’ll use the ‘bwa mem’ alignment algorithm to map the reads to the target genome. Let's explore the                  
alignment options BWA MEM has to offer. Type: 
 
bwa mem 
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The basis format of the command is: 
 

Usage: bwa mem [options] <idxbase> <in1.fq> <in2.fq> 
 
We can see that we need to provide BWA with a FASTQ files containing the raw reads (denoted by                   
<in.fq> and <in2.fq>) to align to a reference file (listed as <idxbase>). There are also a number of                  
options. The most important are the maximum number of differences in the seed (-k i.e. the first 32 bp                   
of the sequence vs the reference), the number of processors the program should use (your machine                
has 2 processors). 
 
Our reference sequence is in  
~/workshop_materials/genomics_tutorial/data/reference/U00096/U00096.fna 

 
Our filtered reads in  
~/workshop_materials/genomics_tutorial/data/sequencing/ecoli_exeter/E_Coli_CGATGT_

L001_R1_001.filtered.fastq 

~/workshop_materials/genomics_tutorial/data/sequencing/ecoli_exeter/E_Coli_CGATGT_

L001_R2_001.filtered.fastq 

 
So to align our paired reads using processors and output to file            
E_Coli_CGATGT_L001_filtered.sam: 
 
type, all on one line: 
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bwa mem -t 2 

~/workshop_materials/genomics_tutorial/data/reference/U00096/U00096.fna 

~/workshop_materials/genomics_tutorial/data/sequencing/ecoli_exeter/E_Coli_

CGATGT_L001_R1_001.filtered.fastq 

~/workshop_materials/genomics_tutorial/data/sequencing/ecoli_exeter/E_Coli_

CGATGT_L001_R2_001.filtered.fastq > E_Coli_CGATGT_L001_filtered.sam 

 

This will take about 5 minutes to complete. 
There will be quite a lot of output but the end should look like: 
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Viewing the alignment 
 
Once the alignment is complete, list the directory contents and check that the alignment file is present. 
 
ls -lh 
 

 
Note: ls -lh outputs the size of the file in human readable format (780Mb in this case – yours may be                     
slightly different depending on the storage options you selected when you started the AMI) 
 
The raw alignment is stored in what is called SAM format (Simple AlignMent format). It is in plain text                   
format and you can view it if you wish using the 'less' command. Do not try to open the whole file in a                       
text editor as you will likely run out of memory! 
 
less E_Coli_CGATGT_L001_filtered.sam 
 

 
 
Each alignment line has 11 mandatory fields for essential alignment information such as mapping              
position, and a variable number of optional fields for flexible or aligner specific information. For further                
details as to what each field means see https://en.wikipedia.org/wiki/SAM_(file_format) or          
http://samtools.sourceforge.net/SAM1.pdf 

Task 9: Convert SAM to BAM File 
Before we can visualise the alignment however, we need to convert the SAM file to a BAM                 

(Binary AlignMent format) which can be read by most software analysis packages. To do this we will                 
use another suite of programs called samtools. Type: 
 

samtools view 
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We can see that we need to provide samtools view with a reference genome in FASTA format file (-T),                   
the -b and -S flags to say that the output should be in BAM format and the input in SAM, plus the                      
alignment file. 
 
Remember our reference sequence is in: 
~/workshop_materials/genomics_tutorial/data/reference/U00096/U00096.fna 

 
Type (all on one line): 
 
samtools view -bS -T 

~/workshop_materials/genomics_tutorial/data/reference/U00096/U00096.fna 

E_Coli_CGATGT_L001_filtered.sam > E_Coli_CGATGT_L001_filtered.bam 
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This should take around 2 minutes. Note that for larger datasets you may wish to set multiple threads                  
as well with the --threads option. 
 

ls -lh 
 
It's always good to check that your files have processed correctly if something goes wrong it's better to                  
catch it immediately. 
 
Note that the bam file is smaller than the sam file - this is to be expected as the binary format is more                       
efficient. 

Task 5: Sort BAM File 
Once this is complete we then need to sort the BAM file so that the reads are stored in the                    

order they appear along the chromosomes. We can do this using the samtools sort command. In this                 
instance, we will sort  
 

samtools sort -n E_Coli_CGATGT_L001_filtered.bam -o 

E_Coli_CGATGT_L001_filtered.sorted.bam 

 

The -n option sorts the sam file by read name (which is needed below for samtools fixmate) 
This will take another minute or so.  

Task 6: Remove Suspected PCR Duplicates 
Especially when using paired-end reads, samtools can do a reasonably good job of removing              

potential PCR duplicates (see the first part of this workshop if you are unsure what this means). 
 
Again, samtools has a great little command to do this called markdup. To run this tool, we will have to                    
generate some intermediate files (see Task 9 for cleaning these up afterwards), using other samtools               
programs. At each stage of the process, we will document which tool has been run by appending the                  
name of the tool on the end of the file. 
 
To run samtools markdup, you’ll first need to run samtools fixmate which fills in various coordinates                
and flags from a name-sorted alignment (hence why used the -n option above) 
 
On the command-line type: 
 

samtools fixmate -m E_Coli_CGATGT_L001_filtered.sorted.bam 

E_Coli_CGATGT_L001_filtered.sorted.fixmate.bam 

 
And then sort the file again (this time without the -n option!), which will sort the file by genomic                   
coordinates. 
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samtools sort E_Coli_CGATGT_L001_filtered.sorted.fixmate.bam -o 

E_Coli_CGATGT_L001_filtered.sorted.fixmate.position.bam  
 

 Now we can run samtools markdup to remove PCR duplicates! 
 

samtools markdup E_Coli_CGATGT_L001_filtered.sorted.fixmate.position.bam 

E_Coli_CGATGT_L001_filtered.sorted.fixmate.position.markdup.bam 
 
You may notice some warnings about inconsistent BAM file for pair - this is just a warning that a pair of                     
reads does not align together on the genome within the expected tolerance - it is normal to expect                  
some of these, and you can ignore. 

Task 7: Index the BAM File 
Most programs used to view BAM formatted data require an index file to locate the reads                

mapping to a particular location quickly. You can think of this as an index in a book, telling you where                    
to go to find particular phrases or words. We'll use the samtools index command to do this. 
 
Type: 
samtools index 

E_Coli_CGATGT_L001_filtered.sorted.fixmate.position.markdup.bam 
 
We should obtain a .bai file (known as a BAM-index file). 

Task 8: Obtain Mapping Statistics 
Finally we can obtain some summary statistics. 
 

samtools flagstat 

E_Coli_CGATGT_L001_filtered.sorted.fixmate.position.markdup.bam > 

mappingstats.txt 
 
This should only take a few seconds. Once complete view the mappingstats.txt file using a text-editor                
(e.g. gedit or nano) or the 'more' command. 
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So here we can see we have 1269900 reads in total, none of which failed QC. 
72.31% of reads mapped to the reference genome and 71.98% mapped with the expected 500-600bp               
distance between them. 1414 reads could not have their read-pair mapped. 
 
0 reads have mapped to a different chromosome than their pair (0 has a mapping quality > 5 – this is a                      
Phred scaled quality score much as we say in the FASTQ files). If there were any such reads they                   
would likely due to repetitive sequences 

Task 9: Cleaning up 
We have a number of leftover intermediate files which we can now remove to save space. 

 
Type (all on one line): 
 

rm E_Coli_CGATGT_L001_filtered.sam E_Coli_CGATGT_L001_filtered.sorted.bam 

E_Coli_CGATGT_L001_filtered.sorted.fixmate.bam 

E_Coli_CGATGT_L001_filtered.sorted.fixmate.position.bam 

 

In case you get asked if you are sure to remove 4 arguments type in “yes” and hit enter. 
You should now be left with the processed alignment file, the index file and the mapping stats. 
 
Well done! You have now mapped, filtered and sorted your first whole genome data-set! 
Let's take a look at it! 
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Task 10: QualiMap 
Qualimap (http://qualimap.bioinfo.cipf.es/) is a program that summarises the alignment in much           

more detail than the mapping stats file we produced. It’s a technical tool which allows you to assess                  
the sequencing for any problems and biases in the sequencing and the alignment rather than a tool to                  
deduce biological features. 
 
There are a few options to the program, We want to run bamqc. Type: 
 
qualimap bamqc 
 
to get some help on this command. 
 
