GENOME-enabled METABOLIC
PREDICTIONS to interrogate

the STRUCTURE and FUNCTION of
microbial communities




Case study from my group: Survivor Fractured Shale

How meta-omics can provide new mechanistic insights in an
engineered ecosystem
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Countries with commercial shale energy

Canada

United

States

| Austrailia

Argentina




Hydraulically fractured shales and US energy portfolio

16 States in the US

Marcellus contributes 30% of gas
for the eastern seaboard

Permian contributes 35% of U.S.
crude production and 17% of the

natural gas supply

First time in US history natural gas
replaces coal as main source for
electricity




The deep terrestrial subsurface:

. . . 1/3 earths biomass
The microbial frontier

IS below soill layer,
but remains poorly
characterized
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Pristine Appalachian shales
do not appear a conducive habitat for life
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Low permeability
Nanopores (<0.2 um sized)

Limited meteoric water exchange
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Negative Impacts




Positive Impacts
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What the frack?

Prior to energy extraction,

most deep shales lack
requirements for life



One take away point for today

Fracking creates an ecosystem
2,500 meters below the surface

Daly, 2016, Nature Micro; Hanssen et al, in prep



Development of a multi-omic spatial, temporal database
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Computational pipeline used in this case study
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What is the shale environment like?
What type of microorganisms persist in this system?



16S rRNA analyses of persisting microbial communities

Marcellus= 4
Utica= 5
Permian= 3
I Barnett= 2
Antrim= 2
L | Haynesville= 1

@

16S rRNA
gene analyses

T

Data from Borton, reviewed in part in Mouser et al 2016,

Cell counts increased by ~2 log fold
in late samples
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Salt Lake

Conductivity (mS/cm)

Unpublished data

- (Wilkins and Wrighton)
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Fractured shale communities must
Adapt to increasing salinity
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16S rRNA Fracking “core” members persist
after 50 days (saline adapted)

Marcellus= 4
Utica= 5
Permian= 3
1 Barnett= 2
Antrim= 2
| Haynesville= 1
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165 rRNA
gene analyses

n7 792

Microbial 16S rRNA studies across U.S. shales
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Microbes compete, cooperate, and ward off elimination



Core community composed of several genera
How do surface organisms adapt to deep subsurface?



To address persistence:
What microbial metabolites are produced in situ?

Na* Na*

Osmoprotection

Some microbes synthesize metabolites that maintain
osmotic balance with environment

Other microbes utilize metabolites

Energetically costly to produce small, organic acid or amino
acid products

Enable flexibility to salt ranges
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Extracellular metabolites:
Glycine betaine is a core, persisting metabolite

Na* Na*

CH; O

. . H3C\ /+ ’
Glycine betaine /N%o‘
H;C
/ n=5, 328 days
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Glycine betaineis acore,
persisting metabolitein fractured shale fluids
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Certain microbes and osomolyte metabolites persist across
shales in response to salinity

2 Can glycine betaine serve as an energy source for
microbes persisting in shales



Could glycine betaine also serve as energy source?

CH3 Q

. . H3C\ A
Glycine betaine ,N%O—

HC

Stickland reaction

amino acid glycine betaine
electron donor Reductase
? : :
trimethylamine

e Demethylation reaction

Methyl glycine betaine
transferase
dimethylglycine

Metabolism Ref: Ticak et al, 2014 + Andreesen et al, 2004



Could glycine betaine also serve as energy source?

Stickland reaction

amino acid
electron donor Reductase
2

glycine betaine

trimethylamine

Demethylation reaction

Methyl
transferase

glycine betaine

dimethylglycine

CH3 Q

. . H3C\ A
Glycine betaine ,N%O—

HC

Isn’t metagenomics enough?

Genes are poorly annotated in
genomes

Electron donor cannot be identified
from existing data alone

Expressionis challenging due to
sample collection



Validating a meta-omics hypothesis from the field in the lab
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Co-expression patterns from shale reactors could identify

HaC
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Metaproteomics crash course- paired to metagenomes
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Now that we know who Is there,

proteome can give us how they can function
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Proteomics- uses and challenges

a
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e Proteomics

o Demonstrates expression of genes in metagenomes
o Correlate to metagenomic data

o No amplification: need high signal, doesn'tdo well for low
abundance organisms

o Outer membrane proteins notas well resolved unless
separate fractionation done
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4 core, persisting members from field
detected in metaproteomics from laboratory microcosms

il
ﬂ

] Halanaerobium B Methanohalophilus

Bl Ca. Uticabacter HH Geotoga

|
T9 > T, ’,..TF 100--‘-—-IL

"

