The painting palettes of human ancestry

Daniel Falush, Dan Lawson,
Garrett Hellenthal, Simon Myers.
www.paintmychromosomes.com

We want to "paint" DNA according to which ancestor it comes from

Crossover event breakpoint
(O'Connor 2008)

Recombination
 "mosaic" genomes

Positions of recombination crossover events

Recombination $\bar{\square}$ "mosaic" genomes

Recombination "mosaic" genomes

Chromosome "painting"

We share segments of DNA today, inherited from shared ancestors living in the distant past.

Identifying these shared segments, and insights into the genetics of people from the UK, and worldwide human migrations

Chromosome painting in practice

- (Lawson et al. 2012)

Focal chromosome

әұәред

A) Local genealogies

B) Time to MRCA with haplotype 1

C) True 'nearest neighbour' distribution of haplotype 1

D) Sample paintings of haplotype 1

F) Coancestry matrix row for haplotype 1

	Donor haplotype															
	1	2	3	4	5	6	7	8	9	10						
Haplotype 1	0	0.08	0.09	1.1	1.24	0.52	0.52	0.06	0.01	0.06						

D) Coancestry matrix row for haplotype 1

	Donor haplotype																			
	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
Haplotype 1	0	8.06	9.59	8.27	11.64	6.51	7.17	7.68	9.25	10.94	4.11	7	5.91	5.62	5.68	6.53	6.72	5.03	5.86	7.05
	Population 1										Population 2									

Genealogical interpretation of painting

- The painting of each segment indicates who in the painting panel has the has the most recent shared common ancestor with the focal chromosome for that stretch of DNA.
- Boundaries between segments correspond to the positions of ancestral recombination events.
- The time at which the ancestor lived varies from segment to segment.
- Longer segments are associated with more recent shared ancestors

FineSTRUCTURE

1. Paint each individual using every other individual in the sample as the painting panel and record the painting palettes.
2. MCMC algorithm is used to find clustering such that:
(a) members of the same cluster paint with the same colour
(b) individuals within clusters have similar palettes
(c) palettes are enriched for their own colour (mostly).
(Algorithm takes into account the fact that individuals are not used to paint themselves).

toy FineSTRUCTURE example

Notes about FineSTRUCTURE

- MCMC algorithm includes both merges and splits.
- Good convergence properties in practice.
- Number and membership of clusters is inferred based only on DNA.
- We call the collection of palettes obtained in the all-versus-all painting the "coancestry matrix".
- If the markers are treated as unlinked, the coancestry matrix is equivalent to the covariance matrix used by SMARTPCA.
- Likelihood approximately equivalent to that of STRUCTURE for weak genetic drift

Application to Peopling of British Isles project

Sampled individuals had all four grandparents living within 50 miles of each other.

Genotyped using SNP chip. (500,000 markers)

54 distinct palettes inferred by fineSTRUCTURE

Build a tree: by successively joining groups with the most similar palettes.

CREDIT: Bruce Winney, Stephen Leslie, Walter Bodmer, Peter Donnelly

British palettes

Traditional software (Admixture)

Legend

\square	Legend		
	ARG	口	LIN
-	BAN	\times	NEA
\triangle	CHE		NIR
0	COR	Δ	NOR
+	CUM	+	NOT
-	DER		NPE
\triangle	DEV		NTH
-	DOR	Δ	NWA
-	FOD	∇	ORK
\bigcirc	GLO	\square	OXF
\triangle	HAM		SPE
∇	HER	\triangle	SUF
\square	KEN	+	SUS
\bigcirc	LAN	ㅁ	WOR
-	LEI	0	YOR

Principal Component 1

Principal Component $2^{0.08}$

Principal Component $2^{0.05}$

Continental European palettes

Hospital based sampling as controls for an association study with FineSTRUCTURE used to identify populations

British palettes painted with a continental European panel

Mixture modelling of an English palette based on European palettes using Non-Negative Least Squares

