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What I mean by demography

1. Population size going back in time
– Actually “effective population size” Ne(t)

• We will come back to what this means
– Approximate time range 10k – 1M years ago

• Again we will see why
2. Population structure

– Subpopulations and when they split (and merged?)

• Based on explicit evolutionary models
– Relate patterns of (shared) genetic variation 

accumulated since a common ancestor to history



Example: human history

Bottleneck?



Tree on two sequences

• Gustave Malécot (1940s)

• Coalescence is joining together, in our case going 
backwards in time

• Chance of coalescence per generation is 1/N
• TMRCA is exponentially distributed with mean N



Probability of observing a mutation

• To see a mutation, it must have happened on 
one of the branches since the common 
ancestor

• P(observed mutation) = 2Tµ
• E(observed difference rate) = qp = 2Nµ
• Humans are diploid, so q = 4Neµ, where Neis

the effective population size
• For humans, qp =~ 0.001

– 1/800 – 1/1200 depending on population
• Hard to measure Ne and µ independently… 



Effective population size
• Lots of mystique/angst about this

– Our definition is arguably at the core of the concept
• the reciprocal of the probability of sharing a parent in the 

previous generation 
• = 1 / coalescence rate

• Why this is different from census population size:
– Long term averaging: many consequences occur over large 

numbers of generations (often order of Ne)
– Population structure generates non-random patterns of 

coalescence, and non-independence between generations
– Maybe only a small percentage of individuals breed
– Selection favours some individuals over others

• But it is always something of this form that we get at 
by population genetic analysis



For non-recombining sequence we can 
estimate Ne(t) from a dated tree

Ne estimated by 
“Bayesian skyline” 
method, essentially 
looking at 
1/coalescence rate, and 
smoothing through the 
discrete events.

Note  that there is a big 
dip in male but not 
female Ne around 8kya 
outside Africa, 5kya in 
Africa.  This is the time 
of onset of agriculture.
Dominant males?

Karmin, M. et al.. Genome Res. 25, 459–466 (2015).



On autosomes segments of fixed trees are 
separated by ancestral recombination

Past

Mutations

Recombination in some ancestor



PSMC = Pairwise Sequentially Markovian Coalescent 
Li and Durbin (2010): Inference of human 

population history from individual genome sequences

Hidden Markov Model



PSMC Hidden Markov Model

• Move from left to right in the genome
– Let P(x|t) = prob(data up to x|TMRCA at x = t)
– Calculate P(x+1|t) = (∑s P(x|s) r(t|s)) e(x)

• e(x) = “emission at x” = 2𝜇t  if a het, else (1-2𝜇t)
• r(t|s) = prob(recombination from TMRCA s to t)

= 2𝜌s prob (coalesce back to t)
+ (1- 2𝜌s) if t = s

Depends on 
N(t’)  t’ < s,t



Markov assumption

• This model assumes that
data to the left of x|TMRCA at x = t

is independent of 
data to the right of x|TMRCA at x = t

• For standard mixing populations this is a very 
good assumption
– Sequentially Markovian Coalescent (SMC) 

approximation, McVean & Cardin 2005



PSMC-HMM reconstructs individual history 

• Pairwise Sequentially Markovian Coalescent –
Hidden Markov Model

• Data simulated using ms (Hudson)
• Model the coalescent time t by e.g. 50 discrete bins, 

spread logarithmically



Single human genome with bootstrap



Human population history, with Neanderthals

Heng Li
Scaled coalescent time



Advances since the original PSMC

1. Use SMC’ model which correctly handles 
recombinations coalescing back to the same 
ancestor (Stephan Schiffels, …)

– Minor tweak to equations, but significant
– Can now fit recombination:mutation ratio
– Implemented in MSMC/MSMC2

2. Time speedup: linear not quadratic in number 
of time slices (Kelley Harris, ... Song, 2014)



Coalesecent Ne(t) reflects ancestral 
structure as well as population size

• PSMC actually measures l = 1/coalescence rate

• Structure can also change coalescence rate
– Li & Durbin supplement
– Olivier Mazet…Chikhi

N-island model
Migration between 
islands controls 
coalescent rate



Human population history, with Neanderthals

rise of anatomical
modern humans 1-200kya

origin of Homo
1.5-2MyaHeng Li



Dramatic recent radiations of haplochromime
cichlids in the African rift valley great lakes

• Lake Malawi ~500 species within 
last 1M years

So far we have sequenced ~300 species at 15-
20x coverage

Brief introduction to another system



Lake Malawi cichlid PSMC
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Is structure associated 
with speciation?