To get the report, first make sure you are in the directory:  
~/workshop_materials/genomics_tutorial/data/sequencing/ecoli_exeter/remapping_to_r

eference 

then run the command: 
 
qualimap bamqc -outdir bamqc -bam 

E_Coli_CGATGT_L001_filtered.sorted.fixmate.position.markdup.bam -gff 

~/workshop_materials/genomics_tutorial/data/reference/U00096/U00096.gff 
 
this creates a subfolder called bamqc 
 
move into this directory and run  
 
firefox qualimapReport.html 
 
There is a lot in the report so just a few highlights: 
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This shows the number of reads that 'cover' each section of the genome. The red line shows a rolling                   
average around 50x - this means that on average every part of the genome was sequenced 50X. It is                   
important to have sufficient depth of coverage in order to be confident that any features you find in                  
your data are real and not a result of sequencing errors.  
 
What do you think the regions of low/zero coverage correspond to? 
 

38 of 88 



 

 
The Insert Size Histogram displays the range of sizes of the DNA fragments. It shows how well your                  
DNA was size selected before sequencing. Note that the 'insert' refers to the DNA that was inserted                 
between the sequencing adaptors, so equates to the size range of the DNA that was used. 
In this case we have 300 base pair paired end reads and our insert size varies around 600 bases - so                     
there should only be a small gap between the reads that was not sequenced. 
 
Have a look at some of the other graphs produced. 

Task 11: Load the Integrative Genomics Viewer 
The Integrative Genome Viewer (IGV) is a tool developed by the Broad Institute for browsing               

interactively the alignment data you produced. It has a wealth of features and we can only cover some                  
basics to get you started. Go to http://www.broadinstitute.org/igv/ to get more information. 
 
In your terminal, type  
 
igv.sh 
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Or you can click the icon on the desktop. 
IGV viewer should appear: 

  
 
Notice that by default a human genome has been loaded. 

Task 12a: Import the E.coli U00096 Reference Genome to IGV 
By default IGV does not contain our reference genome. We'll need to import it. 
 
Click on 'Genomes ->Create .genome file...' 
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Enter the information above and click on ‘OK’ . 
 
IGV will ask where it can save the genome file. Your home directory will be fine.  
 

  
 
Click 'Save' again. 
Note that the genome and the annotation have now been imported. 
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Task 12b: Load the BAM File 
Load the alignment file. Note that IGV requires the .bai index file to also be in the same directory. 
 
Select File... and Load From File 
 
Select the bam file and click open 
 
Once loaded your screen should look similar to the following. Note that you can load more BAM files if                   
you wish to compare different samples or the results of different mapping programs. 
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Select the chromosome U00096.3 if it is not already selected 
 

 
 
Use the +/- keys to zoom in or use the zoom bar at the top right of the screen to zoom into                      
about 1-2kbases as above 

  

 
 
Right click on the main area and select view as pairs 
 
The gray graph at the top of the figure indicates the coverage of the genome: 

 
The more reads mapping to a certain location, the higher the peak on the graph. You'll see a coloured                   
line of blue, green or red in this coverage plot if there are any SNPs (single-nucleotide polymorphisms)                 
present (there are none in the plot). If there are any regions in the genome which are not covered by                    
the reads, you will see these as gaps in the coverage graph. Sometimes these gaps are caused by                  
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repetitive regions; others are caused by genuine insertions/deletions in your new strain with respect to               
the reference. 
 
Below the coverage graph is a representation of each read pair as it is mapped to the genome. One                   
pair is highlighted. 

 
This pair consists of 2 reads with a gap (there may be no gap if the reads overlap) Any areas of                     
mismatch either due to inconsistent distances between paired-end reads or due to differences             
between the reference and the read are highlighted by a colour. The brighter (or less transparent) the                 
colour, the higher the base-calling quality is estimated to be. Differences in a single read are likely to                  
be sequencing errors. Differences consistent in all reads are likely to be mutations. 
 
Hover over a read to get detailed information about the reads' alignment: 
 

 
 
You don't need to understand every value, but compare this to the SAM format to get an idea of what                    
is there. 
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SNPs and Indels 
The following 3 tasks are open-ended. Please take your time with these. Read the examples               

on the following page if you get stuck. 

Task 13: Read about the Alignment Display Format 
 
Visit http://www.broadinstitute.org/software/igv/AlignmentData 

Task 14: Manually Identify a Region Without any Reads Mapping. 
It can be quite difficult to find even with a very small genome. Zoom out as far as you can and                     

still see the reads. Use the coverage plot from QualiMap to try to find it. Are there genes associated?  
 
Because of the way IGV handles BAM files, it will not display coverage information if you zoom out too                   
far. To get coverage information across the entire genome, regardless of how far you are zoomed out,                 
you’ll need to create a TDF file which contains a coverage information across windows of X number of                  
bases across the genome. You can do this within IGV: 
 
Select Tools->Run igvtools: 
 

 
 
Now load the BAM alignment file in the Input field and click Run: 
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Once completed, close the igvtools window and then you can load this TDF file as by: 
 
Select File -> Load from file… 
 
Load the newly created tdf file 
 
You should then see the extra coverage track which remains visible even after you zoom out.  
 

46 of 88 



 

 
 
 

 

Task 15: Identify SNPs and Indels Manually 
Can you find any SNPs? Which genes (if any) are they in? How reliable do they look? (Hint –                   

look at the number of reads mapping, their orientation - which strand they are on and how bright the                   
base-calls are). 
 

Example: Identifying Variants Manually 
Here are some regions where there are differences in the organism sequenced and the              

reference: Can you interpret what has happened to the genome of our strain? Try to work out what is                   
going on yourself before looking at the comment 
 
Paste each of the genomic locations in this box and click go 

 
 
U00096.3:2,108,392-2,133,153 

U00096.3:3,662,049-3,663,291 

U00096.3:4,296,249-4,296,510 

U00096.3:565,965-566,489 
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Region U00096.3:2,108,392-2,133,153 

 
 
This area corresponds to the drop in coverage identified by Qualimap. It looks like a fairly large region                  
of about 17 kbases which was present in the reference and is missing from our sequenced genome. It                  
looks like about 12 genes from the reference strain are not present in our strain - is this real or an                     
artefact? 
 
Well it is pretty conclusive we have coverage of about 60X either side of the deletion and nothing at all                    
within. There are nice clean edges to the start and end of the deletion. We also have paired reads                   
which span the deletion. This is exactly what you would expect if the two regions of coverage were                  
actually joined together. 
 

Region U00096.3:3,662,049-3,663,291 
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Zoom right in until you can see the reference sequence and protein sequence at the bottom of the                  
display. 
 
The first thing to note is that only discrepancies with respect to the reference are shown. If a read is                    
entirely the same as its reference, it will appear entirely grey. Blue and red blocks indicate the                 
presence of an 'abnormal' distance between paired-end reads. Note that unless this is consistent              
across most of the reads at a given position, it is not significant. 
 
Here we have a C->T SNP. This changes the codon from CAG->TAG (remember to check what strand                 
the gene is on this one is on the forward strand, if it was on the reverse strand you would have to take                       
the reverse complement of the codon to interpret the amino acid it codes for) and results in a                  
Gln->Stop mutation in the final protein product which is very likely to change the effect of the protein                  
product.  
 
Hover over the gene to get some more information from the annotation... Since it is a drug resistance                  
protein it could be very significant. 
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One additional check is that the SNPs occur when reading the forward strand. We can check this by                  
looking at the direction of the grey reads, or by hovering over the coverage graph - see previous                  
diagram. We can see that approximately half of the bases reporting the C->T mutation occur in read 1                  
(forward arrow), and half in read 2 (reverse arrow). This adds confidence to the base-call as it reduces                  
the likelihood of this SNP being the result of a PCR duplication error. 
 
Note that sequencing errors in Illumina data are quite common (look at the odd bases showing up in                  
the screen above). We rely on depth of sequencing to average out these errors. This is why people                  
often mention that a minimum median coverage of 10-20x across the genome is required for accurate                
SNP-calling with Illumina data. This is not necessarily true for simple organisms such as prokaryotes,               
but for diploid and polyploid organisms it becomes important because each position may have one,               
two or many alleles changed. 
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Regions U00096.3:4,296,332-4,296,428 

 
 
Much the same guidelines apply for indels as they do for SNPs. Here we have an insertion of two                   
bases CG in our sample compared to the reference. Again, we can see how much confidence we                 
have that the insertion is real by checking that the indel is found on both read 1 and read 2 and on                      
both strands.  
 
The insertion is signified by the presence of a purple bar. Hover your mouse over it to get more details                    
as above 
 
We can hover our mouse over the reference sequence to get details of the gene. We can see that it                    
occurs in a repeat region. 
 
One can research the effect that a SNP or Indel may have by finding the relevant gene at                  
http://www.uniprot.org/ (or google 'mdtF uniprot' in the previous case). 
 
