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What | mean by demography

1. Population size going back in time
— Actually “effective population size” N,(t)
* We will come back to what this means
— Approximate time range 10k — 1M years ago
* Again we will see why
2. Population structure

— Subpopulations and when they split (and merged?)

* Based on explicit evolutionary models

— Relate patterns of (shared) genetic variation
accumulated since a common ancestor to history




Example: human history




Tree on two sequences

e Gustave Malécot (1940s)

Present (t=0) @ @

* Coalescence is joining together, in our case going
backwards in time

* Chance of coalescence per generation is 1/N
* TMRCA is exponentially distributed with mean N



Probability of observing a mutation

* To see a mutation, it must have happened on

one of the branches since the common
ancestor

* P(observed mutation) =2Tu
* E(observed difference rate) =6, =2Nu

* Humans are diploid, so 8=4N_u, where N,is
the effective population size

* For humans, 6_=~0.001
—1/800 — 1/1200 depending on population
* Hard to measure N, and u independently...



Effective population size

* Lots of mystique/angst about this

— Our definition is arguably at the core of the concept

* the reciprocal of the probability of sharing a parent in the
previous generation

e =1 /coalescence rate

 Why this is different from census population size:

— Long term averaging: many consequences occur over large
numbers of generations (often order of N,)

— Population structure generates non-random patterns of
coalescence, and non-independence between generations

— Maybe only a small percentage of individuals breed
— Selection favours some individuals over others

e But itis always something of this form that we get at
by population genetic analysis



For non-recombining sequence we can
estimate N_(t) from a dated tree

Y chr

N, estimated by
“Bayesian skyline”
method, essentially
looking at
1/coalescence rate, and
smoothing through the
discrete events.
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Note that there is a big
dip in male but not
female N, around 8kya
outside Africa, 5kya in
Africa. This is the time
of onset of agriculture.
Dominant males?
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On autosomes segments of fixed trees are
separated by ancestral recombination
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PSMC = Pairwise Sequentially Markovian Coalescent

Li and Durbin (2010): Inference of human
population history from individual genome sequences

Hidden Markov Model

State transitions:

/ recombinations

>

... emissions ...

State: coalescent time
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State: coalescent time
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* Move from left to right in the genome
— Let P(x|?) = prob(data up to x| TMRCA at x = ¢)
— Calculate P(x+1|t) = (3, P(x|s) r(z|s)) e(x)
e ¢(x) = “emission at x” = 2ut if a het, else (1-2ut)
* r(t|s) = prob(recombination from TMRCA s to 1)
= 2ps prob (coalesce back to f) w—_ Depends on
+(1-2ps) ift=s N(t) t'<s,t



Markov assumption

* This model assumes that
data to the left of X TMRCA atx = ¢
is independent of
data to the right of xTMRCA at x = ¢
* For standard mixing populations this is a very
good assumption

— Sequentially Markovian Coalescent (SMC)
approximation, McVean & Cardin 2005



Probability

# generations

PSMC-HMM reconstructs individual history
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Pairwise Sequentially Markovian Coalescent —
Hidden Markov Model

Data simulated using ms (Hudson)

Model the coalescent time t by e.g. 50 discrete bins,
spread logarithmically



Single human genome with bootstrap
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Human population history, with Neanderthals
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Advances since the original PSMC

1. Use SMC’ model which correctly handles
recombinations coalescing back to the same
ancestor (Stephan Schiffels, ...)

— Minor tweak to equations, but significant
— Can now fit recombination:mutation ratio
— Implemented in MSMC/MSMC2

2. Time speedup: linear not quadratic in number
of time slices (Kelley Harris, ... Song, 2014)



ICR (x10%)

Coalesecent N_(t) reflects ancestral
structure as well as population size

e PSMC actually measures A = 1/coalescence rate

e Structure can also change coalescence rate

— Li & Durbin supplement

— Olivier Mazet...Chikhi
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Migration between
islands controls
coalescent rate



Human population history, with Neanderthals

Population size (scaled in units of 4 Ngx 108
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Brief introduction to another system

. Lake Malawi Czc/zlzds @
- & M

Dramatic recent radiations of haplochromime
cichlids in the African rift valley great lakes

* Lake Malawi ~500 species within

last 1M years
So far we have sequenced ~300 species at 15-
20x coverage
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Lake Malawi cichlid PSMC

44444 — .Tr‘emitochranus.;

— Alticorpus

- Aulonocara

— Buccochromis
— Copadichromis
— Lethrinops :

— Nimbochromis
— Otopharynx '
- Placidochromis

4x10*
(Very) approximate time [years]
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|s structure associated
with speciation?

* There is increasing evidence that this is
often the case

— |deas of hybrid speciation, reuse of alleles
selected in different environments, hybrid
swarms and gene flow

e But thatis another talk...



Might structure be (partly) identifiable
in the PSMC model?

* The inferred values N(t) have dimension T, the number
of time bins

 But the transition matrix M has dimension T2

* Currently we derive M from N by theory assuming
panmixia
— |Is there a richer theory for structured populations?

