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PART 1 -THEORY AND METHODS

* Local adaptation - what and why?

* Methods of detecting local adaptation
 Differentiation-based analyses (Fst outlier tests)

* Environmental Association Analyses (EAA/GEA/ GXE)

* Parameters and sampling effects




LOCAL ADAPTATION: WHAT AND WHY?
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* Important for the generation and
maintenance of biodiversity, i i

species range shifts, the dynamics

of species interactions.




LOCAL ADAPTATION: WHAT AND WHY?

* Occurs when selection is spatially heterogeneous and
strong, relative to other evolutionary forces

* Genetic drift reduces additive genetic variance/causes
random fixation of genotypes and reduces local adaptation

* Gene flow is generally thought to inhibit local adaptation
(i.e. via ‘gene swamping’')? But not always...

Adaptive genes may be maintained at intermediate gene flow
in temporally variable environments

- selection needs variability to act on




WHY IS LOCAL ADAPTATION IMPORTANT?

Adaptive variation contributes towards mediating the
vulnerability of a species to extinction

A species’ vulnerability is a function of its sensitivity and
exposure to fitness stressors, and is mediated by the adaptive
potential of the species (both ecological and evolutionary), and
the capacity for conservation management
(Williams et al. 2008)




WHY IS LOCAL ADAPTATION IMPORTANT?

Vulnerability =[Exposure + Sensiiivity] — | Adaptive Capacity

Williams et al. 2008



WHY IS LOCAL ADAPTATION IMPORTANT?
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TYPES OF RESEARCH QUESTIONS

Study-system specific
» Will species X adapt during range expansion/ invasion?

* Are hybrids of X+ X more locally adapted than parents or visa
versa?

* Does declining species X have ‘enough’ adaptive variation to
survive climate change?




TYPES OF RESEARCH QUESTIONS

Study-system specific
» Will species X adapt during range expansion/ invasion?

* Are hybrids of X+X more locally adapted than parents or visa
versa?

* Does declining species X have ‘enough’ adaptive variation to
survive climate change?

Theoretical
* Does high gene flow limit local adaptation?

* Does local adaptation act in parallel across species or
environments?

e Are there common patterns of local adaptation across species with
respect to demography, traits, or evolutionary history?
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KNOWLEDGE OF ADAPTIVE CAPACITY CAN
INFLUENCE SPECIES MANAGEMENT

Considering adaptive genetic variation in climate
change vulnerability assessment reduces species
range loss projections

Orly Razgour*™', Brenna Forester®, John B. Taggart’, Micha@#l Bekaert”, Javier Juste®, Carlos Ibéiez",
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Evolutionary approaches to environmental, biomedical and socio-economic issues

REVIEW AND SYNTHESES ~ (3 OpenAccess @ ®

Guidelines for planning genomic assessment and monitoring of
locally adaptive variation to inform species conservation

Sarah P. Flanagan g, Brenna R. Forester, Emily K. Latch, Sally N. Aitken, Sean Hoban

Conservation Biology g

Essay (O Full Access

Adaptive introgression as a resource for management and
genetic conservation in a changing climate

Jill A. Hamilton g%, Joshua M. Miller



INTEGRATING ADAPTIVE GENETIC VARIATION

Field
sampling

2. Use niche
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vulnerability and

future ranges
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Razgour et al. 2019
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Future losses were overestimated when adaptive variability

was NOT accounted for



LOCAL ADAPTATION: HOW TO MEASURE?
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LOCAL ADAPTATION: HOW TO MEASURE?
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There is no consensus on the best way

to measure it!
An appropriate combination is recommended®©

Environmental Association Analysis (EAA)?



HOW ARE WE DETECTING LOCAL ADAPTATION?

Population genomics
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HOW ARE WE DETECTING LOCAL ADAPTATION?

Population genomics
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USE OF FST OUTLIER TESTS AND EAA IS INCREASING
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MANY TAXONOMIC GROUPS REPRESENTED
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THE ISSUE OF GENETIC STRUCTURE =

When pairwise Fst is not identical between populations we <_

can get an excess of false positives
* Genetic drift in small, patchy populations = false positives
 When environment tracks genetic structure = false negatives

* Introgression, hybridization = false positives
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THE ISSUE OF GENETIC STRUCTURE
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THE ISSUE OF GENETIC STRUCTURE
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THE ISSUE OF GENETIC STRUCTURE
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EFFECTS OF RANGE EXPANSION: ALLELE SURFING/
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Woaters et al. 2013
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HOW DO WE ACCOUNT FOR
GENETIC STRUCTURE?