It should be clear from this quick exercise that trying to work out where SNPs and Indels are manually                   
is a fairly tedious process if there are many mutations. As such, the next section will look at how to                    
obtain spreadsheet friendly summary details of these. 
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Region U00096.3:565,965-566,489 
This last region is more complex try to understand what genomic mutation could account for this            
pattern - discuss with a colleague or an instructor. 

Recap: SNP/Indel Identification 
1. Only changes from the reference sequence are displayed in IGV 
2. Genuine SNPs/Indels should be present on both read 1 and read 2 
3. Genuine SNPs/Indels should be present on both strands 
4. Genuine SNPs/Indels should be supported by a good (i.e. 20-30x) depth of coverage 
5. Very important mutations (i.e. ones relied upon in a paper) should be confirmed via 

PCR/Sanger sequencing. 

Automated Analyses 
Viewing alignments is useful when convincing yourself or others that a particular mutation is              

real rather than an artefact and for getting a feel for short read sequencing datasets. However, if we                  
want to quickly and easily find variants we need to be able to generate lists of variants, in which gene                    
they occur (if any) and what effect they have. We also need to know which (if any) genes are missing                    
(i.e. have zero coverage). 

Automated Variant Calling 
To call variants we can use a number of packages (e.g. VarScan, GATK). However here, we                

will show you how to use the bcftools package which comes with samtools. First, we need to generate                  
a pileup file which contains only locations with the variants and pass this to bcftools. 

Task 16: Identify SNPs and Indels using Automated Variant Callers 
Make sure you are in the directory. 
~/workshop_materials/genomics_tutorial/data/sequencing/ecoli_exeter/remapping_to_r

eference 

  
Let’s use samtools’ sister software bcftools to perform SNP/indel variant calling           
(https://samtools.github.io/bcftools/bcftools.html)  
 
Type bcftools in your terminal: 
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We will use bcftools mpileup to call SNPs/indels: 
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If you are running this on datasets with large numbers of samples with limited coverage where                
recombination is a factor, you can obtain increased sensitivity by passing all the BAM files to the                 
variant caller simultaneously (hence the multiple BAM file options in bcftools). There are also many               
other options here for variant calling, which you might adjust for variant calling in real life!  
 
Now let’s use bcftools mpileup to perform variant calling.  
 
First, let’s generate a Variant Call Format (VCF) file         
(https://samtools.github.io/bcftools/bcftools.html#mpileup) 
 
Type the following: 
 

bcftools mpileup -f 

~/workshop_materials/genomics_tutorial/data/reference/U00096/U00096.fna 

E_Coli_CGATGT_L001_filtered.sorted.fixmate.position.markdup.bam > 

var.raw.vcf 
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This may take 10 minutes or so and will generate a Variant Call Format (VCF) file containing the raw                   
unfiltered variant calls for each position in the genome. 
 
Now let’s use bcftools call to call variants: 
 

bcftools call -c -v --ploidy 1 -O v -o var.called.vcf var.raw.vcf 
 
Note that we are asking bcftools to call assuming a ploidy of 1 and to output only the variant sites in                     
VCF format. Using grep we can count how many sites were identified as being variant sites (i.e. sites                  
with a potential mutation). We ask grep not to count lines beginning with a comment (#). 
 
grep -v -c "^#" var.called.vcf 

 
You should find 320 or so sites.  
 
Now we just need to filter this a bit further to ensure we only retain regions where we have >90% allele                     
frequency 
 
We can do this using vcftools (http://vcftools.sourceforge.net/man_latest.html)  
  
vcftools --minDP 10 --min-alleles 2 --max-alleles 2 --non-ref-af 0.9 --vcf 

var.called.vcf --recode --recode-INFO-all --out var.called.filt  
 
This will create a file called var.called.filt.vcf.recode.vcf. Once complete, view the file using the 'more'               
command. You should see something similar to: (lines beginning with # are just comment lines               
explaining the output) 
 

 
 
You can see the chromosome, position, reference and alternate allele as well as a quality score for the                  
SNP. This is a VCF file (Variant Call File). This is a standard developed for the 1000 genomes project.                   
The full specification is given at http://samtools.github.io/hts-specs/VCFv4.2.pdf  
 
The lines starting DP and INDEL contain various details concerning the variants. For haploid              
organisms, most of these details are not necessary. 
 
This forms our definitive list of variants for this sample. 
 
Take a look at some of the variants we just excluded, was it justified? Remember there is no filter that                    
can keep all the correct variants and remove all the dubious! 
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You can load the VCF file to IGV: 
 

 
 

Task 17: Compare the Variants Found using this Method to Those           
You Found in the Manual Section 

Can you see any variants which may have been missed? Often variants within a few bp of                 
indels are filtered out as they could be spurious SNPs thrown up by a poor alignment. This is                  
especially the case if you use non-gapped aligners such as Bowtie. 

Quickly Locating Genes which are Missing Compared to the Reference 
 
We can use a command from the BEDTools package (http://bedtools.readthedocs.org/en/latest/) to           
identify annotated genes which are not covered by reads across their full length. 
 
Type the following on one line: 
coverageBed -a 

E_Coli_CGATGT_L001_filtered.sorted.fixmate.position.markdup.bam 

~/workshop_materials/genomics_tutorial/data/reference/U00096/U00096.gff -b 

> gene_coverage.txt 
 
This should only take a minute or so. The output contains one row per annotated gene - the 13th                   
column contains the proportion of the gene that is covered by reads from our sequencing. 1.00 means                 
the gene is 100% covered and 0.00 means no coverage. 
 
We can use the unix program sort to see which genes are missing. In this case, we are sorting by the                     
13 column (-k) 
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If we sort by this column we can see which genes are missing  
 
sort -k 13 gene_coverage.txt | more 
 
 
That concludes the first part of the course. You have successfully, QC'd, filtered, remapped and               
analysed a whole bacterial genome! Well done! 
 
In the next part, we will be looking at how to extract and assemble unmapped reads. This will enable                   
us to look at material which may be present in the strain of interest but not in the reference sequence. 
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Part 3: Assembly of Unmapped Reads 

Introduction 
In this section of the workshop we will continue the analysis of a strain of E.coli. In the previous                   

section we cleaned our data, checked QC metrics, mapped our data and obtained a list of variants                 
and an overview of any missing regions.  
 
Now, we will examine those reads which did not map to the reference genome. We want to know what                   
these sequences represent. Are they novel genes, plasmids or just contamination? 
 
To do this we will extract unmapped reads, evaluate their quality, prepare them for de novo assembly,                 
assemble them using SPAdes, generate assembly statistics and then produce some annotation via             
BLAST and RAST. 

Extraction and QC of Unmapped Reads 

Task 1: Extract the Unmapped Reads 
 
First of all make sure you are in the 
~/workshop_materials/genomics_tutorial/data/sequencing/ecoli_exeter directory 
Then create a directory called unmapped_assembly in which we will do our de novo assembly and 
analysis. Move into the unmapped_assembly directory. 
 
Now we will use the bam2fastq program (http://gsl.hudsonalpha.org/information/software/bam2fastq)        
to extract from the BAM file just those reads which did NOT map to the reference genome. The                  
bam2fastq program has a number of options, most of which are self-explanatory. Type (all on one                
line): 
 
bam2fastq --no-aligned -o unaligned#.fastq 

../remapping_to_reference/E_Coli_CGATGT_L001_filtered.sorted.fixmate.positi

on.markdup.bam 
 

The --no-aligned option means only extract reads which did not align. The -o unaligned\# means dump                
read 1 into a file called unaligned_1.fastq and read 2 into a file unaligned_2.fastq. The program should                 
successfully create two files.  
 
Note that some reads were singletons (i.e. one read mapped to the reference, but the other did not).                  
These will not be included in this analysis. 
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Task 2 
Check that the number of entries in both fastq files is the same. Also check that the last few                   

entries in the read 1 and read 2 files have the same header (i.e. that they have been correctly paired). 

Task 3: Evaluate QC of Unmapped Reads 
Use the fastqc program to look at the statistics and QC for the unaligned_1.fastq and               

unaligned_2.fastq files. 
 
Do these look reasonably good? Remember, some reads will fail to map to the reference because                
they are poor quality, so the average scores will be lower than the initial fastqc report we did in the                    
remapping workshop. The aim here is to see if it looks as though there are reads of reasonable quality                   
which did not map. 
 
Assuming these reads look ok, we will proceed with preparing them for de novo assembly. 