— How to parameterise structural complexity S(t) at time t,
with associated theory for M(N,S)

 Or can we fit the transition matrix M unconstrained?
— Then search for evidence of structure within it
— And or do goodness of fit?



Going beyond two sequences

* Chance of coalescence per
generation from three
sequences is 3/N

e Once we have a coalescence we are back to
the situation with two sequences

* From j sequences chance is i(i-1)/2N



Digression: “The coalescent” model
(Kingman, 1980) A distribution on trees

(generations) Gl
e

* T(i) ~ exponential with mean 2N/i(i-1)

L

E[T()] E[T()/N]
i N=100 N=200 N=1000 N=100 N=200 N=1000
6 6.7 13 67 0.07 0.07 0.07
5 10 20 100 0.10 0.10 0.10
4 17 33 167 0.17 0.17 0.17
3
2

33 67 333 0.33 0.33 0.33
100 200 1000 1.00 1.00 1.00




Properties of the coalescent

* As we add extra sequences, they are
increasingly likely to coalesce very fast, and

increasingly unlikely to affect t

E[TMRCA] = Y E[T()] =2

ne full TMRCA

1

] ——

n

The expected height of the tree for many samples is only twice that with two samples

* Trees are very variable

— E.g. 4 samples

on 6 leaves
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Relationship between forwards in time (Wright-
Fisher) and backwards in time (Coalescent) models

::l /CP ::' Q,QO (:) / ) O }:B\Q time (gens.)
—~C A AN~ ~ A~
JQROIOY  JROTQY
:VJQ‘V'»\Q‘\_,() OO <1) )
'/‘\,l e //-\.) N ~~ :[\ (j\/\ N (,
e U AN ~ N TMRCA (t=5
OO J O ) ) O O - - - - — = =
:vl U \./) U v/g (\/ % Q)/g
() % O (6 C\ (:)/ (
J0AhQdn b OO
OO0 OFQDRO et 0
FJOOV OO ° 06 _ | Present (0)
Population evolution Coalescent tree

forwards backwards

The coalescent tree describes a sample from the forward process
Kingman coalescent generates an “exact” sample from Wright-Fisher



Genetic variation in a sample

 Mutations occur at random on the tree

— Separation of sources of randomness

 Random demography tree structure from coalescent
 Random sampling of mutations on the tree

Let S be the number of mutations = segregating sites

’ SR 0 ...,
E[S] =2u _ZZIT(') E[S]= ;Z’T(’) Watterson'’s theta

~ j=2

~ S
9 n . 2 9 _
E|S|=—) i S n—1
151 2Z i(i—1) 1
n—ll i—li
E[S]=6) -

=1 1 E(S) ~ O log n



Distribution of variant allele
frequencies

Density of mutations with frequency i in a sample of n
is dfi CEU

1/f distribution of

population allele

frequencies site frequency
spectrum SFS

Population minor allele frequency distribution of a
difference observed between two sequences is flat
— Probability (1/f).2f(1-f) = 2(1-f), folded at % is 2



Relaxation of assumptions (1)

* E.g. change in population size

changes the site frequency

Time

<
= e
i |
——

spectrum (SFS)

This is the basis of SFS-based i
demography inference E ﬁTH |
5 6. — 6, VoW %

(L) Daclining (¢) Expanding

() ) — - -
’ TaJIma sD \/Vm'(en —05) D>0 D<O
— Sensitive to number of rare mutations, so change in N,

— If D is positive there is a deficiency of rare mutations

* Excess recent coalescences, recent small N, - selection



Fig. 2 The expected site frequency spectrum (SFS) of the derived allele (the new mutation
arisen in the population) for three different demographic models: (i) a population that has
been of constant size throughout history; (ii) a model previously fit to the derived allele
frequency spectrum of Europeans, which includes an out-of-Africa population bottleneck and
a second, more recent, population bottleneck (21); and (iii) the same two-bottleneck model of
European history with the addition of recent exponential growth from a population size of
10,000 at the advent of agriculture to an extant effective population size of 10,000,000, which
amounts to 1.7% growth per generation during the last 400 generations.
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Individuals in human outbred populations
still carry many variants not in the large
sequence data sets (1000 Genomes etc.)

* Exponential population
growth in last 10,000 years
‘ gives long tips to the tree

* In “big” populations, tips

H are hundreds of
generations long, so tens of

thousands of private

variants per sample,

hundreds functional




This behaviour is very dependent on population
structure.
In genetic isolates the recent effective population
size is smaller, and the tips are shorter

L | ——
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What about recombination?

If points on the genome are very close, e.g.
adjacent, they share the same tree

If points are very far, their trees are sampled from
the coalescent independently

What happens in between?

