_earning about evolution by
ouilding coalescent trees

Simon Myers, Leo Speidel

* This am: introductory lectures

* This pm: "Relate in the Prelate”

* Running Relate on a human dataset of 130 different

populations

* Population structure and how it changes through time

* |dentifying directional selection
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deMenocal et al., 2016

Europe
45,000
years ago

Levant and North Asia \

Arabian peninsula 223??2 " Americas
120,000 to 90,000 y g 15,000 years ago
years ago
Homo sapiens in/h
150,000 to

T Genetic variation data
can tell us about:

—

Structure and migrations

Population bottlenecks

Admixture

. | Stepl: Let's model these
Mutation Step 2: Inference

Recombination

These might themselves evolve through time!

Selection

etc
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DNA sequences of
modern-day people

1

Demographic history
Genetic structure
Mutation, recombination,
etc.

Fundamental forces impact data (only) through underlying genealogies



Many canonical approaches
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DNA sequences of

modern-day people
Invent informative statistics, simplify,
"integrate out all possible histories"
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Demographic history

Genetic structure -
Mutation, recombination,

etc.



Today’s approach
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DNA sequences of
modern-day people

Demographic history
Genetic structure
Mutation, recombination,
etc.

In principle, trees capture all the information available from the data about these
processes

Challenges: computationally very challenging to sample trees from the data, and
modern datasets can contain >50,000 individuals and >100,000,000 mutations



Inferring genealogies

Old problem, lots of methods, but few can scale:
C ARGweaver} Infers Ancestral Recombination Graphs

* Rent+
e Tsinfer

Published in 2019, scale to large sample sizes
* Relate

We will talk about Relate, but principles of
tree-based inference applies more generally!



ldentifying and dating population splits
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Positive selection: rapidly spreading lineage
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Clusters of mutations in time can capture
changes in mutation rate

Mutation rate
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To actually do inference, we need to (re)visit the
coalescent model to help:

1) Create a method to build trees under a coalescent model,
with varying population size, and allowing for
recombination

2) Construct statistics to capture information from trees and
either

(i) Interpret parameters in the coalescent, e.g.
coalescence rates

(ii) Reject a null model, e.g. testing for selection



Revision of coalescent

The Wright-Fisher model is able to approximate more realistic models
of populations

Each member of the current generation randomly chooses one of M
parents and inherits their DNA

Some population members have 0 children, others more than 1 child:

I K x I I Each haplotype chooses

parent in previous
generation totally at
random

If haplotypes share a
parent back in time, this
is called a coalescence
event



Revision of coalescent

Over many generations, the population evolves
Our DNA comes from our ancestors so we look back in time

In a single generation, chance two haplotypes choose the same parent

is 1/M
I Each haplotype chooses
parent in previous

generation totally at
random

If haplotypes share a
parent back in time, this
is called a coalescence
event



Revision of coalescent

Over many generations, the population evolves
Our DNA comes from our ancestors so we look back in time
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is 1/M
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Revision of coalescent

Over many generations, the population evolves
Our DNA comes from our ancestors so we look back in time

In a single generation, chance two haplotypes choose the same parent

is 1/M
I Each haplotype chooses
parent in previous

generation totally at
random

If haplotypes share a
parent back in time, this
is called a coalescence
event



If we take a sample from the population, we can trace their ancestry: a random tree
In this tree, the number of ancestors decreases back in time fromnto 1

Each pair of lineages has 1/M coalescences per generation, so 1 coalescence per M
generations

Sample of size n=6



M ~10-50,000 for all human

populations, highest in Africa

So a typical pair of human chromosomes share an ancestor on
average around 2x20,000x28=1 million years ago

M varies dramatically across species
(Charlesworth, Nature Reviews Genetics 2009):

25,000,000 for E.coli
2,000,000 for fruit fly

D. Melanogaster

<100 for Salamanders
(Funk et al. 1999)



Typically, as M is large we just model time as continuous

Any pair of lineages coalesces at rate 1/M

Then while there are j lineages, there are (é) pairs that can coalesce - so the rate at
which a coalescence happens is just (é)//\/l
[this leads to an exponential distribution of time until coalescence, with rate (é) /M]

— e - — — e —
— e — — . —
— e — — — —
— — — — — — j=2, 1 pair
— — — e — —
— e — — — —
— — — — —
— — — Jj=4, 6 pairs
— — e —
— — —
— —

Sample of size n=6



T,~exp(l) E(Ty)=1

L T, ~exp(3) E(T,)=1/3

T, ~exp(6) E(T,)=1/6

| | Ty ~exp(10) E(Ty)=1/10
‘ I T. ~exp(15) E(T,)=1/15

n=6
(after scaling time by M generations)
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Varying population size

If M changes, so does the chance of coalescing

While there are j lineages, the rate at which a
coalescence happens is just (é)//\/l(t) a time t ago

Shapes of trees can tell us about M(t)

| |
| |
| |
Coalescence happens faster
| |
when M is small
|
| | | | | |
| | | | |
| | | | .
J=4
| | | |
| | |
| |

Sample of size n=6



Adding mutation to the mix
\

Distinct mutation
events

® /.

