16S rRNA Gene Amplicon Survey: Study Design and Case Study

Considerations for a Longitudinal Case Study of Antibiotic Treatment and Virus Infection

Scott A. Handley, PhD Assistant Professor Department of Pathology & Immunology Washington University School of Medicine

Rationale

- 16S amplicon surveys are extensively used to study the mouse bacterial microbiome in a large variety of contexts
 - e.g. disease, nutrition, sociology, neuroscience, etc.
- Frequently fail due to poor study design
 - Batch effects
 - Cage, paternity/breeding, facility, origin effects
 - Co-housed survival studies (specific example)
 - Statistical considerations
 - Detecting signal from noise
 - Minimize variance
 - Filtering out misbehaved data
- Many of these principles apply to other data types (RNAseq)

"Mouse microbes may make scientific studies harder to replicate" Kelly Servick. Science Aug 16, 2016

"Accounting for reciprocal host-microbiome interactions in experimental science" Stappenbeck, TS and Virgin HW. Nature. 2016 Jun 9;534(7606):191-9

Image credit: Davide Bonazzi/@Salmanart

Today's Case Study

Thackray LB, Handley SA, Gorman MJ, Poddar S, Bagadia P, Briseño CG, Theisen DJ, Tan Q, Hykes BL Jr, Lin H, Lucas TM, Desai C, Gordon JI, Murphy KM, Virgin HW, Diamond MS. Oral Antibiotic Treatment of Mice **Exacerbates the Disease Severity of Multiple Flavivirus Infections**. Cell Rep. 2018 Mar 27;22(13):3440-3453.e6. PubMed PMID: 29590614

Case Study: Effect of Antibiotics on Viral Pathogenesis

Cage and Mouse-to-Mouse Effects

Kool-Aid

D

D

Cage Effects: 14 days post-treatment (pre-infection)

1.00

0.75

Abundance

0.25

0.00

Vancomycin

Individual Mouse Isolation Schema

Individual Housing Results

Treatment

Vehicle

GroupedCage

- к
- L
- м
- N
- 0
- Ρ
- Q

R

Amplicon Surveys (Highly Opinionated!) Best-practices

It's the classic garbage in, garbage out all over again ...

16S rRNA Amplicon Survey

Study Design

Laboratory

Bioinformatics, Ecological Analysis and Statistics

Environmental samples DNA extraction **Genomic DNA** PCR and sequencing 16S rRNA sequencing TTTGTAAA-TCTTCAGATAA.. TTTGTCAAGTCTTTGGTGAA... TTTGTCAAGTCTTTGGTGAA... . . . Sequence comparison Bacteria **Phylogenetic trees** Archaea

> Tringe, S.G., Rubin, E.M. Nat Rev Genet. 2005 Nov;6(11):805-14

Side note: Amplicon Surveys vs. Metagenomics

Please hold your throwing tomatoes ...

16S Amplicon Surveys vs Metagenomics?

Nov;6(11):805-14

A Actual relative abundance NNN **DNA** contamination 100 Replication origin 0 0 Dividing 0 00000 bacterial population 0 0 Non-dividing bacterial population Paired-end sequencing **Reference-based** Estimated classification relative abundance Unknown taxa may not be detected

Nayfach S., Pollard KS. Cell. Aug 25;166(5):1103-16

Most of Your Decision Will Boil Down to \$\$\$

- Our labs per sample costs:
 - 16S = \$17.50 per sample
 - Metagenome = \$225.00 per sample
 - Has been estimated to be as low as \$100 per sample
- Study we will discuss today: 270 samples
 - \$4,725 vs. \$27 \$60,750
- Other considerations:
 - Understanding analytical space
 - Data storage

Image credit: The Internet Quote credit: Notorious B.I.G.

What are the stages of a 16S amplicon computational workflow and how can we create optimal data for analysis?

Researcher Input

* * * * ** * ** **

Sequence Clustering

Amplicon Clusters

OTU's are 3% different

Recognized Problems with Sequence Clustering

- False-positives: 1,000s of OTUs when only 10s of sequences are present
 - Due to clustering artifact / noisy sequences
 - Inflates richness (# of species)
 - Sparse matrices
- **Poor taxonomic resolution** defined by arbitrary radius (e.g. 97%)
- **Increased financial cost:** poor data efficiency
- **Increased computational cost:** Clustering is quadratic
- **Unstable:** Sequence and count frequently depend on input order

There is some hope

http://benjjneb.github.io/dada2/R/SotA.html

0 0 50 100

Step 1: Initial guess. All sequences + errors

$Pr(i \rightarrow j) =$

Step 2: Initial error model

	А	с	G	т
A	0.97	10-2	10-2	10-2
с	10-2	0.97	10-2	10-2
G	10.2	10.2	0.97	10.2
т	10.2	10.2	10.2	0.97

Step 3: Reject more sequences under new model & update

Convergence: All errors are plausible

Step 3: Unlikely error under model. Recruit errors. Update the model

_	А	с	G	т
A	0.97	10-2	10-2	10-2
с	10-2	0.97	10-2	10-2
G	10.2	10.2	0.97	10.2
т	10.2	10.2	10.2	0.97

Dada2: Callahan, BJ et al. Nat Methods. 2016

Raw Data
QA / QC
Clustering
De-replication / Counting
Chimera Removal
Taxonomic Assignment
Phylogenetic Tree
Sample QA / QC
Taxon Filtering
Ecological Analysis