A recombination in the ancestor of a modern
sequence made it out of two separate sequences,
one contributing to the left and one to the right



Recombination changes the tree as
vyou move along the sequence

Recombination

time
(past)

-
. 1 \
Flrst.CoaI eeeeeee t I
(hidden state)
o)
)
o,
Z
¢®
(N

Mutatuons

Typically recombination rate is comparable to or larger
than the mutation rate: both ~10-% /bp /gen in human
So “gene tree” varies every site in mixing populations



Ancestral Recombination Graph (ARG)

* The Ancestral Recombination Graph describes the way
that individual sequences in a population are related
— At a locus, sequences are related by a tree

— Ancestral recombinations change the tree as you move along
the chromosome

a ..C..G..A. 0 0O | :13
b ..T..G..C. 101 I—.F \ —‘—\ ,
c ..T..A..A. 1 10 R |
d ..T..A..C. 1 11 \ |

“Prune and graft” operation gOing left to r|ght



Coalescent with recombination

* ARG is a structure (data type)

* The probability distribution over ARGs that arises
when recombination is added to the standard

(Wright-Fisher) model is called the Coalescent with
Recombination

— Hudson’s ms software is the classic simulator

— msprime from Jerome Kelleher is MUCH faster

* Now two possible events going backwards in time
— Coalescence: which merges two sequences
* Forisequences, rate is i(i-1)/2N
— Recombination: which splits a sequence into two
* Forisequences, rateisiLp



Extending to multiple sequences

* The recent time limit of ~20kya for PSMC is
set because we run out of recent

coalescences between two haplotypes

* |f we add more haplotypes, then there are
more recent coalescences and we could
look at more recent history

e But, ... the hidden state is then a tree (with
branch lengths): impractical to model fully
— MCMC is notoriously difficult



Option 1: First coalescence of one
sequence to the tree of the others
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* This is related to the Li and Stephens model
(or Stephens and Donnelly) — chromopainter
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Problem: Coalescence of chosen sequence to
the others depends on the number of lineages
M(t) remaining at time t

4 e '
et A S T
 M(t) is a random variable, and we need the

entire history of M(t) to calculate transition
probabilities g

* Huge increase in state space and/or this
breaks Markov assumptions



MCMC approach: ARGweaver

e Repeatedly remove a sequence™ and add it back,
sampling conditional on remaining ARG

« HMM: sample with forward-backward algorithm

A

discretized time
(log generations)

} t } ' |
b,=0 b, b, b, b,=L

* Costly — use for inference given history

Genome-wide inference of ancestral recombination graphs
Rasmussen MD, Hubisz MJ, Gronau |, Siepel A. PLoS Genet. 10:€1004342 (2014)



https://www.ncbi.nlm.nih.gov/pubmed/24831947

Heuristic approximations

* Relate — Speidel and Myers this morning
— Sequence of trees, not full ARG structure

— Not good for inference about recombination, but
can be used for N, estimation and other things

e tsinfer — Wong, Kelleher, ... McVean

— Current released version gives topology of tree
sequence only — closer to ARG

— Unpublished tsdate will allow demography
analysis



Option 2: first coalescence between
any pair

* This remains (approximately) Markov

 State space is O(M?T) — pair of states and
time they coalesce

— But transition updates are only O(M?2T2),
because transitions are memoryless

* Emissions from X; are singletons onj or j

— Non-singletons that are discrepant between i
and j wipe out density at X;,



MSMC

Recombination

time
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First Coal !
irs | oalescence
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Mutations

Stephan Schiffels and Durbin (Nature Genetics, 2015)




ective population size

MSMC can fit both population size
history and separation history

e Separation via the (scaled) ratio of
coalescence between and within populations

— Slrr::g?hon 1.0 10kya split-sim.
—y hapll i 10kya split, 4 hapl.
8 hapll 10kya split, 8 hapl.
: 0.8 | seeeeee 100kya split sim:
5 || == 100kya split, 4 hapl.
10°3 —— 100kya split, 8 hapl.
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Access more recent history

effective population size
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Use lower mutation rate here ~ 0.5x107/year




Divergence between populations

* |dea: Infer separate coalescence rates within and between populations:

First Coalescence First Coalescence First Coalescence across
within Population 1 within Population 2 both populations

®* MSMC can infer separate coalescence rates within and between populations

® Given rates within populations, A11(t) and A22(t), and across populations, L12(t),
compute relative gene flow as ratio

A12(t)
[A11(t)+ A22(t)] / 2

m(t) =



gene flow

1.0

0.8

0.6

0.4

0.2

Testing gene flow inference with simulated

split

10kya split, 4 hapl. |

10kya split, 8 hapl. |

1| === 100kya split sim. |
|| = 100Kkya split, 4 hapl.
- 100kya split, 8 hapl.

s
-————,—T

10" 10°
time [years ago]

4 haplotypes: good for splits 50-200kya.
8 haplotypes: good for splits 5-50kya.

10kya split sim. | —1——1 = m(t)=1: perfectly mixed

=1 m(t)=0: perfectly split



relative gene flow

relative gene flow

relative gene flow

Separation history
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Alternatives to MSMC

 MSMC2 (Schiffels: in Malaspinas 2016/unpub.)

— Run PSMC’ on all pairs of sequences independently

— Multiply the likelihoods — Composite likelihood
* Assumes the pairs are independent, which is false
e But gives unbiased estimation (though overconfident)

e SMC++ (Terhorst, Kamm, Song: Nat Gen 2017)
— Pair, with p(het | other sequences)
— Very cool — works even on genotype data!