 Genetic clustering (LFMM, OutFlank)

I
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 Kinship matrix (BayeEnv)

 Spatial predictors (spatial autocorrelation, GWR)

* PCA (RDA, pcadapt- principal coordinates)

* Generalised Dissimilarity Modelling

* Simulation of neutral data under demographic model
(Harris & Munshi-South 2016)

Accounting for neutral population structure can

1 -l U]
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reduce false positive rates...but also reduce power.



DEALING WITH LINKAGE DISEQUILIBRIUM

The nonrandom association of alleles at two or more loci

* LD can inform collinearity between SNPs, Allele Allele
. A
or create inflated numbers of correlated co’?\ ‘O/p.<8
outliers Locus 1 — .

* You may filter SNP data sets based on LD Locus 2
summary statistics, and/or using a single
SNP per RAD tag

* Use unlinked dataset for calculating neutral
population structure to avoid bias

SNP 1a SNP 1b SNP 1c
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DIFFERENTIATON-BASED (F¢;) OUTLIER TESTS

* Identifies loci with higher or lower Fst than expected from the Fst
distribution expected under neutrality - usually based on X?
approximations of Fst

* Fst values on the tail ends are identified as outliers

* No environmental or geographic data needed - but need hypotheses!

, _ Soft
Divergent Balancing f .
. . selective
selection selection
sweep

Position along genome/ SNP



DIFFERENTIATON-BASED (F¢;) OUTLIER TESTS

* Good when environmental effects are unknown, or data deficient

Risk missing important environmental drivers of selection

Best for detecting large effect loci (less sensitive to small effect)

Best for divergent, positive selection — negative less clear

Works well under IBD (Lotterhos & Whitlock 2015)

. Soft
Divergent Balancing f .
. . selective
selection selection
sweep

e« Fg

Position along genome/ SNP



DIFFERENTIATON-BASED (F¢;) OUTLIER TESTS

* Bayescan - Bayesian method to estimate the | s
relative probability that each locus is under p|
selection (Foll and Gaggiotti 2008) - high false . /
positive rate

See Hoban et al. 2016 for more



DIFFERENTIATON-BASED (F¢;) OUTLIER TESTS
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 Bayescan - Bayesian method to estimate the | ¢; aslen
relative probability that each locus is under |
selection (Foll and Gaggiotti 2008) - high false d /
positive rate

e OutFLANK- calculates null Fst distribution to

separate diversifying SNPs with high Fst from |
neutral SNPs (Whitlock & Lotterhos 2015) - | °

conservative

See Hoban et al. 2016 for more



DIFFERENTIATON-BASED (F¢;) OUTLIER TESTS

« Bayescan - Bayesian method to estimate the | ACEE

oh -

o 8,0

relative probability that each locus is under -
selection (Foll and Gaggiotti 2008) - high false /
positive rate

Log 10(PO)

Fst without sample size correction

e OutFLANK- calculates null Fst distribution to

separate diversifying SNPs with high Fst from
neutral SNPs (Whitlock & Lotterhos 2015) - | *

conservative

Projection onto PC2 and PC3

* pcadapt —principal components analysis. Tests
correlation between genetic variation and R e
principal components. (Luu et al. 2017)- 2P -
performs well with admixture SRR

See Hoban et al. 2016 for more



CASE STUDY- FST OUTLIER TESTS

Signatures of positive selection and local adaptation to
urbanization in white-footed mice (Peromyscus leucopus)

Stephen E. Harris**(» | Jason Munshi-South?(y  2017- Molecular Ecology
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CASE STUDY- FST OUTLIER TESTS

- o * ° Bayescan
] . ,.;",‘.. . "+ Urban vs Rural
S ...:.QA;..“
S ":‘:‘\ . © O; B Urban
o : Rural
S | . 0.8
o o 0.7
° @® Supported across tests § 0.6

00 05 10 15 20  -a28 g 0.5

Log 10(PO) 2 4
<

Gene annotations 7
associated with dietary 2
metabolism o
Urbanvsrura]energy O‘UR UR UR UR UR UR UR un
budgets, physiological
stressors or diets ?