ID	Sample 1	Sample 2	Sample 3	Sample 4
ASV 1	0	0	2	0
ASV 2	12	8	8	456
ASV 3	112	101	98	10
ASV 4	435	435	382	3
ASV 5	76	83	68	145

Sparse Matrix OTU Clustering

ID	Sample 1	Sample 2	Sample 3
OTU 1	0	0	1
OTU 2	1	0	0
OTU 3	1	0	0
OTU 4	1	1	1

ID	Sample 1	Sample 2	Sample 3
ASV 1	0	1	1
ASV 2	1	1	0
ASV 3	1	0	1
ASV 4	1	1	1

- More noisy than reality
- Bad for statistical inference
 - Multiple hypothesis testing
 - Poorly defined, difficult to separate distributions

Less Sparse Matrix Sequence Resolution

Making Things Normal Data Transformation

Data Transformation

log Transformation Shifts Towards Normality

Weiss S. et al. Normalization and microbial differential abundance strategies depend on data characteristics. Microbiome. 2017

Sample Outlier Detection

ID	Sample 1	Sample 2	Sample 3	Sample 4
ASV 1	0	0	2	0
ASV 2	12	8	8	456
ASV 3	112	101	98	10
ASV 4	435	435	382	3
ASV 5	76	83	68	145

. . .

n=724

... n=270

Bacteroidetes Firmicutes Proteobacteria Tenericutes Verrucomicrobia

- p

Phylum

- p
- n
- p
- n
- p
- _Actinobacteria _Bacteroidetes _Firmicutes _Proteobacteria _Tenericutes _Verrucomicrobia р

Sample Outlier Detection – Unexpectedly Low # of Sequences

Treatment

Vehicle

Ampicillin

Samples that "perform" unexpectedly

Treatment

Rules of Thumb for Sample Detection and Removal

- Justify and document!!!
- Except in extreme cases, test how sample removal alters your downstream results. Do the experiment!
- Know your data. When are you comfortable removing a sample based on your knowledge of the system
- Explore using multiple plot types
- Include enough detail to make analysis interpretable and reproducible

Understand your data better

Cleaned Data

Feature Outlier Detection

ID	Sample 1	Sample 2	Sample 3	Sample 4
ASV 1	0	0	2	0
ASV 2	12	8	8	456
ASV 3	112	101	98	10
ASV 4	435	435	382	3
ASV 5	76	83	68	145

. . .

n=724

Low-abundant feature removal is commonplace

 "We removed all taxa that were under 1% relative abundance and present in less than 3% of all samples."

Sequence/Taxa Outlier Detection *Filtering out low impact information*

Rules of Thumb for Feature Detection and Removal

- Justify and document!!!
- Except in extreme cases, test how feature removal alters your downstream results. Do the experiment!
- Know your data. When are you comfortable removing a feature based on your knowledge of the system
- Explore using multiple plot types
- Include enough detail to make analysis interpretable and reproducible

Beta Diversity Throughout the Course of the Experiment *Colored by Cage*

<u>Summary</u>

- Explore -> Document -> Test
- Does any of this really matter?
 - Sometimes?
 - Less so for community ecology measurements
 - More so for detection of differentially abundant taxa
 - Detailed exploration provides more opportunities for insights
 - Don't publish garbage data

Frequently Used 16S Analysis Techniques

Community Composition

- Broad overview
- Nothing statistical

Phylum

p_Bacteroidetes p_Firmicutes p_Proteobacteria p_Tenericutes p_Verrucomicrobia

Alpha Diversity: Richness

- Richness: Number of unique taxa (ASVs) that are observed in a sample
 - Taxonomy independent
 - Abundance independent (presence / absence)
- Loads of other Alpha diversity measures (Chao1, Shannon, Simpsons, etc.)

Richness Example

Beta Diversity

- Between sample similarity
 - Distance between one sample to all other samples
 - Multivariant
 - Can incorporate relative abundances or not
 - Can incorporate phylogenetic information or not
 - Most frequently displayed in an ordination plot

MDS of Bray Distances

To learn about distance measures and ordination: https://sites.google.com/site/mb3gustame/home

Differential Abundance Analysis

- What specific taxa are different between study groups?
 - Lots of methods
 - DeSeq2
 - Random Forest
 - LeFse
 - ANCOM
 - Gneiss
 - ...

Rest of today

- Morning: Resolve sequence variants with dada2
- Afternoon: Analyze antibiotic treated mice case study

Step 1: Initial guess. All sequences + errors

 $Pr(i \rightarrow j) =$

Step 2: Initial error model

G

10-2

10-2

10.2

0.97

10-2

10-2

0.97

10.2

C

10-2

0.97

10.2

10.2

0.97

10-2

10.2

10.2

А

C

G

T

Step 3: Reject more sequences under new model & update

Convergence: All errors are plausible

Step 3: Unlikely error under model. Recruit errors. Update the model

_	А	с	G	т
A	0.97	10-2	10-2	10-2
с	10-2	0.97	10-2	10-2
G	10.2	10.2	0.97	10.2
т	10.2	10.2	10.2	0.97

Dada2: Callahan, BJ et al. Nat Methods. 2016

Dada2 workflow

Select Raw Data

QC Data

Learn Errors

Dereplicate

Infer ASV