De-novo Assembly 
de novo is a Latin expression meaning "from the beginning," "afresh," "anew," "beginning again". 

When we perform a de novo assembly we try to reconstruct a genome or part of the genome from our                    
reads without making any prior assumptions (in contrast to remapping where we compare our reads to                
what we think is a close reference sequence).  
 
The advantage is that is that de novo assembly can reveal completely novel results, identify horizontal                
gene transfer events for example. The disadvantage is that it is difficult to get a good assembly from short                   
reads and it can be prone to misleading results due to contamination and mis-assembly. 

Task 4: Learn More About de novo Assemblers 
To understand more about de-novo assemblers, read the technical note at: 

https://www.illumina.com/Documents/products/technotes/technote_denovo_assembly_ecoli.pdf 
 
N.B. You will also learn more in the next section so don’t worry if it doesn’t all make sense                   
immediately. You should however understand the idea of the k-mer and broadly how the assembly is                
built up from them. 

Task 5: Generate the Assembly 
We will be using an assembler called SPAdes (http://cab.spbu.ru/software/spades/). It generally           
performs pretty well with a variety of genomes. It can also incorporate longer reads produced from                
PacBio sequencers that we will use later. 
 
One big advantage is that it is not just a pure assembler - it is a suite of programs that prepare the                      
reads you have, assembles them and then refines the assembly. 
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SPAdes runs the modules that are required for a particular dataset and it produces the assembly with                 
a minimum of preparation and parameter selection - making it very straightforward to produce a               
decent assembly. As with everything in bioinformatics you should try to assess the results critically and                
understand the implications for further analysis. 
 
Let's start the assembler because it takes about 20 minutes to run (this might be a nice time to get tea                     
☺ ) 
 
spades.py -k 21,33,55,77,99,127 --careful -o spades_assembly -1 

unaligned_1.fastq -2 unaligned_2.fastq 
 
We are telling it to run the SPAdes assembly pipeline with a range of k-mer sizes (-k); specifying                  
--careful tells it to run a mismatch correction algorithm to reduce the number of errors; put the output in                   
the spades_assembly directory and the reads to assemble.  
  
Just because SPAdes does a lot for you does not mean you should not try to understand the process. 
 
Have a read of this: 
http://thegenomefactory.blogspot.co.uk/2013/08/how-spades-differs-from-velvet.html  
It is a discussion of how SPAdes differs from Velvet another widely used assembler, it explains the                 
overall process nicely: 
 
" 

1. Read error correction based on k-mer frequencies using BayesHammer 
2. De Bruijn graph assembly at multiple k-mer sizes, not just a single fixed one. 
3. Merging of different k-mer assemblies (good for varying coverage) 
4. Scaffolding of contigs from paired end/mate pair reads 
5. Repeat resolution from paired end/mate pair data using rectangle graphs 
6. Contig error correction based on aligning the original reads with BWA back to contigs 

“ 
 
Try to understand the steps in the context of the whole picture: 
 
Can you explain why error correction of reads becomes more important as k-mer length increases?  
When the assembly is complete change to the spades_assembly directory and look at the output. 
 
Let's take a look at some of the more important content. 

params.txt  
This contains a summary of the parameters used for assembly - it is useful so you can repeat                  

the exact analysis performed, or can remember you setting when you want to publish the genome. 
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contigs.fasta 
This contains the final results of the assembly in fasta format. 

scaffolds.fasta 
This contains the final results after scaffolding (which means using paired end information to              

join contigs together with gaps). In this case the files are identical, probably because the sum of the                  
lengths of our paired reads is not much smaller than our insert size (there are very few large gaps                   
between reads). 

assembly_graph.fastg 
Contains SPAdes assembly graph in FASTG format - this is a slightly different format that               

contains more information than fasta - for example it can contain alternative alleles in diploid               
assemblies. We don't need it here, but see http://fastg.sourceforge.net/FASTG_Spec_v1.00.pdf if you           
might be working with diploid organisms. You can use the Bandage (http://rrwick.github.io/Bandage/)            
to view this file. 

Task 6: Assessment of the Assembly 
We will use QUAST (http://quast.sourceforge.net/) to generate some statistics on the assembly            

(in the spades_assembly directory). 
 
quast.py --output-dir quast scaffolds.fasta 

 
This will create a directory called quast and create some statistics on the assembly you produced. 
 
cat quast/report.txt 
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N.B. Your results might differ from the picture here, don’t panic! 
 
Try to interpret the information in the light of what we were trying to do. Because we are assembling                   
unaligned reads we are not expecting a whole chromosome to pop out. We are expecting bits of our                  
strain that does not exist in the reference we aligned against; possibly some contamination; various               
small contigs made up of reads that didn't quite align to our reference like repetitive or highly                 
recombinant regions.  
 
The N50 and L50 measures are very important in a normal assembly and we will visit them later, they                   
are not really relevant to this assembly. 
 
You will notice that we have 1 contig 30-60kb long - what do you think this might be? And 12 other                     
contigs longer than 1kb. We need to find out what this is! 

Analysing the de novo Assembled Reads 
Now that we have assembled the reads and have a feel for how much (or in this case, how                   

little) data we have, we can set about analysing it. By analysing, we mean identifying which genes are                  
present, which organism they are from and whether they form part of the main chromosome or are an                  
independent unit (e.g. plasmid). 
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We are going to take a 3-prong approach. The first will simply search the nucleotide sequences of the                  
contigs against the NCBI non-redundant database. This will enable us to identify the species to which                
a given contig matches best (or most closely). The second will call open reading frames within the                 
contigs and search those against the Swissprot database of manually curated (i.e. high quality)              
annotated protein sequences. 

 
Why not just search the NCBI blast database? Well, remember nearly all of our biological knowledge                
is based on homology – if two proteins are similar they probably share an evolutionary history and may                  
thus share functional characteristics. Metrics to define whether two sequences are homologous are             
notoriously difficult to define accurately. If two sequences share 90% sequence identity over their              
length, you can be pretty sure they are homologous. If they share 2% they probably aren't. But what if                   
they share 30%? This is the notorious twilight zone of 20-30% sequence identity where it is very                 
difficult to judge whether two proteins are homologous based on sequence alone. 
 
To help overcome this searching more subtle signatures may help – this is where Pfam comes in.                 
Pfam is a database which contains protein families identified by particular signatures or patterns in               
their protein sequence. These signatures are modeled by Hidden Markov Models (HMMs) and used to               
search query sequences. These can provide a high level annotation where BLAST might otherwise              
fail. It also has the advantage of being much faster than BLAST. 

Task 7: Search Contigs against NCBI non-redundant Database 
Firstly we can filter out low coverage and very short contigs using a perl script: 

 
filter_low_coverage_contigs.pl < contigs.fasta > contigs.goodcov.fasta 
 
The following command executes a nucleotide BLAST search (blastn) of the sequences in the              
contigs.fa file against the non-redundant database. 
 
As this takes a long time to run the results have been precomputed and are available in                 
~/workshop_materials/genomics_tutorial/data/sequencing/ecoli_exeter/blast_precompu

te/unmapped_reads/ 

 
blastn -db ~/workshop_materials/genomics_tutorial/db/blast/nt -query 

contigs.goodcov.fasta -evalue 1e-06 -num_threads 2 -show_gis 

-num_alignments 10 -num_descriptions 10 -out contigs.fasta.blastn 
 
There are a lot of options in this command, let’s go through them: 

● -db is the prepared blast database to search 
● -evalue apply an e-value (expectation value) cutoff       

(http://www.ncbi.nlm.nih.gov/BLAST/tutorial/Altschul-1.html) cutoff of 1e-06 to limit ourselves to        
statistically significant hits (i.e. in this case 1 in 1 million likelihood of a hit to a database of this                    
size by a sequence of this length). 
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● -num_alignments and -num_descriptions flags tell blastn to only display the top 10 results             
for each hit,  

● -num_threads that it should use 2 CPU cores 
● -show_gis that it should include general identifier (GI) numbers in the output. 
● -out file in which to place the output. 

 
There is lots of information on running blast from the command line at             
http://www.ncbi.nlm.nih.gov/books/NBK1763/  
 
N.B. GI (GeneInfo Identifiers) are being phased out by NCBI so future versions of Blast and NCBI                 
databases will not support the –show_gis option and may break some downstream tools such as               
KronaTools and other databases. 
 
Open the results file: 
 
nano contigs.fasta.blastn 
 
BLASTN 2.2.30+ 

 

Reference: Zheng Zhang, Scott Schwartz, Lukas Wagner, and Webb 

Miller (2000), "A greedy algorithm for aligning DNA sequences", J 

Comput Biol 2000; 7(1-2):203-14. 