• There is increasing evidence that this is 
often the case
– Ideas of hybrid speciation, reuse of alleles 

selected in different environments, hybrid 
swarms and gene flow

• But that is another talk…



Might structure be (partly) identifiable 
in the PSMC model?

• The inferred values N(t) have dimension T, the number 
of time bins

• But the transition matrix M has dimension T2

• Currently we derive M from N by theory assuming 
panmixia
– Is there a richer theory for structured populations?
– How to parameterise structural complexity S(t) at time t, 

with associated theory for M(N,S)
• Or can we fit the transition matrix M unconstrained?

– Then search for evidence of structure within it
– And or do goodness of fit?



Going beyond two sequences

• Chance of coalescence per
generation from three 
sequences is 3/N

• Once we have a coalescence we are back to 
the situation with two sequences

• From i sequences chance is i(i-1)/2N



Digression: “The coalescent” model 
(Kingman, 1980)  A distribution on trees

• T(i) ~ exponential with mean 2N/i(i-1)



Properties of the coalescent

• As we add extra sequences, they are 
increasingly likely to coalesce very fast, and 
increasingly unlikely to affect the full TMRCA

• Trees are very variable
– E.g. 4 samples 

on 6 leaves

The expected height of the tree for many samples is only twice that with two samples



Relationship between forwards in time (Wright-
Fisher) and backwards in time (Coalescent) models

Population evolution
forwards

Coalescent tree
backwards

The coalescent tree describes a sample from the forward process
Kingman coalescent generates an “exact” sample from Wright-Fisher 



Genetic variation in a sample

• Mutations occur at random on the tree
– Separation of sources of randomness

• Random demography tree structure from coalescent
• Random sampling of mutations on the tree

Watterson’s theta

Let S be the number of mutations = segregating sites 

E(S) ~ q log n



• Density of mutations with frequency i in a sample of n
is  q/i

• 1/f distribution of
population allele 
frequencies

• Population minor allele frequency distribution of a 
difference observed between two sequences is flat
– Probability (1/f).2f(1-f) = 2(1-f), folded at ½ is 2

Distribution of variant allele 
frequencies

site frequency 
spectrum SFS



Relaxation of assumptions (1)

• E.g. change in population size
changes the site frequency
spectrum (SFS)

• Tajima’s D
– Sensitive to number of rare mutations, so change in Ne

– If D is positive there is a deficiency of rare mutations
• Excess recent coalescences, recent small Ne - selection

D > 0 D < 0

This is the basis of SFS-based 
demography inference



Fig. 2 The expected site frequency spectrum (SFS) of the derived allele (the new mutation 
arisen in the population) for three different demographic models: (i) a population that has 
been of constant size throughout history; (ii) a model previously fit to the derived allele 

frequency spectrum of Europeans, which includes an out-of-Africa population bottleneck and 
a second, more recent, population bottleneck (21); and (iii) the same two-bottleneck model of 

European history with the addition of recent exponential growth from a population size of 
10,000 at the advent of agriculture to an extant effective population size of 10,000,000, which 

amounts to 1.7% growth per generation during the last 400 generations. 

A Keinan, A G Clark Science 2012;336:740-743



Individuals in human outbred populations 
still carry many variants not in the large 
sequence data sets (1000 Genomes etc.)

• Exponential population 
growth in last 10,000 years 
gives long tips to the tree  

• In “big” populations, tips 
are hundreds of 
generations long, so tens of 
thousands of private 
variants per sample, 
hundreds functional



This behaviour is very dependent on population 
structure.

In genetic isolates the recent effective population 
size is smaller, and the tips are shorter



What about recombination?

• If points on the genome are very close, e.g. 
adjacent, they share the same tree

• If points are very far, their trees are sampled from 
the coalescent independently

• What happens in between?