* Mutations are dropped randomly on the edges of the tree (e.g. in many simulation
software packages)

* They are seen in descendants of this edge, so this totally specifies diversity
patterns

* We will talk about some theory results about spread of mutations in the coalescent
later



What about recombination?

JC Phased Haplotypes
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* Unlike mutation, recombination events actually change the trees

Father Mother

* One piece of DNA can be inherited from two different parental
chromosomes, as a mosaic
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Principles of adding recombination
to the coalescent

In the Wright-Fisher model, if recombination occurs
then a chromosomal segment has two parents

=




Principles of adding recombination
to the coalescent

In the Wright-Fisher model, if recombination occurs
then a chromosomal segment has two parents

i




The ancestral recombination graph




The tree at the left-most position in the region

A small piece of DNA is not impacted by
recombination, so the coalescent model still

applies

1 11



The tree at the right-most position in the region

A small piece of DNA is not impacted by
recombination, so the coalescent model still
applies

The bases of the trees have less recombination so
are more similar than the tops

e



Relate L. Speidel, M. Forest, S. Shi, S. Myers. Nature Genetics 2019

https://mvyersgroup.github.io/relate/

Rela

Rel_é_{e

Software to estimate genome-wide genealogies for thousands of samples

Relate estimates genome-wide genealogies in the form of trees that adapt to changes in local ancestry caused by recombination. The method, which is scalable to thousands of samples, is described in the following paper.
Please cite this paper if you use our software in your study.

Citation: Leo Speidel, Marie Forest, Sinan Shi, Simon Myers. A method for estimating genome-wide genealogies for thousands of samples. Nature Genetics 51: 1321-1329, 2019.

Contact: leo.speidel@outiook.com
Website: https://leospeidel.wordpress.com

Download

Relate is available for academic use. To see rules for non-academic use,
please read the LICENCE file, which is included with each software
download.

Pre-compiled binaries (last updated: 02/09/2019)

| agree with the terms and conditions

Linux (x86_64, dynamic) - v1.0.16

Linux (x86_64,

tatic) - v1.0.16

In the downloaded directory, we have included a toy data set. You can try
out Relate using this toy data set by following the instructions on our
getting started page.

If you have any problems getting the program to work on your machine or
would like to request an executable for a platform not shown here, please
send a message to leo.speidel [at] outlook [dot] com.

We document changes to previous versions in a change-log.


https://myersgroup.github.io/relate/

Data, and the underlying tree structure
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* Every mutation shows the existence of a branch
 Mutations are “ordered by inclusion”
 No two branches (mutations) ever show only partial overlap




A basic tree-builder: UPGMA

True tree
* UPGMA coalesces lineages with
smallest number of pairwise +
differences
* (2,3) and (5,6) are coalesced first ®
* (5,6) and 4 are coalesced O
O
* Now, pairwise difference of
1and (2,3)is 5 ® o ®
1 and (5,6) is 4
land4 is5 ®
—> 1 and (4,5,6) are coalesced next! 1 ||@ |7




UPGMA tree cannot be correct, given the data

UPGMA tree True tree
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2 3 1 4 5 6 1 2 3 4 5 6

The UPGMA tree cannot be correct, because it does not include any branch whose
descendants are sequences 1,2,3. How can we fix this?



Counting derived mutations to
build the correct tree

True tree

relative to +

1 (2,3) (4,5,6)

]
s o @] -
S [
s 23 (4)| o | s
B [
& 7 ?
5 (4,5,6) 2 2 0
= [
Avoids combining information of two branches!
1 [|® T




How does Relate work?

* In the no-recombination case, it first counts numbers of
derived mutations for each pair and builds a tree
structure/topology (times are deferred for now)

* Performs coalescences between mutually most similar
lineages

* Guaranteed to produce a tree matching the data!