 

Database: Nucleotide collection (nt) 

           29,442,065 sequences; 84,823,117,434 total letters 

 

Query= NODE_9_length_3631_cov_29.6618_ID_17 

 

Length=3631 

                                                                      Score     E 

Sequences producing significant alignments:                          (Bits)  Value 

 

gi|549811571|gb|CP006698.1|  Escherichia coli C321.deltaA, comple...   6706   0.0  

gi|383395315|gb|JQ086376.1|  Enterobacteria phage HK630, complete...   6685   0.0  

gi|339305107|gb|JF340119.2|  Synthetic construct clone HO-HIS phy...   6680   0.0  

gi|186702979|gb|EU421722.1|  Cloning vector lambdaS2775, complete...   6680   0.0  

gi|215104|gb|J02459.1|LAMCG  Enterobacteria phage lambda, complet...   6680   0.0  

gi|1066312|gb|U39286.1|CVU39286  Cloning vector TLF97-3, phage la...   6674   0.0  

. . . 

 
Search for our largest contig - SPAdes names the contigs by increasing size. 
 
To do this in nano, do ctrl + w then search for NODE_1_ and press enter 
 

 
Query= NODE_1_length_67492_cov_565.407_ID_1 

 

Length=67492 

                                                                      Score     E 

Sequences producing significant alignments:                          (Bits)  Value 

 

gi|664682453|gb|CP008801.1|  Escherichia coli KLY, complete genome    79013   0.0  

gi|8918823|dbj|AP001918.1|  Escherichia coli K-12 plasmid F DNA, ...  78976   0.0  

gi|619497957|gb|KJ170699.1|  Escherichia coli strain K-12 plasmid...  65330   0.0  
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gi|665821556|gb|KJ484626.1|  Escherichia coli plasmid pH2332-166,...  65302   0.0  

gi|665821958|gb|KJ484628.1|  Escherichia coli plasmid pH2291-144,...  65213   0.0  

gi|28629230|gb|AF550679.1|  Escherichia coli plasmid p1658/97, co...  64591   0.0  

gi|4874241|gb|U01159.2|  Escherichia coli F sex factor transfer r...  61474   0.0  

gi|665822931|gb|KJ484636.1|  Escherichia coli plasmid pC59-153, c...  41227   0.0  

gi|301130432|gb|CP002090.1|  Salmonella enterica subsp. enterica ...  41026   0.0  

gi|301130304|gb|CP002089.1|  Salmonella enterica subsp. enterica ...  41026   0.0  

 
 
There are a number of good hits; notice from the contig header line that the average coverage is >500                   
and the coverage of our genome was around 50 - does this give you a clue to what it is? 

Task 8: Obtain Open Reading Frames 
The first task is to call open reading frames within the contigs. These are designated by                

canonical start and stop codons and are usually identified by searching for regions free of stop                
codons. We will use the EMBOSS package program getorf to call these. 
 
We will use codon table 11 which defines the bacterial codon usage table             
(https://www.ncbi.nlm.nih.gov/Taxonomy/Utils/wprintgc.cgi) and state that the sequences we are        
dealing with are not circular (they are nowhere near long enough!). We will also restrict the ORFs to                  
just those sequences longer than 300 nucleotides (i.e. 100 amino acids). We will store the results in                 
file contigs.orf.fa. 
 
getorf -table 11 -circular N -minsize 300 -sequence contigs.goodcov.fasta 

-outseq contigs.orf.fasta 
 
If we look at the output file we can see that it is a FASTA formatted file containing the name of the                      
contig on which the ORF occurs, followed by an underscore and a number (e.g. _1) to indicate the                  
number of the ORF on that contig. The numbers in square brackets indicate the start and end position                  
of the ORF on the contig (i.e. in nucleotide space). So in this example, the first ORF occurs on NODE                    
9 and is between position 934 and 1494. The third ORF occurs between positions 2400 and 2047 on                  
the reverse strand. This is a relatively short peptide sequence and is unlikely to be a genuine peptide. 
 
Also note that many ORFs do not start with a Methionine. This is because by default the getorf                  
program calls ORFs between stop codons rather than start and stop codons. Primarily this is to avoid                 
spurious ORFs due to Met residues within a protein sequence and to ensure untranslated regions are                
captured. 
 
 

>NODE_9_length_3631_cov_29.6618_ID_17_1 [934 - 1494]  

TERFEVSEINSQALREAAEQAMHDDWGFDADLFHELVTPSIVLELLDERERNQQYIKRRD 

QENEDIALTVGKLRVELETAKSKLNEQREYYEGVISDGSKRIAKLESNEVREDGNQFLVV 

RHPGKTPVIKHCTGDLEEFLRQLIEQDPLVTIDIITHRYYGVGGQWVQDAGEYLHMMSDA 

GIRIKGE 

>NODE_9_length_3631_cov_29.6618_ID_17_2 [2450 - 3529]  

RGSEMGRRRSHERRDLPPNLYIRNNGYYCYRDPRTGKEFGLGRDRRIAITEAIQANIELF 

SGHKHKPLTARINSDNSVTLHSWLDRYEKILASRGIKQKTLINYMSKIKAIRRGLPDAPL 

EDITTKEIAAMLNGYIDEGKAASAKLIRSTLSDAFREAIAEGHITTNHVAATRAAKSEVR 

RSRLTADEYLKIYQAAESSPCWLRLAMELAVVTGQRVGDLCEMKWSDIVDGYLYVEQSKT 
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GVKIAIPTALHIDALGISMKETLDKCKEILGGETIIASTRREPLSSGTVSRYFMRARKAS 

GLSFEGDPPTFHELRSLSARLYEKQISDKFAQHLLGHKSDTMASQYRDDRGREWDKIEIK 

>NODE_9_length_3631_cov_29.6618_ID_17_3 [2400 - 2047] (REVERSE SENSE)  

FVEQILSSILNRRWEYPAFPNPSTNCFKASWTSLACVPLLKCQVHRKVSAITRKKKPPSG 

GLVFFQFFNSNIGYVCMCYLRPYHPVVVAVVDVLRFDNSVEWLSIPFSCDSEVHLSSP 

Task 9: Search Open Reading Frames against NCBI non-redundant Database 
The first thing we can do with these open reading frames is to search them against the NCBI                  

non-redundant database of protein sequences to see what they may match. 
 
Here we will perform a BLAST search using the non-redundant (nr) database, using the blastp               
program and store the results in contigs.orf.blastp. We'll apply an e-value (expectation value)             
(http://www.ncbi.nlm.nih.gov/BLAST/tutorial/Altschul-1.html) cutoff of 1e-06 to limit ourselves to        
statistically significant hits (i.e. in this case 1 in 1 million likelihood of a hit to a database of this size by                      
a sequence of this length). The num_alignments and num_descriptions flags tell blastp to only display               
the top 10 results for each hit, the num_threads tells blastp to use 2 CPU cores and show_gis tells                   
blastp it should include general identifier (GI) numbers in the output. 
 
First reduce the number of orfs so that we have a manageable number - this small perl program that                   
selects 10% of the orfs. 
reduce_fasta_10x.pl < contigs.orf.fasta > contigs.orf.small.fasta 
 
Then you would type (all on one line). HOWEVER this takes several hours therefore the results have 
been precomputed for you in: 
~/workshop_materials/genomics_tutorial/data/sequencing/ecoli_exeter/blast_precompu

te/unmapped_reads/ 

 
blastp -db ~/workshop_materials/genomics_tutorial/db/blast/nr -query 

contigs.orf.small.fasta -evalue 1e-06 -num_threads 2 -show_gis 

-num_alignments 10 -num_descriptions 10 -out contigs.orf.blastp 

Task 10: Review the BLAST Format 
Open the results file with nano and search for plasmid in the text. You should find a number of                   

hits to plasmid related proteins - one example is below - can you find any others? (Remember we only                   
checked 10% of the orfs we found). This evidence is not conclusive, but combined with the high                 
coverage, it is starting to look like this contig is a plasmid. 
 