• A recombination in the ancestor of a modern 
sequence made it out of two separate sequences, 
one contributing to the left and one to the right



Recombination changes the tree as 
you move along the sequence

Typically recombination rate is comparable to or larger 
than the mutation rate: both ~10-8 /bp /gen in human
So “gene tree” varies every site in mixing populations



Ancestral Recombination Graph (ARG)

• The Ancestral Recombination Graph describes the way 
that individual sequences in a population are related
– At a locus, sequences are related by a tree
– Ancestral recombinations change the tree as you move along 

the chromosome

a ..C..G..A..
b ..T..G..C..
c ..T..A..A..
d ..T..A..C..

0 0 0
1 0 1
1 1 0
1 1 1

a   b  c  d a   b  c  da   b  c  d

1

a   b  c  d

2
3

R

ARG
“Prune and graft” operation going left to right



Coalescent with recombination

• ARG is a structure (data type) 
• The probability distribution over ARGs that arises 

when recombination is added to the standard 
(Wright-Fisher) model is called the Coalescent with 
Recombination
– Hudson’s ms software is the classic simulator
– msprime from Jerome Kelleher is MUCH faster

• Now two possible events going backwards in time
– Coalescence: which merges two sequences

• For i sequences, rate is i(i-1)/2N
– Recombination: which splits a sequence into two

• For i sequences, rate is iLr



Extending to multiple sequences

• The recent time limit of ~20kya for PSMC is 
set because we run out of recent 
coalescences between two haplotypes

• If we add more haplotypes, then there are 
more recent coalescences and we could 
look at more recent history

• But, … the hidden state is then a tree (with 
branch lengths): impractical to model fully
– MCMC is notoriously difficult



Option 1: First coalescence of one 
sequence to the tree of the others

• This is related to the Li and Stephens model 
(or Stephens and Donnelly) – chromopainter

t1

t2

t3

t4

t1

t2

t3

t4



• M(t) is a random variable, and we need the 
entire history of M(t) to calculate transition 
probabilities q

• Huge increase in state space and/or this 
breaks Markov assumptions

t1

t2

t3

t4

Problem: Coalescence of chosen sequence to 
the others depends on the number of lineages 

M(t) remaining at time t



MCMC approach: ARGweaver

• Repeatedly remove a sequence* and add it back, 
sampling conditional on remaining ARG

• HMM: sample with forward-backward algorithm

Genome-wide inference of ancestral recombination graphs
Rasmussen MD, Hubisz MJ, Gronau I, Siepel A. PLoS Genet. 10:e1004342 (2014)

• Costly – use for inference given history

https://www.ncbi.nlm.nih.gov/pubmed/24831947


Heuristic approximations

• Relate – Speidel and Myers this morning
– Sequence of trees, not full ARG structure
– Not good for inference about recombination, but 

can be used for Ne estimation and other things

• tsinfer – Wong, Kelleher, … McVean
– Current released version gives topology of tree 

sequence only – closer to ARG
– Unpublished tsdate will allow demography 

analysis



Option 2: first coalescence between 
any pair

• This remains (approximately) Markov
• State space is O(M2T) – pair of states and 

time they coalesce
– But transition updates are only O(M2T2), 

because transitions are memoryless

• Emissions from Xij are singletons on i or j
– Non-singletons that are discrepant between i

and j wipe out density at Xij



MSMC

Stephan Schiffels and Durbin (Nature Genetics, 2015)



MSMC can fit both population size 
history and separation history

• Separation via the (scaled) ratio of 
coalescence between and within populations



Access more recent history

Use lower mutation rate here ~ 0.5x10-9/year



Divergence between populations

First Coalescence 
within Population 2

First Coalescence 
within Population 1

First Coalescence across 
both populations

• MSMC can infer separate coalescence rates within and between populations 

• Given rates within populations, λ11(t) and λ22(t), and across populations, λ12(t), 
compute relative gene flow as ratio

λ12(t)
[λ11(t)+ λ22(t)] / 2

m(t) =

• Idea: Infer separate coalescence rates within and between populations:



Testing gene flow inference with simulated 
split

☜ m(t)=1: perfectly mixed

☜ m(t)=0: perfectly split

4 haplotypes: good for splits 50-200kya. 
8 haplotypes: good for splits 5-50kya.