ENVIRONMENTAL ASSOCIATION ANALYSIS (EAA)

(or genotype x environment, GEA)
Seeks a correlative indication of evolutionary responses

to spatial heterogeneity

= For e.g. in the white-mice study, an EAA study
W8 | might test explicit hypotheses with data on:

, | - 9% urban cover for each sample
BN - Composition of food types in each habitat
- Other abiotic or biotic variables



ENVIRONMENTAL ASSOCIATION ANALYSIS (EAA)

(or genotype x environment, GEA)
Seeks a correlative indication of evolutionary responses

to spatial heterogeneity

Tools for EAA differ by:

* the type of model (e.g. logistic regression, matrix correlation,,
mixed-effect models)

* the statistical procedure used (e.g. FDR, p-values, GIF)
* Univariate vs. Multivariate
* the way population structure is dealt with



ENVIRONMENTAL ASSOCIATION ANALYSIS (EAA)

(or genotype x environment, GEA)
Seeks a correlative indication of evolutionary responses

to spatial heterogeneity

Tools for EAA differ by:

* the type of model (e.g. logistic regression, matrix correlation,,
mixed-effect models)

* the statistical procedure used (e.g. FDR, p-values, GIF)
* Univariate vs. Multivariate
* the way population structure is dealt with

Since 1977! o 5.1 Chaa
Single locus correlation Observations on the genetic structure and mating system
with slo pe aspect of ponderosa pine in the Colorado front range

Mitton et al_ (1 977) Authors Authors and affiliations

J. B. Mitton, Y. B. Linhart, J. L. Hamrick, J. S. Beckman




Malecular Ecology 2015)

in landscape genomics
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A practical guide to environmental association analysis
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Landscape Genomics: Understanding
Relationships Between Environmental
Heterogeneity and Genomic Characteristics
of Populations
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ORIGINAL ARTICLE

Comparing methods for detecting multilocus adaptation with
multivariate genotype-environment associations

Brenna R. Forester g, Jesse R. Lasky, Helene H. Wagner, Dean L. Urban
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Kate D. L Umbers® | Rachael Y. Dudaniec?
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Finding the Genomic Basis of Local Adaptation:
Pitfalls, Practical Solutions, and

Future Directions

Sean Hoban,"' Joanna L. Kelley,’ «' Katie E. Lotterhos,"' Michael F. Antolin,* Gideon Bradburd,’
David B. Lowry,” Mary L. Poss,” Laura K. Reed,” Andrew Storfer,” and Michael C. Whitlock”




SAMPLING PRINCIPLES
for EAA

Environmental variables
* Choose variables hypothesized to drive selection

* Capture the range of environmental variables and values
occupied by your study species.




SAMPLING PRINCIPLES
for EAA

Environmental variables
* Choose variables hypothesized to drive selection

* Capture the range of environmental variables and values
occupied by your study species.

Match spatial and temporal scales with genetic data (EAA)
* Cell size resolution - be relevant to study species’ gene flow

sampling at a 2.5 km scale would be inappropriate for a slug!
* Timing of data (daily, monthly, annual, seasonal)
* Treatment of data (total? average? variability?)




Environmental data

Data format - EAA

Sample
S1
S2
S3
S4
S5
S6
S7

Lat

-15.1
-15.2
-15.4
-15.4
-15.5
-15.7
-15.7

Lon

132.3
132.5
132.1
132.7
133.6
134.2
135.4

Precip
328.4
329.2
326.3
324.4
318.6
314.8
312.8

T. (imax) T. (min)
29.6 23.6
29.3 23.4
30.0 25.5
28.4 22.4
28.6 24.1
27.8 20.6
27.2 22.1

T. (min)




Data format - EAA

Environmental data

Sample Lat Lon Precip | T. (max) T. (min)
S1 -15.1 132.3 328.4 | 29.6 23.6 .
S2 -15.2 1325 329.2 | 29.3 23.4 < .
$3 154 1321 3263 | 30.0 255 E|l .o
S4 -15.4 1327 324.4 | 28.4 22.4 H | e
S5 -15.5 133.6 318.6 | 28.6 24.1
S6 157 1342 3148 | 27.8  20.6 T. (max)
S7 157 1354 312.8 | 27.2 22.1
\ \
PCA /
\ v/
Sample Lat Lon PCI PC2
Or exclude highly ST -15.1 1323 0.84 076
correlated variables | S2 152 1325  0.92 0.83
S3 154 1321 0.63 0.85
<0.70 general rule 54 154 1327 0.44  0.64
of thumb S5 -15.5 133.6 0.36 0.70
Sé 157 1342  0.32 0.61
S7 -15.7 1354 0.30 0.64




Data format- EAA

population sampling

Sample Pop Lat Lon Precip Temp

S1 P1 -15.1 132.3 328.4 23.6

S2 P1 -15.1 132.3 328.4 23.6

S3 P1 -15.1 132.3 328.4 23.6

S4 P1 -15.1 132.3 328.4 23.6

S5 P2 157 1354 3128 21.2 +

S6 P2 -15.7 1354 312.8 21.2

S7 P2 -15.7 1354 312.8 21.2

individual sampling Genetic data =SNP
Sample Lat Lon Precip Temp L1 L2 L3

S -15.1 132.3 328.4 23.6 S 0 0 0 2
S2 -15.2 132.5 329.2 23.3 S2 2 1 0 0
S3 -15.4 132.1 326.3 24.0 S3 1 0] 0 1
S4 -15.4 132.7 324.4 224 S4 0 1 0 0]
S5 -15.5 133.6 318.6 226 S5 1 0 0 0
S6 -15.7 134.2 314.8 21.8 S6 0 1 1 1
S7 -15.7 1354 312.8 21.2 S7 2 0 0 0