Query= NODE_1_length_67492_cov_565.407_ID_1_32 [31455 - 31889] 

 

Length=145 

                                                                      Score     E 

Sequences producing significant alignments:                          (Bits)  Value 

 

gi|446834068|ref|WP_000911324.1|  MULTISPECIES: pirin                   275   3e-92 

gi|446834058|ref|WP_000911314.1|  pirin                                 273   1e-91 

gi|446834061|ref|WP_000911317.1|  pirin                                 271   1e-90 

gi|446834059|ref|WP_000911315.1|  pirin                                 269   6e-90 
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gi|545289568|ref|WP_021572485.1|  hypothetical protein                  269   6e-90 

gi|446834062|ref|WP_000911318.1|  MULTISPECIES: pirin                   269   6e-90 

gi|585223672|ref|WP_024168023.1|  plasmid maintenance protein           268   9e-90 

gi|723058272|ref|WP_033552985.1|  plasmid maintenance protein           268   9e-90 

gi|446834056|ref|WP_000911312.1|  plasmid maintenance protein           268   1e-89 

gi|446834060|ref|WP_000911316.1|  pirin                                 268   1e-89 

 

 

>gi|446834068|ref|WP_000911324.1| MULTISPECIES: pirin [Escherichia] 

 gi|32470009|ref|NP_862949.1| plasmid maintenance protein [Escherichia coli] 

 gi|689926354|ref|YP_009060131.1| PIN domain protein [Escherichia coli] 

 gi|691230621|ref|YP_009070585.1| VapC toxin protein [Escherichia coli] 

 gi|28629266|gb|AAO49546.1| hypothetical protein [Escherichia coli] 

 gi|323184064|gb|EFZ69443.1| PIN domain protein [Escherichia coli OK1357] 

 gi|325495739|gb|EGC93600.1| plasmid maintenance protein [Escherichia fergusonii ECD227] 

 gi|385154377|gb|EIF16391.1| plasmid maintenance protein [Escherichia coli O32:H37 str. P4] 
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Additional Checks 

Task 11: Check that the Contigs do not Appear in the Reference Sequence 
In theory, the unmapped reads used to generate the contigs should not assemble into              

something which will map against the genome. However, it is always possible (especially with more               
complex genomes), that this might happen. To double-check move back to the folder containing the               
contigs.goodcov.fasta: 
 
blastn -subject 

~/workshop_materials/genomics_tutorial/data/reference/U00096/U00096.fna 

-query contigs.goodcov.fasta | more 
 
Here we use the BLAST+ package in a different mode to compare two sequences against each other.                 
Unlike the previous examples where we have searched against a database of sequences, here we are                
doing a simple search of the contigs against the reference genome we are using. Scroll down a little… 
 
Query= NODE_17_length_917_cov_10.3076_ID_33 

 

Length=917 

 

Subject= gi|545778205|gb|U00096.3| Escherichia coli str. K-12 substr. MG1655, 

complete genome 

 

Length=4641652 

 

 

 Score =   193 bits (104),  Expect = 3e-49 

 Identities = 186/227 (82%), Gaps = 0/227 (0%) 

 Strand=Plus/Plus 

 

Query  68       ACGGCATCCACGAAGGCGACAGAGGCTGCGGGAAGTGCGGTATCAGCATCGCAGAGCAAA  127 

                ||||||||||||||||||||||||||||| || ||||||    | ||| | ||||||||| 

Sbjct  1430285  ACGGCATCCACGAAGGCGACAGAGGCTGCTGGCAGTGCGACGGCGGCAGCTCAGAGCAAA  1430344 

 
You can see that some of the contigs that have been assembled hit the reference sequence. In the                  
record above the e-value is 3e-49 which is massively significant; however, the e-value is calculated as                
the chance of a hit this close against a random sequence of the same size. Since our subject                  
sequence is now very small and we know it is related to our strain it is not surprising that there are                     
some hits. We are concerned about whole contigs that map closely to the reference genome.  
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Part 4 De novo Assembly Using Short Reads 

Introduction 
In this section of the workshop we will continue the analysis of a strain of E.coli. In the previous                   

section we extracted those reads which did not map to the reference genome and assembled them.                
However, it is often necessary to be able to perform a de novo assembly of a genome. In this case,                    
rather than doing any remapping, we will start with the filtered reads we obtained in part 3 of the                   
workshop. 
 
To do this, we will use the program SPAdes again to try to get the best possible assembly for a given                     
genome. We will then generate assembly statistics and then produce some annotation via Pfam and               
BLAST. 

Task 1: Start the Assembly 
The assembly takes a while so the results have been pre-computed for you and are available 

in the directory: 
~/workshop_materials/genomics_tutorial/data/sequencing/ecoli_exeter/denovo_assembl

y 
 
If you were to run the command it would be as follows: 
spades.py -o denovo_assembly_rerun -1 

E_Coli_CGATGT_L001_R1_001.filtered.fastq -2 

E_Coli_CGATGT_L001_R2_001.filtered.fastq 
 
This will create a directory called denovo_assembly_rerun to hold the results. 

Assembly Theory 
We are using SPAdes (http://cab.spbu.ru/software/spades/) to perform our assembly. It is a de             

Bruijn graph based assembler, similar to other short read assemblers like velvet            
(https://www.ebi.ac.uk/~zerbino/velvet/). The advantage of SPAdes is that it does a lot of error             
correction and checking before and after the assembly which improves the final result. A downside of                
SPAdes is that it was designed for assembling reads from a single cell and although it does a good job                    
with DNA prepared from a community it can leave in some low coverage sequences which are likely to                  
be artifacts. 
 
You can read more about the comparison here 
http://thegenomefactory.blogspot.co.uk/2013/08/how-spades-differs-from-velvet.html  
 
SPAdes is also very easy to use - apart from telling it where your input files are the only parameter                    
that you might want to choose is the length of k-mer. 
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K-mer length. Rather than store all reads individually which would be unfeasible for Illumina type               
datasets, de Bruijn assemblers convert each read to a series of k-mers and store each k-mer once,                 
along with information about how often it occurs and which other k-mers it links to. A short k-mer                  
length (e.g. 21) reduces the chance that data will be missed from an assembly (e.g. due to reads                  
being shorter than the k-mer length or sequencing errors in the k-mer), but can result in shorter contigs                  
as repeat regions cannot be resolved. 
 
When using the Velvet assembler it is necessary to try a large combination of parameters to ensure                 
that you obtain the 'best' possible assembly for a given dataset. There is even a program called                 
VelvetOptimiser which does it for you. However, what 'best' actually means in the context of genome                
assembly is ill-defined. For a genomic assembly you want to try to obtain the lowest number of                 
contigs, with the longest length, with the fewest errors. However, although numbers of contigs and               
longest lengths are easy to evaluate, it is extremely difficult to know what is or isn't an error when                   
sequencing a genome for the first time. 
 
SPAdes allows you to choose more than one k-mer length - it then performs an assembly for each                  
k-mer and merges the result - trying to get the best of both worlds. It actually has some pre-calculated                   
k-mer settings based on the length of reads you have, so you don't even have to choose that. 
 
Let's look at the assembly process in more detail: 
 
Description of k-mers: 
 
What are they? Let's say you have a single read: 
 

The set of k-mers obtained from this read with length 6 (i.e. 6-mers) would be obtained by taking the                   
first six bases, then moving the window along one base, taking the next 6 bases and so-on until the                   
end of the read. E.g: 
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You may well ask, “So what? How does that help”? For a single read, it really doesn't help. However                   
let's say that you have another read which is identical except for a single base: 

 
Rather than represent both reads separately, we need only store the k-mers which differ and the                
number of times they occur. Note the 'bubble' like structure which occurs when a single base-change                
occurs. This kind of representation of reads is called a 'k-mer graph' (sometimes inaccurately referred               
to as a de-bruijn graph). 
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Now let's see what happens when we add in a third read. This is identical to the first read except for a                      
change at another location. This results in an extra dead-end being added to the path. 
 
 
The job of any k-mer based assembler is to find a path through the k-mer graph which correctly                  
represents the genome sequence. 
Images courtesy of Mario Caccamo 
 
Description of coverage cutoff: 
 
In the figure above, you can see that the coverage of various k-mers varies between 1x and 3x. The                   
question is which parts of the graph can be trimmed or removed so that we avoid any errors. As the                    
graph stands, we could output three different contigs as there are three possible paths through the                
graph. However, we might wish to apply a coverage cutoff and remove the top right part of the graph                   
because it has only 1x coverage and is more likely to be an error than a genuine variant. 
 
In a real graph you would have millions of k-mers and thousands of possible paths to deal with. The                   
best way to estimate the coverage cutoff in such cases is to look at the frequency plot of contig (node)                    
coverage, weighted by length. In the example below you can see that contigs with a coverage below                 
7x or 8x occur very infrequently. As such it is probably a good idea to exclude those contigs which                   
have coverage less than this – they are likely to be errors. 
 