Separation history



Alternatives to MSMC

• MSMC2 (Schiffels: in Malaspinas 2016/unpub.)
– Run PSMC’ on all pairs of sequences independently
– Multiply the likelihoods – Composite likelihood

• Assumes the pairs are independent, which is false
• But gives unbiased estimation (though overconfident)

• SMC++ (Terhorst, Kamm, Song: Nat Gen 2017)
– Pair, with p(het | other sequences)
– Very cool – works even on genotype data!
– But there are approximation problems analogous to 

those in MSMC – not a panacea



Using rare variants to infer demographic 
history

• Rare variants contain 
information about recent 
population history and 
structure

• Shown here: number of 
doubletons shared among 
European samples

• We would like to estimate 
population split times and 
population sizes from the 
frequency of rare variants

CEU FIN GBR IBS TSI

[1000 Genomes Project, Phase3]

Compare to 
ChromoPainter data



Ancient samples from Hinxton

12884A, Iron age

12883A, Saxon

12880A, Iron age

12881A, Saxon12885A, Saxon



More samples from Linton/Oakington



Sharing patterns between ancient and 
modern samples

• Difference between Anglo-Saxon and Iron Age sharing with 
NED and IBS consistent across different Allele Counts

• Small but significant differences also within modern Britain
(UK10K): Samples from Wales and Scotland share fewer rare 
variants with Dutch people



Estimates of Anglo-Saxon contribution to 
modern British genomes 

• Suggests ~30% Saxon contribution to samples in East of 
England, and ~20% to UK10K samples from Wales and 
Scotland

• Consistent with 20-40% indirect estimate from POBI (Peoples 
of the British Isles) study



The rare allele coalescent
• Goal: Estimate 

demographic history 
(population sizes and split 
times) from rare variants

• Compute likelihood of 
demographic model given 
a distribution of rare 
variants



RareCoal model

• Idea: Define recursion equations for 
probability of observing i derived alleles in 
population k:

• Given a demographic model, propagate 
this probability backwards in time to get 
full likelihood of the data.

• Key simplification: Treat number of 
ancestral alleles over time as average 
(mean-field approximation):



Test inference with simulated data

100

200

300

400

Time 
(generations)

10 5 2 4 5

0.4

0.5

0.2

1
scaled population 
sizes

92

200

299

388

10.3 5 2 4 5

0.47

0.5

0.22

0.87

Simulated Estimated

Fits (100 samples per pop.):
Pattern Count (real) Count (predicted)

0,1,0,2,1 1114 1159

2,1,0,0,0 140585 139657

1,0,2,0,0 1138 1205

thousands of rows …

Fitting population sizes and split 
times separates drift from 
divergence -> different from 
Treemix, qpGraph etc.



European Tree (Fits)



Placing ancient samples on the tree

• Plots show the likelihood for merging the population N=1 
sample onto the tree as a heat map



More direct calculation of the 
likelihood of the joint site frequency 

spectrum with momi

Jack Kamm…Durbin, Song (2019) 

• Complexity of ancestral allele 
state is reduced by using 
Moran model

• Use Automatic Differentiation 
to calculate gradients to 
maximise likelihood over 
demography with (limited) 
gene flow



Momi applied to central Asian data

• Include ancient samples
– Condition ascertainment  

on modern/deep samples
• Total branch length on 

these
– Random allele sampling 

for low coverage samples
• Estimates split times
• Bootstrap for confidence 

intervals
– But beware model 

misspecification
de Barros Damgaard, Martiniano, Kamm …. Durbin, Willerslev (2018)



Momi calculations

• To calculate P(x1,x2,x3,…)
– Set leaves to Indicator(xi), e.g. [0,0,1,0…0] for xi=2
– Propagate likelihoods up tree (“tree-peeling”)

• Can correspondingly calculate the expectation of 
any multi-linear function of allele counts
– 𝔼[f1(x1)f2(x2)f3(x3)…]

• by setting leaf i to [fi(0), fi(1), . . . , fi(n1)]
– Works because propagation is linear



Examples

• Total branch length ∝ chance of any mutation 
– fi(j) = 1, vector is [1,1,1…1] 

• TMRCA for pop i (i arbitrary unless ancient model)
– fi(j) = j/ni , vector is [0,0.2,0.4,0.6,0.8,1] for ni=5
– fk(j) = 1, k ≠ i