SAMPLING PRINCIPLES for EAA

Individual-based analyses work best when:

» you have many coordinates

» environmental data has high variation across
sampling area

» Local Ne is low (e.g. mammals)

Population-based analyses work best when:

» You have clusters of sampled individuals per site

» Environmental variables change across broader
spatial scales

» Local Ne is higher (e.g. insects)



SAMPLING PRINCIPLES for EAA

Paired-gradient sampling is best to detect
weaker selection.

‘Clustered’ sampling ok for stronger selection
= maximise environmental differences

= minimize differences in evolutionary history

gradient Island model O




ENVIRONMENTAL ASSOCIATION ANALYSIS

* LFMM2 -Univariate: LMM that uses K as latent
factors (representing random effects);the
environment is used as a fixed effect - very fast

(Caye et al. 2019).
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ENVIRONMENTAL ASSOCIATION ANALYSIS

) N 01
 BAYENV2- Univariate: - Bayesian method, ¢
generates a kinship matrix from allelic data, to Ml
estimate a null model of the demographic j e / i |

structure to test each SNP (Gunther & Coop
2013)- often similar to LFMM 1/ {;‘




BIO1

ENVIRONMENTAL ASSOCIATION ANALYSIS

-log10 P-value
05 15 25 35

T T T T I
0 500 1000 1500 2000
Scaffold ID

* RDA -Multivariate: Redundancy Analysis (+
pRDA) uses ordination to to identify
environmental gradients most correlated with

adaptive variation (Capblancq et al. 2018), high

true positive rate (Forester et al. 2018)




RDA + LFMM + pcadapt comparison

LFMM +RDA have similar detection power - pcadapt fails
when the environmental gradient is not correlated with
population structure (a) and has a higher FDR (b)

| (@) correlated | (b)

uncorrelated

Method

% True Positives
False Discovery Rate
L

uncorrelated |

QTL1 QTL2 QTL3 Capblancqg et al. 2018




ORIGINAL ARTICLE

Frichot et al. 2015, Heredity

Detecting adaptive evolution based on association with

ecological gradients: Orientation matters!

E Frichot!, SD Schoville?, P de Villemereuil®, OE Gaggiotti** and O Francois'
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Fewer false positives when expansion axis is parallel!




DISEASE VS ABIOTIC SELECTION IN TASMANIAN

DEVILS WITH DFTD
A 992015 = Fraik et al. 2019 BioRxiv
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Fraik et al. 2019 BioRxiv Seasonal Precipitation
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Fraik et al. 201 9 BioRxiv Seasonal Precipitation
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FALSE DISCOVERY RATES

* The expected proportion of false positives among

the list of positive tests.

e So,an FDR = 0.05 means that the list of candidates

is expected to contain up to 5% false positives

* The underlying principle of FDR control relies on

significance values corresponding to the null
hypothesis.

(i.e. that P-values are uniformly distributed)

Frequency

INVITED REVIEWS AND SYNTHESES
Controlling false discoveries in genome scans
for selection

200 400 600
1 1 1 1 1

0

p-value distribution

00 02 04 06 08 1.0

p-value

OLIVIER FRANCOIS,* HELENA MARTINS,* KEVIN CAYE® and SEAN D. SCHOVILLE®Y




GENOMIC INFLATION FACTOR (GIF)

Used to recalibrate z-scores and incorrect P-values to control
FDR in GWAS, LFMM, RDA.

GIF = median of squared z-scores

median of the chi-squared distribution

Expresses the deviation of the distribution of the observed
test statistic from the distribution of the expected test
statistic, i.e. inflation of scores

GIF magnitude depends on sample size, relatedness, LD,
population substructure, and the number of causal variants.




MODIFYING THE GIF

 Calibrating P-values using GIF attempts to flatten the
histogram of P-values when the null hypothesis is true.

* FDR cut-offs only makes sense if your data fit this underlying
null model (a uniform P-value distribution)

* Some data sets do not, no matter how much you modify GIF!