— But there are approximation problems analogous to
those in MSMC — not a panacea



Using rare variants to infer demographic
history

* Rare variants contain
information about recent
population history and
structure

e Shown here: number of
doubletons shared among
European samples

* We would like to estimate
population split times and
population sizes from the
frequency of rare variants

Compare to
ChromoPainter data
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[1000 Genomes Project, Phase3]
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Ancient samples from Hinxton
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More samples from Linton/Oakington

a
C
Late Iron Age ' Romano-British '’ Anglo-Saxon period g Morman period
0CE period 500 CE 1,000 CE
- ___| I

L (Linton), HI1, HI2 (Hinxton) 01-4 (Oakington) HS1-3 (Hinxton)



Neth./ Spain allele sharing @

Sharing patterns between ancient and
modern samples

50 _% I\ Netherlands
1.5 —f I|East \I\'E L
E ale: : N
10 I“I/z\i;lib@ Scotland
05 -

I [ I I | I [ [ I I I I I | I I I | I I I I | I I I |
1 5 9 1 5 9 1 5 9

Allele count Allele count Allele count

* Small but significant differences also within modern Britain
(UK10K): Samples from Wales and Scotland share fewer rare
variants with Dutch people



Estimates of Anglo-Saxon contribution to
modern British genomes

Scotland East England

Wales Anglo-Saxon

Iron Age

o o .03 ~ Hs2 Y
| & | |_: 'é. " D . [ ] HS1
[ | [ [ | [ | — [ [ | [ | [ [ [ [ | [ | [ [ |
0.45 0.50 0.55 0.60 0.65

Relative allele sharing with Netherlands

e Suggests ~30% Saxon contribution to samples in East of
England, and ~20% to UK10K samples from Wales and
Scotland

e Consistent with 20-40% indirect estimate from POBI (Peoples



The rare allele coalescent

* Goal: Estimate
demographic history
(population sizes and split
times) from rare variants Non-derived

lineages
Mutation (common)

Derived
lineages (rare)

* Compute likelihood of
demographic model given
a distribution of rare

variants Pop1 Pop2  Pop3

time (past)



RareCoal model

* |dea: Define recursion equations for
probability of observing i derived alleles in

population k: .
b7 (t)

* Given a demographic model, propagate o
this probability backwards in time to get
full likelihood of the data.

Derived
lineages (rare)

* Key simplification: Treat number of
ancestral alleles over time as average
(mean-field approximation):

Pop1

ax(t)

Pop?2

Non-derived
lineages
(common)

Pop3

time (past)



Test inference with simulated data

Time
(generations)

3

400

300

200

100

Fits (100 samples per pop.):

Simulated

scaled population
sizes

0,1,0,2,1 1114 1159
2,1,0,0,0 140585 139657
1,0,2,0,0 1138 1205

thousands of rows ...

388

299

200

92

Estimated

Fitting population sizes and split
times separates drift from
divergence -> different from
Treemix, gpGraph etc.



European Tree (Fits)
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Placing ancient samples on the tree

HI1
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* Plots show the I|keI|hood for merging the population N=1
sample onto the tree as a heat map



More direct calculation of the
likelihood of the joint site frequency
spectrum with momi

| |  Complexity of ancestral allele
F o state is reduced by using
/ Moran model

44 7 * Use Automatic Differentiation
to calculate gradients to
maximise likelihood over
demography with (limited)
gene flow

Compute SFS using Moran
model & Bayesian graph

Jack Kamm...Durbin, Song (2019)



Momi applied to central Asian data

Include ancient samples 1400

120.0 A

— Condition ascertainment 1000

80.0 -

on modern/deep samples c00 ]

* Total branch length on
these

— Random allele sampling
for low coverage samples

Estimates split times

N
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w—].6€4+03
mm— 6.42+403
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30.0

©
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Bootstrap for confidence 100/
intervals 501

— But beware model

................................... o~

]
Mbuti Han

misspecification

de Barros Damgaard, Martiniano, Kamm .... Durbin, Willerslev (2018)



Momi calculations

* To calculate P(x;,X,,X5,...)
— Set leaves to Indicator(x;), e.g. [0,0,1,0...0] for x,=2
— Propagate likelihoods up tree (“tree-peeling”)

e Can correspondingly calculate the expectation of
any multi-linear function of allele counts

— E[£;(x)f2(x)f5(x3). .. ]
* by setting leafito [£,(0), f.(1), ..., f.(ny)]

— Works because propagation is linear



Examples

Total branch length o« chance of any mutation
— £;(j) =1, vectoris [1,1,1...1]

TMRCA for pop 1 (1 arbitrary unless ancient model)
— £i(j) =j/n;, vectoris [0,0.2,0.4,0.6,0.8,1] for n;=5
—fi(G)=1, k=i
3 = E[(X3-X5)(Xp-X3)], £4 = E[(X;-X)(X5-X,)]

— Requires terms such as E[X;X,] for which
— fl(j) = j/n1/ fz(j) = j/n2/ fk(j) =1,k>?2
Also numerators, denominators of F.;, Tajima’s D



Summary

e PSMC(‘) estimates demography from a single
pair of sequences
— Sample size is in length not number
— Quite a clean model
— Major issue is population structure

e MSMC, MSMC2, SMC++ use additional
samples to get at more recent times

* RareCoal/Momi use coalescent modelling of
the SFS on more samples to estimate trees

— With limited modelled gene flow for Momi



Activity on Monday afternoon



Experimental design

* (Sequence) data collection costs money

* We always need to make decisions in how to
sample and sequence
— Number of samples
— Number of populations
— Depth of sequencing
— Whole Genome Shotgun or RADseq or Exomes...