—— i LL o

' <

I ]
v Z =
Metagenomics 0

Proteomics T,=Day 2 T.=Day 20
NMR Metabolites [ Halanaerobium W Methanohalophilus
Gas Chromatography Il Ca. Uticabacter HH Geotoga




Combining time series meta- omics
Halanaerobium reduced GB to yield TMA, a methanogenic substrate
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Laboratory Proteomics and Metabolomics:
Methanohalophilus preferentially utilizes Halanaerobium metabolites
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Expression and metabolite correlation analyses
Glycine betaine, glycine, and sarcosine are Stickland acceptors
glycine and lysine are possible Stickland donors
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Even very “simple” microbial communities,
have complicated mutualistic and competitive metabolic interactions
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1 What type of microorganisms persist in this system?

Can glycine betaine metabolism sustain microbes in
shales long after fracking

What roll do viruses play in controlling population
dynamics?



Laboratory proteome studies hint at active viruses in fluids

505 T 16 unique viral genomic contigs

%%F A *viral genes expressed in lab
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CRISPR-Cas systems in genomes
are a mechanism for tracking viral-microbial encounters

CRISPR stores genomically recoverable (,(‘ Virus invades

- . -IVE .
timelines of virus-host coevolution in /"—1; bacterial cell
- "?

natural organisms

New spacer is
derived from virus
and integrated into

l CRISPR sequence

& S0 &

Adaptation: spacer

incorporation



CRISPR-Cas systems in genomes
are a mechanism for tracking viral-microbial encounters

CRISPR stores genomically recoverable ¢ virusinvades
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Expression: RNA is formed



CRISPR-Cas systems in genomes
are a mechanism for tracking viral-microbial encounters

CRISPR stores genomically recoverable ¢ virusinvades
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New spacer is
derived from virus
and integrated into

l CRISPR sequence
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incorporation

CRISPR RNA l
guides molecular
Interference: cleavage complex destroys foreign DNA machinery to 5?_ ] .
target and destroy _ CRISPR RNA Expression: RNA is formed

viral genome is formed




Host expression data highlights viral predation in fractured shales

15 unique viral populations
viral genes expressed in lab

2 bacterial hosts
express CRISPR genes in lab

Halanaerobhium

(A) Adaptation: spacer incorporation
(E) Expression: cognate RNA synthesis

Interpretation from Makarova et al, 2015 () Interference: cleavage-complexto destroy foreign DNA



Time-series genome sampling provides evidence that
NEW spacer incorporation occurs in the field
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Can viral predation explain
Halanaerobium 16S rRNA relative abundance changes?
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Halanaerobium viruses are prevalent in metagenomes

1,838 viral genome populations (vOTUs) identified
representing 156 new viral genera from fractured shales

68.2% of viruses are associated with Halanaerobium
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Viral predation may cause changes in Halanerobium strain
dominance 4 most dominant strains shown

Host 16S rRNA Relative Abundance (%)
N s 2 ©

Abundance

ecrease
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L T T T T T 1
86 96 112 126 140 154 175 204 302

Days after Hydraulic Fracturing




Halanaerobium strains recovered from a single well
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Link Halanaerobium spacers to viral genome database
host have multiple link to same virus
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1 What type of microorganisms persist in this system?

Can glycine betaine metabolism sustain microbes in
shales long after fracking?

What roll do viruses play in controlling population
dynamics?

4 Viruses: Friend or foe? Roles in nutrient release



Where are the viruses in fractured shales coming from?

environmental
stress




With an isolated strain of Halanaerobium that has a prophage
Can we induce the virus and lyse the cell

Succinate addition
(100 mM)

Il Control
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0 20 40 60 80 100 120 140 160
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In lab induced prophage into lytic lifestyle
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Prophage induced cell lysis causes host metabolite release

metabolites released following viral lysis
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Virome and microscopy suggest tall less, novel virus
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Microbes compete, cooperate, and ward off elimination



REVIEW: computational pipeline used in this case study
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Core microbes adapt to
environmental hardships
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Borton et al, PNAS, 2018



Compete for resources in the tribe

Borton et al, PNAS, 2018



Form alliances within the tribe
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Ward off viral elimination

Cl

Daly et al, Nature Micro, 2019



Shaleis a model for other ecosystems




Shaleis a model for other ecosystems




Shaleis a model for other ecosystems




Shaleis a model for other ecosystems




Summary- Genes to Ecosystem

emission or health
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