Liberal tests (GIF = 2,11 > 1) Calibrated tests (GIF = 1.05) Conservative tests (GIF = 0.52 < 1)
B 3 B
g 1 [
g | g 1 g -
. | r
g 8 g g g §1 ¢
“ S & § |
g 2 1 Ch
§ -
o o [
00 02 04 06 OB 10 00 02 04 08 OB 10 00 02 04 06 08 10

P.vale Povalue P-value

Box Fig. 1. Histograms of test significance values (P-values) prior to the application of FDR control algorithms (arti-
ficial data). GIF is the genomic inflation factor for each data set. Francois et al. 2016



Fst Outlier vs EAA tests - strong vs weak selection

- B 5162 SNPs : mean = 0.46
W 177 Fst outlier loci: mean = 0.83
216 GEA candidate loci . mean = 0.63
v -
c
)
(@]
N =
Fst Outliers:
! Bayescan + Arlequin
EAA:
el gINland + RDA
| | | | 1 |
0.0 0.2 04 0.6 0.8 1.0
Fst

EAA candidates can cover a lower, broader Fst range
— loci of smaller effect




COMPARING Fst outlier TESTS
WITH EAA

How is the number of outliers detected
affected by:

- N SNPs

- N individuals

- N genetic clusters

- global Fst

- environmental gradient steepness




EAA versus FST OUTLIER TESTS

More SNPs does not equal more outliers
Detection of outliers level out at ~3K SNPS
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EAA versus FST OUTLIER TESTS

No change in # outliers with global Fst or N genetic clusters (K)

A B

(62 species) (31 species)
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EAA versus FST OUTLIER TESTS

Number of individuals genotyped

Fst-based
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Total number of individuals (In)

N = 66 studies — Ahrens et al. 2018
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ENVIRONMENTAL STEEPNESS DOES NOT
AFFECT OUTLIER DETECTION

Environmental steepness - maximum change in temperature and
precipitation between sampling sites (for 52 EAA papers)

A Mean Annual Precip (mm)
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| | | | | |
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Proportion of Environmental Associations
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Questions?




PART 2: EXAMPLES + DOWNSTREAM ANALYSIS

* Case Study 1 - Grasshoppers
- morphological associations, annotation

* Case Study 2 - Damselflies
- Identifying strong vs weak outliers, GDM

NESES
N

* Stages of analysis overview B,
* Improving inference -

* Combining approaches and the future




DETECTING SELECTION
TWO INSECTS. TWO ENVIRONMENTAL GRADIENTS.

1. Grasshoppers

(Phaulacridium vittatum)

" Agricultural pest in Australia

MACQUARIE
University

SSSSSS “AUSTRALIA

UNIVERSITY
or TASMANIA

o
&

= 2



DETECTING SELECTION
TWO INSECTS. TWO ENVIRONMENTAL GRADIENTS.

1. Grasshoppers 2. Damselflies "
(Phaulacridium vittatum) (Ischnura elegans) MACOUARLE

AAAAAAAAAAAAAAA

MACQUARIE
Umversn;y
, LUND
UNIVERSITY
UNIVERSITY
or TASMANIA
UNIVERSITY OF

ABERDEEN
"»':‘ Sonu Yadav e 3/
. (PhD graduate)

CJ Yong Alex Carey
(Masters) (Masters)



DETECTING SELECTION
TWO INSECTS. TWO ENVIRONMENTAL GRADIENTS.

Two environmental gradients: 500-900km (5.0-8.0° latitude)

1. Are patterns of selection associated with environmental and
morphological gradients?

2. Are environmental drivers of neutral genetic connectivity
and adaptive genetic variation similar?

Yadav et al. 2019, Mol Ecol Dudaniec et al. 2018, Mol Ecol



(1) The Wingless Grasshopper (Phaulacridium vittatum)

* Endemic agricultural pest of
pasture/herbaceous crops

* Qutbreaks every 4-5 years + local annual
outbreaks

* Economic costs from crop/pasture loss

. ¥y /\
\ 9 4 N
Northern S\\ ORIGINAL ARTICLE
Territory \
Queensland
o,

9

\ } Detection of environmental and morphological adaptation
L Al Auctraia .o”' despite high landscape genetic connectivity in a pest

grasshopper (Phaulacridium vittatum)

New South ¢
L
°

Sonu Yadav | Adam J. Stow | Rachael Y. Dudaniec

Victoria
w Tasmania
e



Morphological variation in P. vittatum

Body size (femur
length) varies 6-
13mm between sexes
and individuals

Positively associated
with solar radiation
(Yadav et al. 2018)

Morphological Variation Tracks Environmental Gradients in
an Agricultural Pest, Phaulacridium vittatum (Orthoptera:
Acrididae) Yadav et al. 2018 — J Insect Sci

Sonu Yadav,'*" Adam J. Stow,' Rebecca M. B. Harris,? and Rachael Y. Dudaniec’




Morphological variation in P. vittatum

» Striped morph increases with solar radiation,
 Winged morph increases with high forest cover (Yadav et
al. 2018, | Insect Sci)

STRIPE POLYMORPHISM Wing polymorphism

Striped Partially Striped  Unstriped Wingless Wings




Gradient sampling and neutral genetic structure

Latitude (°S)

-30
L

-32

-34
|

-36

Mean annual temperature (°C)

1
150
Longitude (°S)

New South Wales, Australia

* 185 P vittatum (2017)
 ddRADseq = 11,464 SNPs

* 900km, spanning 6.5° latitude
* 6-17°C/ 130-1600m

High admixture
Pairwise site Fst = 0.0003-0.08

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

Yadav et al. 2019, Mol Ecol.