* Population sequencing and Genome assembly



1000 Genomes Project

* Pilot (a very long time ago!)
— 2 trios at high depth 30x

* Phasing, accurate single-sample genotype calling, mutation
rates

— 3 populations x 60 samples at low depth 2-4x +
exomes

* Main project
— 26 populations of ~100 (2504 total) at 6-8x (+exomes)
— (150 trios at high depth — but who remembers them?)



Malawi cichlid sequencing

e Phasel

— Three trios at 30x: mutation rate estimation, controls
— ~70 species at 15-20x, additional samples for some at 8-12x

* Phase 2
— 7 sets of 20 at 15x
— More species
— Some sets of 24 or 48 to address specific questions

 Massoko GWAS (Turner)

— 200 samples at 4x + 100 samples for replication
— Increased to ~600 samples more recently



arginal Discovery rate

Low coverage sequencing strategy

* Typically one needs to sequence at ~30x depth to find
(almost) all variants in a sample

* To find low frequency variants we want to sequence
many samples

* Spread sequence across more samples

—505 | X — ples, 16x =200 Samples, 8x 266 Samples, bx =400 Samples
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Phase 1 power and genotyping accuracy

SNP detection Genotyping accuracy

0.8-

-4 Exome
- WGS (with LD)
-o- WGS (no LD)

- Exome
® Whole genome

Mean r? with Omni microarrays

0.1% 0.5% 1% 0.1% 0.5% 1%
0.2 r I 7 T T | 0.2 T I Il |I I |
1 2 5 10 20 50 100 1 2 5 10 20 50 1C
Non-reference allele count Non-reference allele count

Hyun Min-Kang (U Michigan)



Calling from low coverage sequence

Multi-sample call sites with samtools or GATK
Obtain genotype likelihoods at each site in
each same (also samtools or GATK)

— Likelihood = P(data | genotype)

Combine in an imputation framework using
BEAGLE (Browning), or MINIMAC (Abecasis),
or perhaps STITCH (Mott)?

Phase using SHAPEIT2 (Marchini) or EAGLE2
(Loh)



Sequencing depth

30x is standard for near-complete accuracy

— Sufficient to estimate mutation rates in trios (need several
trios for many species)

15x is good enough for SNPs (~¥97%), not quite so good
for indels (perhaps 90-95%)

4-8x gives good low coverage imputation as in previous
slides

People have used 1-2x, but this is hard work...

60x + is necessary for subclonal structure, e.g. cancer,
high ploidy

In a cross, sequence the founders to high depth, and

the F2/F3 to low depth (1x or less is fine) and impute
using STITCH or other Richard Mott tools



Genome reference assembly

 To work on a species it makes a big difference to
have a good reference genome

* Historically this was difficult/expensive, but
recent technical developments have dramatically
improved quality and decreased cost

— A trend that will continue

* Primary reason is long single molecule reads
— Also other long range data: Hi-C, linked read clouds...



The era of sequencing genomes

DNA sequencing is a transformative technology for biology
We are still in the middle of its development and application

Phase 1: reference genomes for key organisms

— Sanger technology through a gel

Phase 2: population resequencing and genomic assay by sequence

— Cluster technology on a surface (lllumina) — short reads

Phase 3: ab initio sequencing of arbitrary genomes, nucleic acids

— Single molecule technology (PacBio, Nanopore, ...) — >100x longer reads

We are just at the start of phase 3 — will dominate next decade



494 Vertebrate genome assemblies (55 human)

Contig N50

100,000,000

o
man ref

[ ]
Mouse ref

Chicken ref

1,000,000

Sanger.
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Initial submission date



lllustration: Gorilla genome
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2010 Sanger assembly 2016 75x PacBio assembly
- lllumina + 3x Sanger - 800x increase in N50
- Fosmids and mate pairs - 200Mb new DNA, +many fixes

- 12kb contig N50 - 3700 = 220 incomplete genes



Main problem in assembly is repeats
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Where do the red reads go?

Greedy approach can make errors

b I —

| | I
Typical genome (e.g. human) is ~50% [ I
transposons and segmental duplications

Generate contigs and possible links

Simpson JT, Pop M. The Theory and Practice of Genome Sequence Assembly.
Annu Rev Genomics Hum Genet. 2015.



Scaffolding contigs

In principle the connectivity and
(modified) Euler path requirement
constrains order and orientation.
But this is little used in modern
assemblers.

C
f:]dvxé The bridges of
P 5 - Konigsberg

- Sy

@ Math Stack Exchange

In practice we use additional data types to order and orient contigs into scaffolds
* Read pairs, genetic/physical maps, read “clouds” from long molecules, Hi-C

Read pairs that span repeats can pull
them apart:

e Standard lllumina inserts ~500bp
e Large insert mate pairs 2-10kb

* Fosmid/BAC clone pairs 40-150kb

Simpson JT, Pop M. Annu Rev Genomics Hum Genet. 2015.