• f3 = 𝔼[(X1-X3)(X2-X3)], f4 = 𝔼[(X1-X2)(X3-X4)]
– Requires terms such as 𝔼[X1X2] for which
– f1(j) = j/n1, f2(j) = j/n2, fk(j) = 1, k > 2

• Also numerators, denominators of FST, Tajima’s D



Summary

• PSMC(‘) estimates demography from a single 
pair of sequences
– Sample size is in length not number
– Quite a clean model
– Major issue is population structure

• MSMC, MSMC2, SMC++ use additional 
samples to get at more recent times

• RareCoal/Momi use coalescent modelling of 
the SFS on more samples to estimate trees
– With limited modelled gene flow for Momi



Activity on Monday afternoon



Experimental design

• (Sequence) data collection costs money
• We always need to make decisions in how to 

sample and sequence
– Number of samples
– Number of populations
– Depth of sequencing
– Whole Genome Shotgun or RADseq or Exomes…

• Population sequencing and Genome assembly



1000 Genomes Project

• Pilot (a very long time ago!)
– 2 trios at high depth 30x

• Phasing, accurate single-sample genotype calling, mutation 
rates

– 3 populations x 60 samples at low depth 2-4x + 
exomes

• Main project
– 26 populations of ~100 (2504 total) at 6-8x (+exomes)
– (150 trios at high depth – but who remembers them?)



Malawi cichlid sequencing

• Phase 1
– Three trios at 30x: mutation rate estimation, controls
– ~70 species at 15-20x, additional samples for some at 8-12x

• Phase 2
– 7 sets of 20 at 15x
– More species
– Some sets of 24 or 48 to address specific questions

• Massoko GWAS (Turner)
– 200 samples at 4x + 100 samples for replication
– Increased to ~600 samples more recently



Low coverage sequencing strategy

• Typically one needs to sequence at ~30x depth to find 
(almost) all variants in a sample

• To find low frequency variants we want to sequence 
many samples

• Spread sequence across more samples



Phase 1 power and genotyping accuracy

SNP detection Genotyping accuracy

Hyun Min-Kang (U Michigan)



Calling from low coverage sequence

• Multi-sample call sites with samtools or GATK
• Obtain genotype likelihoods at each site in 

each same (also samtools or GATK)
– Likelihood = P(data | genotype)

• Combine in an imputation framework using 
BEAGLE (Browning), or MINIMAC (Abecasis), 
or perhaps STITCH (Mott)?

• Phase using SHAPEIT2 (Marchini) or EAGLE2 
(Loh)



Sequencing depth
• 30x is standard for near-complete accuracy

– Sufficient to estimate mutation rates in trios (need several 
trios for many species)

• 15x is good enough for SNPs (~97%), not quite so good 
for indels (perhaps 90-95%)

• 4-8x gives good low coverage imputation as in previous 
slides

• People have used 1-2x, but this is hard work…
• 60x + is necessary for subclonal structure, e.g. cancer, 

high ploidy
• In a cross, sequence the founders to high depth, and 

the F2/F3 to low depth (1x or less is fine) and impute 
using STITCH or other Richard Mott tools



Genome reference assembly

• To work on a species it makes a big difference to 
have a good reference genome

• Historically this was difficult/expensive, but 
recent technical developments have dramatically 
improved quality and decreased cost
– A trend that will continue

• Primary reason is long single molecule reads
– Also other long range data: Hi-C, linked read clouds…



• DNA sequencing is a transformative technology for biology

• We are still in the middle of its development and application

• Phase 1: reference genomes for key organisms

– Sanger technology through a gel

• Phase 2: population resequencing and genomic assay by sequence

– Cluster technology on a surface (Illumina) – short reads

• Phase 3: ab initio sequencing of arbitrary genomes, nucleic acids

– Single molecule technology (PacBio, Nanopore, …)  – >100x longer reads

We are just at the start of phase 3 – will dominate next decade

The era of sequencing genomes 



494 Vertebrate genome assemblies (55 human)
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Initial submission date

Human ref

Mouse ref

Chicken ref

Sanger

Short 
reads

Long 
reads



Evan Eichler

2010 Sanger assembly
- Illumina + 3x Sanger
- Fosmids and mate pairs
- 12kb contig N50

Gordon et al. Science 2016

2016 75x PacBio assembly
- 800x increase in N50
- 200Mb new DNA, +many fixes
- 3700 → 220 incomplete genes

Illustration: Gorilla genome



Main problem in assembly is repeats

Simpson JT, Pop M. The Theory and Practice of Genome Sequence Assembly. 
Annu Rev Genomics Hum Genet. 2015.