Landscape genetic connectivity - resistance surfaces

Mean Annual Temp (°C) Landcover

QI

°5. Water
+4, Urban
s 3. Forest

,2. Rural
1. Pasture

v 4

0 100 200 300 400km

Yadav et al. 2019, Mol Ecol.



Landscape genetic connectivity - resistance surfaces

Mean Annual Temp (°C)

a-

ot

Landcover

- ]

°5. Water
4, Urban
» 3. Forest
,2. Rural

1. Pasture

2x 35 resistance distance (Circuitscape)

~genetic distance (AIC model selection)

Intercept= a

Resistance

Variable

Resistance = 1+a
(cell value-1/n-1) YV

5
... "’

Yadav et al. 2019, Mol Ecol.



Result: Temperature best predicts genetic distance

Higher resistance = urban + water

Higher resistance
10x less resistant than temperature

= low temperature
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X1
1= Methods: Detecting env/morph selection
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X
1= Methods: Detecting env/morph selection

Y8
Z =

==

1 2
|dentifyi
dlen L9 Filtering of
candidate T
SNPs candidates

AFst along
gradient

Fst outlier tests
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X1
1= Methods: Detecting env/morph selection

<
=

Be

Y .

1 2 3
Iden’ri.fying Filtering of Signatures of
candidate ) environmental
candidates

SNPs adaptation
SNP annotation to
gradient Locusta genome

EAA/’MAA(LFMM) Ulitteay) (BLAST)

S overlapping SNP

associations

Interpretation

* Gene functions

( Latitudinal b +
Morphological associations —
unmeasured Environmental
[ Neutral genetic ] 9 variables?/ FPs?2 y associations
structure

+ LATITUDE



Result: Environmental adaptation signatures

* Plus 17 Fst outliers Bayescan + OutFLANK
* Latitude: other variables? Confounded by structure?
120

100 . Pearson’s r <0.80

Number of SNPs
(@8 o
o o

N
o

20
2 Soil Soil
. Annual . Wind oi oi
ST Temp el speed it Moisture | Acidity
m Overlap 20 21 2 10 4 0 1
O Unique 94 30 4 0 1 11 0

Yadav et al. 2019, Mol Ecol



Result: Morphological adaptation signatures

v 30 &— but high correlation with latitude/ just 3 in

(S

o 25 common with Sex

5 20

-g 15

510

Z 5

0 Partial
. artia . . . .
Body size striped Striped | Unstriped | Winged | Wingless
m Overlap 3 1 1 1 0 0
Unique 42 12 1 o o o

Yadav et al. 2019, Mol Ecol.




Result: Allele frequency change along gradient

Bl Avtele A

Allele B

-30

-32

Latitude (°S)

1 SNP with high allelic
turnover for body
size. Detected in both
Fst outlier tests +

morph EAA

-36

Precipitation of warmest quarter (mm)

150
Longitude (°S)

Yadav et al. 2019, Mol Ecol.



Result: Gene annotation ( to locust genome)

Temperature Uridine glucosyl glu-transferase (UGT) (1 SNP)

Detoxification Pigmentation | | UV Shielding

peDigize Glutamate receptors (4 SNPs)

9§%’ /\\‘

ST 2 Olfaction || Neurotransmission || Chemical Signalling

Yadav et al. 2019, Mol Ecol



Case study 1: Conclusions

 Temperature has greatest effect on
both neutral connectivity and local
adaptation

* Selection on morphology may
facilitate local adaptation

 Warming temperatures and
agricultural expansion will
facilitate future spread and
outbreaks




Ischnura elegans
Blue-tailed damselfly
(Odonata)

ORIGINAL ARTICLE WILEY

Signatures of local adaptation along environmental gradients
in a range-expanding damselfly (Ischnura elegans)

Rachael Y. Dudaniec'(> | Chuan Ji Yong' | Lesley T. Lancaster’ | Erik I. Svensson’®() |

Bengt Hansson’ Dudaniec et al. 2018, Mol Ecol




Gradient sampling and neutral genetic structure

Southern Sweden

* 426 I elegans
(2013)