Description of expected coverage: 
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In the example below you can see a stretch of DNA with many reads mapping to it. There are two                    
repetitive regions (A1 and A2) which have identical sequence. If we try to assemble the reads without                 
any knowledge of the true DNA sequence, we will end up with an assembly that is split into two or                    
more contigs rather than one. 
 
One contig will contain all the reads which did not fall into A1 and A2. The other will contain reads from                     
both A1 and A2. As such the coverage of the repetitive contig will be twice as high as that of the                     
non-repetitive contig. 
 
If we had 5 repeats we would expect 5x more coverage relative to the non-repetitive contig. As such,                  
provided we know what level of coverage we expect for a given set of data, we can use this                   
information to try and resolve the number of repeats we expect. 

 
 
 
A commonly used metric to describe the effectiveness of the assembly is called N50 - see                
http://en.wikipedia.org/wiki/N50_statistic for details.  

Task 2: Checking the Assembly 
Change into the denovo_assembly directory: 

 
cd denovo_assembly 
 
Firstly we can filter out low coverage and very short contigs using a perl script: 
 
filter_low_coverage_contigs.pl < scaffolds.fasta > scaffolds.goodcov.fasta 
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We will use QUAST again (http://quast.sourceforge.net/) to generate some statistics on the assembly. 
 
quast.py --output-dir quast scaffolds.goodcov.fasta 

 
This will create a directory called quast and create some statistics on the assembly you produced. 
 
cat quast/report.txt 
 

 
 
 
You can see that there are 81 contigs in the assembly - so it is still far from complete. 
The N50 is 136K and the N75 is 95K so most of the assembly is in quite large contigs. 
 
This is fairly normal for a short read assembly - don't expect complete chromosomes. 
 
A good check at this point is to map the original reads back to the contigs.fasta file and check that all                     
positions are covered by reads. Amazingly it is actually possible for de-novo assemblers to generate               
contigs to which the original reads will not map. 

Task 3: Map Reads Back to Assembly 
Here we will use BWA again to index the scaffolds.fasta file and remap the reads. This is                 

almost identical to the procedure we followed during the alignment section, the only difference is that                
instead of aligning to the reference genome, we are aligning to our newly created reference. 
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Make sure you are in the following directory: 
~/workshop_materials/genomics_tutorial/data/sequencing/ecoli_exeter/denovo_assembl

y/ 

  
Let's create a subdirectory to keep our work separate 
 
mkdir remapping_to_assembly 

cd remapping_to_assembly 

cp ../scaffolds.fasta . 

 
Let's start by indexing the contigs.fasta file. Type: 
 
bwa index scaffolds.fasta 
 
Once complete we can start to align the reads back to the contigs. Type (all on one line): 
 
bwa mem -t 2 scaffolds.fasta ../../E_Coli_CGATGT_L001_R1_001.filtered.fastq 

../../E_Coli_CGATGT_L001_R2_001.filtered.fastq > 

E_Coli_CGATGT_L001_filtered.sam 

 
Once complete we can convert the SAM file to a BAM file: 
 
samtools view -bS E_Coli_CGATGT_L001_filtered.sam > 

E_Coli_CGATGT_L001_filtered.bam 
 
And then we can sort the BAM file: 
 
samtools sort -o E_Coli_CGATGT_L001_filtered.sorted.bam 

E_Coli_CGATGT_L001_filtered.bam  

 
Once completed, we can index the BAM file: 
 
samtools index E_Coli_CGATGT_L001_filtered.sorted.bam 

 
We can then (at last!) obtain some basic summary statistics using the samtools flagstat command: 
 
samtools flagstat E_Coli_CGATGT_L001_filtered.sorted.bam 

 

75 of 88 



 

 
 
We can see here that very few of the reads do not map back to the contigs. Importantly 99% of reads                     
are properly paired which gives us some indication that there are not too many mis-assemblies. 
 
Run qualimap to get some more detailed information (and some images) 
 
qualimap bamqc -outdir bamqc -bam E_Coli_CGATGT_L001_filtered.sorted.bam 

 

firefox bamqc/qualimapReport.html 
 
In the Chromosome stats section: 
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The larger of our contigs have a mean coverage of around 50 - which is what we would expect from                    
our original alignment. 
 

 
 
There is one contig which has the size of 67492 - this is exactly the same as the contig we found in the                       
unmapped reads - that is pretty good indication that it is a separate sequence (remember we                
suspected a plasmid) and not integrated into the chromosome. Also, look at its coverage!  
 
Let's double check that by blasting these contigs against the unmapped assembly contigs from part 4: 
blastn -subject ../scaffolds.goodcov.fasta -query 

../../unmapped_assembly/spades_assembly/scaffolds.fasta > 

check_plasmid.blastn 

 
View the file using more or a text editor:  
more check_plasmid.blastn 
 
and about 30% of the way down the file you should find: (hint you can use nano Ctrl + w) 
 

Query= NODE_1_length_67492_cov_601.94_ID_2528 

 

Length=67492 

 

Subject= NODE_25_length_67492_cov_567.168_ID_49 

 

Length=67492 

 

 Score = 1.246e+05 bits (67474),  Expect = 0.0 

 Identities = 67486/67492 (99%), Gaps = 0/67492 (0%) 

 Strand=Plus/Plus 

 

This shows us that this contig exactly almost matches that in the unmapped assembly, strongly               
supporting that this is a plasmid sequence and not integrated into the chromosomes.  

Task 4: View Assembly in IGV 
 
Load up IGV from the console or desktop 
igv.sh 
 
Click Genomes -> Load Genome from File…. 
 
We are going to import the contigs we have assembled as the reference. Unlike the reference genome                 
though, we have no annotation available. Make sure you select the scaffolds.goodcov.fasta file             
for the complete de novo assembly (not the unmapped reads assembly). 
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Once loaded, click on File->Load From File… select the  
E_Coli_CGATGT_L001_filtered.sorted.bam file. Again, make sure you load the file in the           
remapping_to_assembly directory. 
 

 
 
Once loaded, explore some of the contigs in IGV. 
See if you can find anything unusual in any of the contigs. 
 
Here is one to get you started. 
Select NODE_3… 
 

 
Why does the contig start and end in repetitive sequence (indicated by the white reads)? You may                 
need to zoom in to see the details. Think about what an assembler will do if it cannot uniquely assign                    
reads.  
 
If an assembler cannot resolve these repetitive regions with paired-end reads or coverage information,              
it will generally be unable to assemble any further sequence for that contig. Therefore, it is quite                 
common to see contigs which start and end in sequence which is repeated elsewhere.  
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Here is another: 
 
Select NODE_49….. 
 
Right click on the reads and select view as pairs: 
 

 
 
What do you think is going on here? Try blasting the contig sequence using BlastX at                
http://blast.ncbi.nlm.nih.gov/Blast.cgi to identify which genes the contig contains. To obtain the           
sequence you can right click and select ‘Copy consensus sequence’: 
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You can also do the same for individual reads, but you need to un-select ‘View as pairs’ before right                   
clicking on a read. You may lose track of the paired-end reads and find it easier to copy the read name                     
before un-selecting ‘View as pairs’ and then pasting it into the ‘Select by name…’ search box. 
 
You should find that the contig contains at least two phage genes. There appear to be at least two                   
phages present, one which seems to be the full contig, the other with the red read-pairs seems to be                   
missing the sequence in the middle of the contig. 

Annotation of de novo Assembled Contigs 
We will now annotate the contigs using BLAST and Pfam as with the unmapped contigs. 

Task 5: Obtain Open Reading Frames 
As before, we’ll call open reading frames within the de-novo assembly. Again, we will use               

codon table 11 which defines the bacterial codon usage table          
(http://www.ncbi.nlm.nih.gov/Taxonomy/Utils/wprintgc.cgi) and state that the sequences we are        
dealing with are not circular. We will also restrict the ORFs to just those sequences longer than 300                  
nucleotides (i.e. 100 amino acids). We will store the results in file contigs.orf.fasta. 
 
Make sure you are in the denovo_assembly/ directory: 
 
getorf -table 11  -circular N -minsize 300 -sequence 

scaffolds.goodcov.fasta -outseq scaffolds.orf.fasta 
 

Hybrid de novo Assembly 
You will have seen that even with good coverage and a relatively long (300bp) paired end                

Illumina dataset - the assembly we get is still fairly fragmented. Our E.coli example assembles into 78                 
contigs and the largest contig is around 10% of the genome size. 
 
Why is this? 
 
One possible reason would be that regions of the original genome were not sequenced, or sequenced                
at too low coverage to assemble correctly. Regions of the genome will occur with different frequencies                
in the library that was sequenced - You can see this in the variation of coverage when you did the                    
alignment. This can be due to inherent biases in the preparation and the random nature of the                 
process.  
 