Cluster2 EU29 EU30 EU32 EU33 EU36 EU41

World-wide dataset application (HGDP+more)

$\approx 475 \mathrm{~K}$ SNPs on 1490 individuals from 95 pops (5-45 inds/pop)

CREDIT: Christian Capelli, George Busby

Worldwide palettes

169 populations inferred in HGDP data

HGDP Middle east

Half-matching based on coancestry matrix

Information on time since mixture given by spatial structure of ancestry along the chromosome

Globetrotter

Simulated admixture 30 generations ago

Mixture modelling of genomic palettes

Raw painting

Fitting of spatial structure of variation in palettes along the chromosome

Cleaned painting

http://admixturemap.paintmychromosomes.com

(Hellenthal et al 2014)

A map of recent human ancestry

Companion website for "A genetics-based atlas of human admixture history", in submission. Show help.

A

B
MAYA: Spanish-Spanish

C
DRUZE: Yoruba-Yoruba

D

KALASH: Scottish-Scottish

Can also identify complex events such as multi-way admixture

- can fit curves with sum of two exponential distributions

Conclusions

Can use chromosome painting to

- Distill ancestry information
- Cluster based on genetic similarity
- Visualise genetic drift
- Identify mixtures
- Date mixture events
- Reconstruct history

SU.VI.MAX

Positional Burrows Wheeler Transform

A set of haplotype sequences sorted in order of reversed prefixes at position k, showing the set of values at k isolated from those before and after, and on the right hand side how the order at position $(k+1)$ is derived from that at k as in Algorithm 1.

$$
y^{k}[k] \quad y^{k+1}[k+1]
$$

11011100100100000000000100010000011000000100100010101000100110000100110000010000100100000001101 00011111000101010000100100011000000110000010100011110001000101000100110000010000100110810000011 1001110010010101000010010001100000011000001010001000100000011101000001000001010010011021001001 10011100010101010000100100011000000110000010100010001000000111010000010000010100100 10011100100110001101000100011010011010000001110010000000100101010100110000100000010 10011111010101010000000100010101101001000000000100010001100100000000000111100000010 00100000010101010000000100010101100000100100100100100111100100000000000111100000010 00011111000101010000100100011000000001000000000011110001000101000000000111100000010 10011000010001010100100100011000100001000100100010000000000101010000110000010000010 10100011010100010000000100010101100000100100100001100001001100000001000000010100010 10101111010101001100000110101000100001000100100100100000100101010100110000110100010 10011100100110100000000110101000100001000100100011110000000101011000010000101100010 10011000010101010000100100011000000000000010100100100000100101010100010000101100010 10011111000101010000100100011000100000000010100100100000100101010100010000101100010 10011111000101011110000000010000000000000100100001100001000100000100010000010110010 10000000010101001010001100101000000110000010000001100001000110100000000110010110010 10011111100100010011000100011000000000100100100001100001000100010000010000100101010 10011100100100000000000100011010011010000001110010010001000111010000110000010010110 10011100100110001101000100011010011010000001110010000000100101010100110000100110011 00011100100101010000100100011000000110000010100100100111000101011100110000010110011

Reverse sorted prefixes at k

Richard Durbin Bioinformatics 2014;30:1266-1272

CPU Time seconds 88K SNPs 100 Inds	
ChromoPainter	3130
FastIBD	2686
PBWT	1
500 Inds	
ChromoPainter	264000
FastIBD	169093
PBWT	19

HGDP Data (938 Inds, 800K SNPs)

ChromoPainter	FastIBD	PBWT	CP Unlinked
$\mathbf{0 . 3 5}$		0.24	0.21

Daniel J. Lawson (Heilbronn Institute, University of Bristol), Daniel Falush (Max Planck, Leipzig)
Simon Myers (Oxford), Garrett Hellenthal (UCL), Richard Durbin (Wellcome Trust Sanger Institute)