Read clouds and optical maps

Longer range “read clouds” e.g. from
10X Genomics Chromium, can bridge
bigger repeats/gaps

Multiple reads from a long ~100kb
template sharing a barcode

Restriction digest maps give
approximate spacing of restriction

sites (short sequence motifs), skipping

over repeats

* Now scaled up by dedicated optical

imaging machines (BioNano)

for the improvement of vertebrate genome

Mol p @ — o— e— eo— Barcode bl .
olecules Barcode b3_o— ——  o— ._BdrnoBdc bZd y
Barcodehq &— & &— &— &— ¢—o— aregse

— —
<« Chromium reads
—

+ > - T -> &

> - > - > -
> >

ﬂead ! Iall ﬂead 'Draft genome Iall

Yeo S, Coombe L, Warren RL, Chu J, Birol I. ARCS: scaffolding
genome drafts with linked reads. Bioinformatics. 2018.

Howe K, Wood JMD. Using optical mapping data e

assemblies. Gigascience. 2015.



Genetic maps and Hi-C give
chromosomal scale

Genetic linkage maps are naturally on the scale of chromosomes.

Although typically low resolution (e.g. a few thousand markers per genome) they
can place large scaffolds and contigs onto chromosomes by matching marker
sequences.

Hi-C “proximity ligation”

is used to look at local

chromatin organisation, but

globally most Hi-C links are on

the same chromosome, and

more are close than distant

e Automated tools (e.g.
SALSA)

* Visualisers (e.g. Hi-Glass)

e Editors

eAstRub1 before curation

i AR s |
. : (. 75 breaks, 216 joins and
- ne 8 78inversions later

—




So, what recipe to recommend?

* Long reads

— 60x PacBio CLR
e ~10% error, ~30kb N50, ~120Gb / SMRT cell (~€1k)

— Or 25x PacBio CCS
e ~0.1% error, ~15-20kb N50, ~20-25Gb / SMRT cell

— Or 80x Oxford Nanopore
e ~10% error, 10kb-100kb+ N50, ~50-150Gb / Promethion

e Hi-C: this is the most useful for scaffolding
— Dovetail (support), Arima, Phase, Qiagen, in-house
— BioNano or 10x

* “Polishing” — lllumina or CCS ideally



Example thorough assembly pipeline

VGP standard 1.5 p| pe line https://github.com/VGP/vgp-assembly
>60x >50x >200x >50x

BT T TN

Scaff10x (2 rounds) Solve pipeline

v v

) _ Solve_hybrid_scaffold
=me Alternate haplotigs: c2 Curated haplotigs: p2

Alternate combined: g2 Salsa2

FALCON + Unzip
+ Arrow

Purge_haplotigs

Primary contigs: cl1 Curated primary: p1

Manual
Primary Chr Curation Primary Asm

t1: Arrow
Polishing: t1~t3

| +Gap filling

t3: freebayes

Evolution Highway



How good is an assembly?

* Length / contiguity

— The whole point of sequence assembly is to reconstruct

long sequences

— So, all other things being equal, longer is better

— Measurement: N50 and its relatives
* Accuracy

— Ultimately this should be more important

— Base pair accuracy: qv score

— Misassembly: alignment consistency
 Completeness

— Raw data coverage
— BUSCO score for complete gene representation




N50 and its relatives

' i Scaffold length
How to characterize the typical caffold lengths

D
o

fragment size of an assembly? £ Anabas testudineus
Often there are very many small = 40 570Mb genome
fragments, contributing little 22 69 scaffolds
N50 asks “what is the size of pieces " 12 'Sar;%‘i’ 4 medium,

o

that contribute half the data?”

Contigs, or scaffolds, or ... Mean scaffold size 8.3Mb
N50 scaffold size 26.1Mb

100 ] 70 | e | 50 | 50 | 40 | 30 |

1a. Contigs, sorted according to their lengths.

100 70 60 50 50 40 30
100 70 60 | 50 | 50 | 40 | 30 ! < -
360
200 g R N
& 400
400 Fig. 2. Example of calculating N9o for the same set of seven contigs. Here N9o equals 40

1b. Calculation of N50 using sorted contigs. kbp.

Introduced in the 2001 Human Genome Project paper (Nature, 2001)

https://www.molecularecologist.com/2017/03/whats-n50/ and follow-on posts



https://www.molecularecologist.com/2017/03/whats-n50/

Problems with N50 and proposed solutions

1. It depends on total length

. ) . 100 70 60 50 [ 50 | 40 [ 30 |
* Different assemblies of the same species may . J
250
have different lengths 500 )
* Filte ring OUt Sma” ”junk” Changes the NSO Fig. 5. Example assembly of a 500 kbp genome consisting of seven contigs. NG50 = 50

kbp, N50 = 60 kbp.

e Solution: NG50 — divide by fixed genome size

e Good for comparison of methods — can use a

single size estimate

Fig 6a. Correct Assembly with N50 = 1 Mbp and o misassemblies.