Where do the red reads go?

Greedy approach can make errors

Typical genome (e.g. human) is ~50% 
transposons and segmental duplications

Generate contigs and possible links



Scaffolding contigs

In principle the connectivity and 
(modified) Euler path requirement 
constrains order and orientation.
But this is little used in modern 
assemblers.

The bridges of
Königsberg

In practice we use additional data types to order and orient contigs into scaffolds
• Read pairs, genetic/physical maps,  read “clouds” from long molecules, Hi-C

Read pairs that span repeats can pull 
them apart:
• Standard Illumina inserts ~500bp
• Large insert mate pairs 2-10kb
• Fosmid/BAC clone pairs 40-150kb

Simpson JT, Pop M. Annu Rev Genomics Hum Genet. 2015.



Read clouds and optical maps

Longer range “read clouds” e.g. from 
10X Genomics Chromium, can bridge 
bigger repeats/gaps
• Multiple reads from  a long ~100kb 

template sharing a barcode Yeo S, Coombe L, Warren RL, Chu J, Birol I. ARCS: scaffolding 
genome drafts with linked reads. Bioinformatics. 2018. 

Howe K, Wood JMD. Using optical mapping data 
for the improvement of vertebrate genome 
assemblies. Gigascience. 2015.

Restriction digest maps give 
approximate spacing of restriction 
sites (short sequence motifs), skipping 
over repeats
• Now scaled up by dedicated optical 

imaging machines (BioNano)



Genetic maps and Hi-C give 
chromosomal scale

Hi-C “proximity ligation”
is used to look at local 
chromatin organisation, but 
globally most Hi-C links are on 
the same chromosome, and 
more are close than distant
• Automated tools (e.g. 

SALSA)
• Visualisers (e.g. Hi-Glass)
• Editors

Genetic linkage maps are naturally on the scale of chromosomes.  
Although typically low resolution (e.g. a few thousand markers per genome) they 
can place large scaffolds and contigs onto chromosomes by matching marker 
sequences.



So, what recipe to recommend?

• Long reads
– 60x PacBio CLR

• ~10% error, ~30kb N50, ~120Gb / SMRT cell (~€1k)
– Or 25x PacBio CCS

• ~0.1% error, ~15-20kb N50, ~20-25Gb / SMRT cell
– Or 80x Oxford Nanopore

• ~10% error, 10kb-100kb+ N50, ~50-150Gb / Promethion

• Hi-C: this is the most useful for scaffolding
– Dovetail (support), Arima, Phase, Qiagen, in-house
– BioNano or 10x 

• “Polishing” – Illumina or CCS ideally



Example thorough assembly pipeline



How good is an assembly?

• Length / contiguity
– The whole point of sequence assembly is to reconstruct 

long sequences
– So, all other things being equal, longer is better
– Measurement: N50 and its relatives

• Accuracy
– Ultimately this should be more important
– Base pair accuracy: qv score
– Misassembly: alignment consistency

• Completeness
– Raw data coverage
– BUSCO score for complete gene representation



N50 and its relatives

https://www.molecularecologist.com/2017/03/whats-n50/ and follow-on posts

Introduced in the 2001 Human Genome Project paper (Nature, 2001)

• How to characterize the typical 
fragment size of an assembly?

• Often there are very many small 
fragments, contributing little

• N50 asks “what is the size of pieces 
that contribute half the data?”