However, as coverage increases, the chances of not sequencing a particular region of the genome               
reduces, and the most significant factor becomes the resolution of repeats within the assembly              
process. If two regions contain the same or very similar sequences the assembler cannot reliably               
detect that they are actually two or more distinct sequences and incorrectly 'collapses' the repeat into                

80 of 88 

http://www.ncbi.nlm.nih.gov/Taxonomy/Utils/wprintgc.cgi


 

a single sequence. The assembler is now effectively missing a sequence and therefore breaks in the                
assembly occur. 
 
One resolution to this is to use a sequencing technology like PacBio which can produce longer reads -                  
the reads are then long enough to include the repeated sequence, plus some unique sequence, and                
the problem can then be resolved. 
 
An approach becoming more and more popular (now, a standard for genome assembly) is to combine                
technologies. For example: high quality Illumina sequencing to get the accuracy of reads combined              
with low quality PacBio sequencing to enable the repeats to be spanned and correctly resolved. 
 
Our exercise will be to use Illumina and PacBio datasets to assemble a species of pseudomonas. 
These are subsets of data used in "Evaluation and validation of de novo and hybrid assembly                
techniques to derive high-quality genome sequences" Utturkar et al., 2014.          
(http://www.ncbi.nlm.nih.gov/pubmed/24930142). This paper also contains a good explanation of the          
process and different approaches that are available. 

Task 6: QC the Data 
It is always important to check and understand the quality of the data you are working with: 

Change to the directory and run fastqc: 
 
cd ~/workshop_materials/genomics_tutorial/data/sequencing/pseudomonas_gm41 

 

fastqc 
 
Open the files SRR1042836a.fastq SRR491287a_1.fastq SRR491287a_2.fastq and look at the          
reports generated. 
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Note that the quality of the PacBio reads (SRR1042836a.fastq) is much lower than the Illumina reads                
with a greater than 1 chance in 10 of there being a mistake for most reads. 
 

 
However, importantly, the length of the PacBio reads is much longer. 
 
Trim the Illumina reads using the program fastq-mcf: 
 
fastq-mcf ../../reference/adaptors/adaptors.fasta SRR491287a_1.fastq 

SRR491287a_2.fastq -o SRR491287a_1.filtered.fastq -o 

SRR491287a_2.filtered.fastq -q 20 -p 10 -u -x 0.01 
 
You can check the number of filtered reads using grep –c and the quality if trimmed reads with fastqc                   
if you want. 
 
For this exercise we want the long reads from PacBio even though they are low quality. We are relying                   
on the assembler to use them appropriately. 

Task 7: Illumina Only Assembly 
Firstly let's construct an assembly using only the available Illumina data. 
Make sure you are in the directory: 
~/workshop_meterials/genomics_tutorial/data/sequencing/pseudomonas_gm41 

 
The next command will take some time so the data has been precomputed and is available in                 
illumina_assembly/ 
 
spades.py --threads 2 --careful -o illumina_only_assembly -1 

SRR491287a_1.filtered.fastq -2 SRR491287a_2.filtered.fastq 
 
Change to the directory illumina_only_assembly 
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Filter out low coverage and very short contigs using a perl script: 
 
filter_low_coverage_contigs.pl < scaffolds.fasta > scaffolds.goodcov.fasta 
 
Let's look at the metrics for the assembly. 
 
quast.py --output-dir quast scaffolds.goodcov.fasta 

 

cat quast/report.txt 
 

 
(Your results may be slightly different. This is because spades uses a random seed that changes                
every time) 

Task 8: Create Hybrid Assembly 
Now will execute the same command, but this time include the longer PacBio reads to see the                 

effect it has on our assembly. 
 

Change back into the directory  
 
Run (This may take some time so the data has been precomputed and is available in                
hybrid_assembly/ if you are impatient!): 
 
spades.py --threads 2 --careful -o hybrid_assembly --pacbio 

SRR1042836a.fastq -1 SRR491287a_1.filtered.fastq -2 

SRR491287a_2.filtered.fastq 
 
Change to the directory hybrid_assembly 
 
Filter out low coverage and very short contigs using a perl script: 
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filter_low_coverage_contigs.pl < scaffolds.fasta > scaffolds.goodcov.fasta 
 
Let's look at the metrics for the assembly - this time we will compare it with the illumina only assembly: 
 
quast.py --output-dir quast scaffolds.goodcov.fasta 

../illumina_only_assembly/scaffolds.goodcov.fasta 

 

cat quast/report.txt 
 

 
You can also explore the interactive html report: 
 
firefox quast/report.html 
 
It seems that using the longer reads has improved the completeness of our assembly - reducing the                 
number of contigs. 

Task 9: Align Reads Back to Reference 
Let's realign our original reads back to the assembly and see what we have - refer to previous                  

notes if you are unsure of the steps. 
 
Start in the hybrid assembly directory 
~/workshop_materials/genomics_tutorial/data/sequencing/pseudomonas_gm41/hybrid_ass

embly 

 

mkdir remapping_to_assembly 

 

cd remapping_to_assembly 
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cp ../scaffolds.fasta . 

 

bwa index scaffolds.fasta 
 
First remap the Illumina reads. Type all on one line: 
 
bwa mem -t 2 scaffolds.fasta ../../SRR491287a_1.filtered.fastq 

../../SRR491287a_2.filtered.fastq > gm41.illumina.sam 
 
Convert the sam to bam: 
samtools view -bS gm41.illumina.sam > gm41.illumina.bam 

 
Sort the bam file by genomic coordinate: 
samtools sort –o gm41.illumina.sorted.bam gm41.illumina.bam  

 
Index the bam file: 
samtools index gm41.illumina.sorted.bam 

 
Collect mapping stats: 
samtools flagstat gm41.illumina.sorted.bam > mappingstats.illumina.txt 
 
We can also map the PacBio reads, but for this we will use Heng Li’s new and improved aligner                   
minimap2 (https://github.com/lh3/minimap2#map-long-genomic). At the moment, this aligner is better         
for long reads, but for short genomic data (Illumina), Heng Li still recommends bwa. See this post by                  
Heng Li for more information (http://lh3.github.io/2018/04/02/minimap2-and-the-future-of-bwa). 
 
minimap2 -ax map-pb scaffolds.fasta ../../SRR1042836a.fastq > 

gm41.pacbio.sam 

 
And then the same as before (convert to bam, sort, index, mapping stats) 
 

samtools view -bS gm41.pacbio.sam > gm41.pacbio.bam 

 

samtools sort -o gm41.pacbio.sorted.bam  gm41.pacbio.bam  

 

samtools index gm41.pacbio.sorted.bam 

 

samtools flagstat gm41.pacbio.sorted.bam > mappingstats.pacbio.txt 
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You will notice that not such a high proportion of PacBio reads map back to the assembly. 
 
Now start igv: 
igv.sh 
 
Load your assembled genome - 
 
Click on genome - load from file  
 
Make sure you get the assembly from the hybrid_assembly (igv remembers the previous directory              
which may contain similar files.) 
 
Now load your 2 alignment files: 
click on load from File and then select gm41.pacbio.sorted.bam and gm41.illumina.sorted.bam 
 
On the toolbar select - "Show Details on Click"  

 
 
Find a region that has decent coverage of both reads and zoom in. 
(Region shown here: NODE_79_length_15988_cov_20.944_ID_49:7,963-8,084) 
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You can see that the PacBio reads are much longer, but the error rate particularly insertions and                 
deletions is much higher than for the Illumina reads. 
 
Explore a few other contigs to see if you can find something that looks like an error or mis-assembly.                   
Remember the assembly process is difficult and far from perfect. 

Summary 
You have seen that de-novo assembly of short reads is a challenging problem. Even for small                

genomes, the resulting assembly is fragmented into contigs and far from complete. 
 
Incorporating longer reads to produce a hybrid assembly can be used to reduce the fragmentation of                
the genome. We have only used a single (perhaps the simplest) technique to incorporate long reads.                
You can read more about hybrid assembly techniques here:         
http://www.ncbi.nlm.nih.gov/pubmed/24930142  
 

 
 

Concluding Remarks 
Well done! If you have reached this far, you deserve a good pat on the back and a cup of tea (or                      
a whisky). You have completed some of the most common tasks in genomics. You can use the                 
same machine and the same scripts to perform an analysis of any dataset!  
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If you need to transfer data to/from the instance a tutorial can be found at               
http://www.siteground.com/tutorials/ssh/ssh_winscp.htm or will be covered in the last session         
of this Workshop! 
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