2. It doesn’t pay attention to accuracy
 Assemblers can gamble and join together

contigs when not certain, making false joins , e B
to increase length ( | =
° Solution: NASO — COU nt aligned |engths Fig 6b. Incorrect Assembly obtair;iiic;?ii::;rliizgofthe correct Assembly. N50 = 4
* Needs a (correct!) reference ]
‘.‘ \” 1 Mbp |'; '; r 1 Mbp / . Ssose<zl et W
3. Combine the two: NGA50 i i I it it NP - ~
" 1mbp [ ambp | 1mbp | 1Mbp ) . imbp | UL [ HIMbp UL

4 o Etc ees Reference genome, 4 Mbp Reference genome, 4 Mbp

Fig 6d. Alignment of the Incorrect Assembly to the reference genome provides the same

Fig 6c. Ali t of the C t Assembly to th ides
ig 6¢. Alignment of the Correct Assembly to the reference genome provides four four alignment blocks of 1 Mbp each, resulting in NA50 = 1 Mbp.

alignment blocks, 1 Mbp each, resulting in NA50 = 1 Mbp.

https://www.molecularecologist.com/2017/03/whats-n50/ and follow-on posts



https://www.molecularecologist.com/2017/03/whats-n50/

QV Quality score (Phred score)

* Base pair error rate
— 107,103, 104, 10>, ...
— Cumbersome to write, so use log space
— Q20, Q30, Q40, Q50

* Formally Q =-10 log4q p(error)
— Like decibels for sound

« Can apply to whole sequences, or to error
estimates per base
— Introduced by Phil Green for sequencing reads

Ewing B, Green P. Base-calling of automated sequencer traces using phred. Il. Error probabilities.
Genome Res. 1998



Data consistency

* Are the primary data consistent with the

assembly, and vice versa?

— But beware data errors, and circular reasoning...

* E.g. depth of coverage

k-mer com parison plot
— 0X
— 1X
— 2X
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Guan D, McCarthy SA, Wood J, Howe K, Wang Y, Durbin R. Identifying and removing haplotypic
duplication in primary genome assemblies. bioRxiv. August 2019:729962. doi:10.1101/729962.




Data consistency

e QUAST: http://bioinf.spbau.ru/guast
— Many measures

REAPR workflow

a Map read pairs to assembly

— Including cross-assembly consistency SETEETELSE ST
EULER-SR syt 1 (| ARSI SRy v
E-+V-SC 1 gt 2111 B I b Compute per-base statistics
7 E. coli assemblies  108AUD pysmesmmmetin sy oo
from the same data  SOAPdenovo umymymet i SNI WM 1| ) Wl SRS i g P

ii type of read coverage, on each strand

i ppo R E
assessed in QUAST SPAdes s ENAL ]
Velvet-SC gyt pRa My b {1 gyt ol A

Lo B ER g
1| ———— | wE Wi o read clpping

ARSI U
e REAPR: https://www.sanger.ac.uk/science/tools/reapr v ragment coverage

— Read pair consistency vFCDemor o/
— Also alignment orientation, clipping... |
¢ Score each base

e~ ——

Break assembly



http://bioinf.spbau.ru/quast
https://www.sanger.ac.uk/science/tools/reapr

BUSCO score: completeness (and accuracy)

Benchmarking Universal Single-Copy Orthologs

(@)

"

(b)

Assess whether they are Complete (C), Single

Start from set of conserved genes
Find them in the assembly

copy (S) or Duplicated (D), Fragmented (F) or
Missing (M)

BUSCOs:

Genome
run-time:
Transcriptome

Gene set

[ Consensus " Block- , )

| sequence ] | profles ] [ HMMs ] | Classiflr

tBLASTn > Augustus > HMMER 3 > C[D],F,M,n
15% r < 80% > < 5% > C: c“npb(e

) [ D: Duplicated ]
Find ORF HMMER3 F: Fragmented
M: Missing
HMMER3 > | n:no.ofgenes

Simao FA et al.. BUSCO: assessing genome assembly and annotation completeness with single-copy
orthologs. Bioinformatics. 2015, Waterhouse et al. Mol. Biol. Evol. 2017



Problems with heterozygosity

Heterozygosity levels vary
— 0.1-1% for vertebrates
— 1-5 % typical for insects, 0-5% for plants

— up to 15% (?) for some invertebrates (Caenorhabditis.
brenneri)

Almost all current assemblers aim to (initially) squash
haplotypes

— They can over-collapse, losing paralogs, or under-collapse,
putting haplotigs into the main assembly

— Structural heterozygosity gives rise to misassembly

— Major problems above ~1% heterozygosity, but problems at
all levels...

The only good historical genomes are haploid/clonal, or

assembled from cloned fragments



Even in good new assemblies, most errors an

contig breaks are caused by heterozygosity

Internal duplication in Hummingbird

assembly

Scaffold Super_Scaffold_1: 15,227,369-15,255,650

scaffold Super_Scaff...