* RADseq/13,612

SNPs

 500km gradient/B%C -
change )

4 admixed clusters

Dudaniec et al. 2018, Mol Ecol
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Landscape genetic connectivity - resistance surfaces

Mean annual temperature °C Landcover
5 AR Intercept= a
4 ”-: 4 e
-\ :', ‘.‘.-." a3 q)
g 2
A -2 Slope =y
e s 7 Developed areas qu)
8 . S 6 Openareas | L =
' BA . . )
(73 N 5 Forests Variable
5 n 4 Scrubland
g (k'" . "a 3 Agriculture
2 _’ \J _‘"'/' 2 Marine waterbodies _
. msndwatersodies | 29X2 resistance surfaces each
for

annual temp and land cover

data
Yy
AT

Genetic distance~Resistance distance
(mixed effects model [MLPE.] +AIC).

Carey et al. (unpublished)



Result: Temperature drives neutral gene flow

IBD
outperformed

all land cover
models

Resistance

Mean annual
temperature affects
genetic distance
linearly

Higl

vy=1,a=1000

Carey et al. (unpublished) i —




Methods: Detecting adaptive genetic variation

1 3

ldentifying
candidate
SNPs

m Bayescan

OutFLANK

Environmental
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p d 4 structure

Dudaniec et al. 2018, Mol Ecol



Methods: Detecting adaptive genetic variation

1 2
|dentifying GDM of
candidate candidate
SNPs SNPs

+

m Bayescan

1 OutFLANK /AFst along gradient

—

Allelic turnover
magnitude

Environmental

Environmental

_ variables variables
pr g ¢4 { Neutral genetic ] Geographic
d 4 structure distance

d
Dudaniec et al. 2018, Mol Ecol



Methods: Detecting adaptive genetic variation

1 2 3
Ident?fying GDM of Signatures of
candidate candidate environmental
SNPs SNPs adaptation

% GDM explained SNP annotation to

transcriptome
AFst along gradient (BLAST2GO)

> == |nterpretation

Allelic turnover

* Gene function
* Experimental data
* Prior knowledge

variables associations
SOE +
d 4 d9 [ ] Geographic Allelic turnover
¢ ¢ ¢ structure distance relationships

Dudaniec et al. 2018, Mol Ecol
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Result: Environmental selection signatures
1251 total SNP assocmhons (LFMM)
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Dudaniec et al. 2018, Mol Ecol



n ALL SNPS 13,612
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Result: Environmental selection signatures
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How do allele frequencies of candidate SNPs change
along environmental gradients?
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GENERALISED DISSIMILARITY MODELING

Based on the concept of species community-level

compositional turnover functions (Ferrier et al. 2007).

* Non-linear, threshold responses of allele frequencies to

environmental gradients - ‘allelic turnover’

» Uses distance matrices of env + genetic data, with splines
and GLM to account for non-linearity

Gradient Forest - similar outcomes/ turnover functions
built differently

Ecology Letters, (2015) 18: 1-16 doi: 10.1111/ele. 12376

Fitzpatrick and Keller 2015
Ecological genomics meets community-level modelling of
biodiversity: mapping the genomic landscape of current and
future environmental adaptation




GENERALISED DISSIMILARITY MODELING

magnitude
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Fitzpatrick and Keller(2015) —Ecology Letters



Result: Selection thresholds via allelic turnover (GDM)

1.00 1

Partial Allelic Turnover Partial Allelic Turnover
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Top 250 candidate SNPs with
highest magnitude of allelic
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Dudaniec et al. 2018, Mol Ecol



Result: Selection thresholds via allelic turnover (GDM)
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Partial Allelic Turnover

Partial Allelic Turnover

Result: Selection thresholds via allelic turnover (GDM)
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Dudaniec et al. 2018, Mol Ecol



Latitude
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Result: Allelic turnovers of annotated genes
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SUPPORTED BY GENE EXPRESSION DATA

 Heat Shock Protein 70 was differentially expressed in response to
heat stress in the core compared with the range edge

Lancaster et al. 2016 Mol Ecol

Logs Fold Change, Heat vs

Cold treatment

Mapping description Function Core Edge Difterence
heat shock protein 70 Heat shock protein 4.26 3.80 0.46
heat shock protein 70 Heat shock protein .15 373 0.42
heat shock protein 20 - Insect Heat shock protein 508 436 0.72
heat shock protein 20 - Insect Heat shock protein 6.76 H.66 010
heat shock protein 20 — Insect Heat shock protein 835 836 0.01
protein lethal essential for life ~ HSP20 Insect Heat shock protein 4 .86 3.88 0.98
protein lethal essential for life -~ HSP20 Insect Heat shock protein 6.17 5.35 082
T !
Core cold Edge cold Edge heat Core heat