• Contigs, or scaffolds, or …
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Anabas testudineus
570Mb genome
69 scaffolds
19 large, 4 medium, 
46 small

Mean scaffold size 8.3Mb
N50 scaffold size 26.1Mb 

https://www.molecularecologist.com/2017/03/whats-n50/


Problems with N50 and proposed solutions

https://www.molecularecologist.com/2017/03/whats-n50/ and follow-on posts

1. It depends on total length
• Different assemblies of the same species may 

have different lengths
• Filtering out small “junk” changes the N50
• Solution: NG50 – divide by fixed genome size
• Good for comparison of methods – can use a 

single size estimate

2. It doesn’t pay attention to accuracy
• Assemblers can gamble and join together 

contigs when not certain, making false joins 
to increase length

• Solution: NA50 – count aligned lengths
• Needs a (correct!) reference

3. Combine the two: NGA50
4. Etc…

https://www.molecularecologist.com/2017/03/whats-n50/


QV Quality score (Phred score)

• Base pair error rate
– 10-2, 10-3, 10-4, 10-5, …
– Cumbersome to write, so use log space
– Q20, Q30, Q40, Q50

• Formally Q = -10 log10 p(error)
– Like decibels for sound

• Can apply to whole sequences, or to error 
estimates per base
– Introduced by Phil Green for sequencing reads

Ewing B, Green P. Base-calling of automated sequencer traces using phred. II. Error probabilities. 
Genome Res. 1998



Data consistency
• Are the primary data consistent with the 

assembly, and vice versa?
– But beware data errors, and circular reasoning…

• E.g. depth of coverage

Guan D, McCarthy SA, Wood J, Howe K, Wang Y, Durbin R. Identifying and removing haplotypic 
duplication in primary genome assemblies. bioRxiv. August 2019:729962. doi:10.1101/729962.



Data consistency
• QUAST: http://bioinf.spbau.ru/quast

– Many measures
– Including cross-assembly consistency

• REAPR: https://www.sanger.ac.uk/science/tools/reapr

– Read pair consistency
– Also alignment orientation, clipping…

7 E. coli assemblies
from the same data
assessed in QUAST

REAPR workflow

http://bioinf.spbau.ru/quast
https://www.sanger.ac.uk/science/tools/reapr


BUSCO score: completeness (and accuracy)

Simão FA et al.. BUSCO: assessing genome assembly and annotation completeness with single-copy 
orthologs. Bioinformatics. 2015, Waterhouse et al. Mol. Biol. Evol. 2017

Benchmarking Universal Single-Copy Orthologs
• Start from set of conserved genes
• Find them in the assembly
• Assess whether they are Complete (C), Single 

copy (S) or Duplicated (D), Fragmented (F) or 
Missing (M)



Problems with heterozygosity
• Heterozygosity levels vary

– 0.1-1% for vertebrates
– 1-5 % typical for insects, 0-5% for plants
– up to 15% (?) for some invertebrates (Caenorhabditis. 

brenneri)

• Almost all current assemblers aim to (initially) squash 
haplotypes
– They can over-collapse, losing paralogs, or under-collapse, 

putting haplotigs into the main assembly
– Structural heterozygosity gives rise to misassembly
– Major problems above ~1% heterozygosity, but problems at 

all levels…
• The only good historical genomes are haploid/clonal, or 

assembled from cloned fragments 



Internal duplication in Hummingbird 
assembly

remove

Even in good new assemblies, most errors and 
contig breaks are caused by heterozygosity

Kirsten Howe and Sanger Institute gEVAL team



Strategy 1: Remove the duplications

Dengfeng Guan et al. Biorxiv (2019)



Strategy 2: Use trios (pedigrees)

Idea: Use parental unique 
31mers to assign offspring 
reads to haplotypes, and 
assemble them separately.

In practice limited by short 
Illumina reads

Milansky et al. Biorxiv (2016)



VGP application to zebrafish Danio rerio SAT strain = Tu x AB cross 

Initial joint Falcon assembly 0.5Mb N50, 1.9Gb total size 

Better than current GRCz11 reference assembly! 

Koren et al. Nature Biotechnology (2018)



Strategy 3: use intrinsic data

1. Build graph of all the sequence including both 
haplotypes, then thread two paths through it 
most consistent with the data (Garg, …) 

2. Allocate reads into (local) bins, by kmer phasing 
combining 10X Genomics and HiC Illumina 
data, long reads (Heaton, …)

3. Separate overlaps between reads based on 
differences at single-copy (heterozygous) sites 
(Myers, …) 

Shilpa Garg (Tobias Marschall) ISMB 2018 (yeast), biorxiv 2019 
(human)



Proposed VGP quality metrics