Region in detail

Scroll:

Track height: TERIE)

Drag/Select: (o)

Forward strand -

1.00 Mo -

14.80 Mb 14.90 Mb 15.00 Mb 15.10 Mo 15.20 Mb

['] contigs

15.40 Mb
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15.60 Mb

15.70 Mb

K < & 1]

- 113.13kb Forward strand e
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K
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L Aan R015060 Aan R0150! 6
Super_Scaffold_1.31 >
o 12457 ] | | I SO R L —
L

£

5499

SRR

)

A A I A
""" o T Y IV Vo Ty i e ATy P o d Ve ST TN T P AT A AT AP
15.19Mb 15.20Mb 15.21Mb 15.22Mb 15.23Mb 15.24Mb 15.25Mb 15.26Mb 15.27Mb 15.28Mb 15.29Mb
strand 113.13kb

There are currently 4 tracks tumed off.
gEVAL Calypte_annaversion 73. (CURRENT) Scaffold Super_Scaffold_1: 15,184,946 - 15,298,073

Kirsten Howe and Sanger Institute geVAL team



Strategy 1: Remove the duplications

BUSCO scores' (%) Assembly Num. Ctg N50
C COS) ¢&D) F M size(Mb) Contigs (Mb)

At-FU? 981 919 62 03 1.6 140 172 7.96

At-PD 977 96.6 1.1 0.6 1.7 121 95 7.98

Mm-FU 958 79.0 16.8 2.0 2.2 1250 1290 2.63

Mm-PD 944 909 35 27 29 838 559 341
Mm-PDS 947 913 34 26 27 840 322 14.50

Dengfeng Guan et al. Biorxiv (2019)



Strategy 2: Use trios (pedigrees)

trio-sga: facilitating de novo assembly of

highly heterozygous genomes with

parent-child trios

Milan Malinsky'2”, Jared T. Simpson?®“ and Richard Durbin®”

Idea: Use parental unique
31mers to assign offspring

reads to haplotypes, and
assemble them separately.

C Father
1 1 1 1

& | | 1 | S

~ I | Il I -

P I0 |1 1 I0 S

~ 1 1 1 I i
e |1

. «—
Offspring S0

< T

Reads from the offspring:

Paternal
haplotype
assembly

Maternal
haplotype
assembly

v Vv

In practice limited by short
lllumina reads

Milansky et al. Biorxiv (2016)



Koren et al. Nature Biotechnology (2018)
Complete assembly of parental haplotypes with trio binning

Sergey Koren, Arang Rhie, Brian P. Walenz, Alexander T. Dilthey, Derek M. Bickhart, Sarah B. Kingan,
Stefan Hiendleder, John L. Williams, Timothy PL. Smith, Adam Phillippy

(Mb) NG50 = Max
_ ) 120
* K-mer profiling of each parent (lllumina, 60x) 100 797 859
! Brahman dam Angus sire ' 28
X ; ‘ 40 234 26.6
| |: 20 o112 o372
n O —a [
\ \ o &
S
* K-mer profiling of the FI (PacBio, 120x)
I
Bos taurus ref trio binning |

VGP application to zebrafish Danio rerio SAT strain = Tu x AB cross

Initial joint Falcon assembly 0.5Mb N50, 1.9Gb total size

fDreABH1 Pt zebrafish (AB strain) 5.77 1,920 8.17 1,699 37.46 1,354 QC
nio reri
fDreTuH1 zebrafish (TUbingen strain) 4.06 2,382 5.78 2,112 | 24.84 | 1,370 |QC

Better than current GRCz11 reference assembly!



Strategy 3: use intrinsic data

1. Build graph of all the sequence including both
haplotypes, then thread two paths through it
most consistent with the data (Garg, ...)

2. Allocate reads into (local) bins, by kmer phasing
combining 10X Genomics and HiC lllumina
data, long reads (Heaton, ...)

3. Separate overlaps between reads based on
differences at single-copy (heterozygous) sites
(Myers, ...)

Shilpa Garg (Tobias Marschall) ISMB 2018 (yeast), biorxiv 2019



Proposed VGP quality metrics

Quality Metric Finished High Quality Reference Reference Draft

Contig (NG50) =Chr. NG50 >10 Mb >1 Mb >10 kb
Continuity Scaffolds (NGS0) = Chr. NG50 = Chr. NG50* >10 Mb >100 kb

Gaps (num.) No gaps <200 < 1,000 < 10,000
Comacinazs Reliable blocks =Chr. NG50 >80% of Scaffold NG50 >75% of Scaffold NG50 >50% of Scaffold NG50

Curated Yes Yes Not required Not required
Accuracy Basepair QV 50 40 30 30

k-mer completeness 100% complete >95% >90% >80%
Phasing Phased block (NG50) = Chr. NG50 >1 Mb >100 kb Not required

. Genes (ex. BUSCO) 100% complete >95% >90% >80%

Functional completeness . ~

Transcript mappability TBD TBD TBD TBD

Assigned % 100% assigned >80% assigned Not required Not required
Chromosome Sex chromosomes Present, right order, no gaps |Present, localized hom pairs Present, at least 1 longer chr (ex. X or Z) |Fragmented

MT Presence 1 Complete major allele 1 Complete aliele Not required Not required