-15 -05 05 15
Row Z-Score

+ 50 other differentially expressed genes found among EAA SNPs



Conclusions - Ischnura elegans range expansion

* High adaptive capacity to climate during range
expansion,

* Neutral and adaptive variation = temperature key driver

* Functional relevance with respect to environmental
variation and stressors

* Evidence for rapid adaptation during ongoing range
expansion




STAGES OF ANALYSIS: (1) SAMPLING

----------------------------------------

m
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----------------------------------------

& geographic coordinates!
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Rellstab et al. 2015, Lotterhos & Whitlock 2015



STAGES OF ANALYSIS: (1) SAMPLING
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Rellstab et al. 2015, Lotterhos & Whitlock 2015



STAGES OF ANALYSIS: (2) GENETIC DATA

----------------------------------------

m

‘ I
--------------------------------------

& geographic
coordinates!
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Rellstab et al. 2015



STAGES OF ANALYSIS: (3) OUTLIER DETECTION

----------------------------------------

I’ . \\
m
m

----------------------------------------

-
L p——

Genetic data

------------------------------------------

I
T ted
\

Differentiation-based Analyses
Fst Outlier tests
PCA /ordination-based

No environmental data needed




STAGES OF ANALYSIS: (4) ENVIRONMENTAL DATA

In-situ

Collection of data seen T

Factor type

Factor selection

Rellstab et al. 2015
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STAGES OF ANALYSIS: (5) EAA/GEA

Environmental data + Genetic data

|_I_l |

|7

Environmental Association Analysis
Categories/ Regressions/ Mixed Models
Univariate (locus x env) — LFMM, BAYENYV

Multivariate (ordination: RDA, pRDA) )

Iy




STAGES OF ANALYSIS: (5) EAA/GEA

Environmental data + Genetic data
: - |7 | \
Environmental Association Analysis Differentiation-based Analyses
Categories/ Regressions/ Mixed Models Fst Outlier tests
Univariate (locus x env) — LFMM, BAYENV PCA /ordination-based
Multivariate (ordination: RDA, pRDA) ) No environmental data needed

‘Downstream Analyses’
Examine Fst change/allelic turnover

Gene annotation/gene function/ gene expression

Fithness experiments in lab
Demographic simulations with adaptive genes




A note on combining test results

* Multiple analyses might decrease the likelihood of false
positives BUT avoid using every method out there!

* Approaches vary in power due to demographic history, type of
selection, and study design.

* Composite measures of selection (combining p-values,
multivariate distances) can improve detection....

 BUT: power is limited by the power of the univariate statistics
summarized (see MINOTAUR R package)

Composite measures of selection can improve the signal-to-
noise ratio in genome scans

Katie E. Lotterhos &, Daren C. Card, Sara M. Schaal, Liuyang Wang, Caitlin Collins, Bob Verity

08 June 2017 | https://doi.org/10.1111/2041-210X.12774 ' ns: 9



HOW CAN WE IMPROVE INFERENCE FROM EAA/FST

OUTLIER TESTS?
REPLICATE |dentify common candidates across replicate
gradients, examine for parallel adaptation
SIMULATE Optimise sampling design, verify empirical findings,
forecast adaptive variation
ANNOTATE Genes with biological/ecological relevance improve
interpretation

Modified from Forester et al. (2018)



HOW CAN WE IMPROVE INFERENCE FROM EAA/FST

OUTLIER TESTS?
Approzch

REPLICATE |dentify common candidates across replicate
gradients, examine for parallel adaptation

SIMULATE Optimise sampling design, verify empirical findings,
forecast adaptive variation

ANNOTATE Genes with biological/ecological relevance improve
interpretation

WHOLE GENOME All genetic variants identified — large power to

SEQUENCING detect selection + via structural variants

GWAS Overlap in candidate loci with EAA can improve

strength of inference

COMMON GARDEN + Link candidate genes with traits relevant for fithess
RECIP TRANSPLANTS

TRANSCRIPTOMICS + Environment-mediated gene expression
EPIGENETICS-EWAS’ Plasticity and non-DNA based local adaptation

Modified from Forester et al. (2018)



Future directions - whole genome data

* Future analyses will need to integrate genomic
architecture in to environmental selection detection

Challenges:

* ‘Coding’ for copy number variants, chromosome
inversions, transposable elements (i.e. can they be
considered in the same way as alleles?)

* Constructing hierarchical models to integrate sources of
error from different data types (e.g. SNPs, SVs).

* Identifying gene modularity and interactions

discussed in Storfer et al. (2018)
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