Accounting for recombination

Ll

]

Recombination means pairs of sequences are most similar for only stretches of DNA

1

g

|

b

Use a HMM to (intuitively) identify these stretches, count derived mutations only within
them, then proceed as for no-recombination case



Summary of Relate pipeline

Hidden Markov model (HMM)

focal SNP

—_E—Q

Reconstruct one chromosome as a mosaic of other samples
. ______________________________________|

‘ Distance matrix for focal SNP

— %ﬁaﬂgam:

Hierarchical clustering - —

& * -
MCMC for branch lengths  m— s ssssssss—|—
—

—

haplotype data sorted using constructed tree




Model used by Relate is very similar
to that used in fineSTRUCTURE (Monday)

Hidden Markov model (HMM)
Li and Stephens, Genetics, 2003; Lawson et al., PLOS Genetics, 2012
focal SNP

Reconstruct one chromosome as a mosaic of other samples

T K6

B el o e I 2 fineSTRUCTURE analysis
| . . SUVI.MAX of France:

Saint-Pierre et al. 2019

o o TS | W
138 334 35 %1 5




Variable population sizes

* Population size is varying; estimated from the trees,
within Relate

e Recall: while there are j lineages, the rate at which a
coalescence happens is (é)/l\/l(t) a time t ago

* Demography is shared genome-wide, so we average
across trees

e So within a time interval, scaled fraction of trees where
coalescence occurs is inversely proportional to M(t)

* |terate and rebuild trees...



Simulation:
population size changes through time
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Simulated data with variable population size
(European-like demographic history)

- Incorrect constant pop. size
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Speed and accuracy of Relate

e About 14,000 times faster than previous method, ARGWEAVER
(1 min. vs. 200 hours)

e Builds “correct” tree if no recombination

* Accurate, robust to data errors
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1000 Genomes Project data:

4956 haplotypes from 26 populations
e ~71,000,000 biallelic SNPs

e ~93% of SNPs map uniquely to a tree (80% for CpG mutations due to
repeat mutations)

Run time: ~4 days on 300 cores



population size

Estimates of human population sizes
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Example tree

1500000 Genotype in Neanderthals
[ ]
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S 1000000 ~ unknown
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Only 2 populations shown, for clarity;
some GBR individuals carry a Neanderthal haplotype of age <50,000 years



Introgression in humans
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Many long branches in African genealogies

1500000 Genotype in Neanderthals
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These long branches are

private to African populations i ...
Long branch (upper end >1MY, lower end <30kY) "

GBR LT T 0 0 00 )

years ago

500000

Neanderthal onl Denisovan onl Both Neither

‘#mutations’
% 30000
T & 20000
10000

0

Neanderthal onl Denisovan onl Neither
I-II-BSSI ‘#mutations’
M 4000
can S g
FIN (1)000
CEU
Denisovan onl
KHV ‘ C
JPT #mutations
CHS
CHB
CDX
Denisovan onl
STU
PJL
ITU
GIH
BEB
(\c‘,{\ a'\\oo QQ\ QQ\ ?‘b@?‘b (\e’(\\\ Q\ Q\ V“%
@ & ¥ 9 @ @ @
O O &SSO \$¢\$$(\Q)O
ORI S T <« I NS O O O 0 O 9
,\\\ Ne) (0@ @ (b@ ée) (\\ Ne) (b@ @ (b@ (0@ N0
O T LT oS
Q $ &
N I F



These long branches are
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These long branches are

private to African populations ¢ ..
Long branch (upper end >1MY, lower end <30kY)
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500000

0
YRI

GBR LT T 0 0 00 )

Neanderthal onl

Denisovan onl Both i
TSI .
‘#mutations’
IBS M &= 4000
o 3
FIN 1000
CEU 0

Neanderthal onl Denisovan onl Both i
KRV ‘#mutations’
JPT 4000
ohe socd
CHB 1000
CDX 0
Neanderthal onl Denisovan onll Both
Q‘ S
&> 23

. %
2
%

%

RAY



These long branches are

private to African populations ¢ ..
Long branch (upper end >1MY, lower end <30kY)
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Relate applied to 50 wild mice sampled in

India, Taiwan, and France
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Runtime: 17 CPU hours for 19 chromosomes, Memory usage < 2.5 Gb



Population structure through time in
Talwanese mice
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Population structure through time in
French mice
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Changing human mutation rates through time
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Our results closely mirror those of Kelley Harris (PNAS 2015)



Reminder: Clusters of mutations in time
can capture changes in mutation rate
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Detecting sighals of positive selection

* Genetic adaptations to changing environment, diet, lifestyles,...
e Use trees incorporating demographic history:
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Adaptation for increased Lactose tolerance is one
of the strongest selection signals genome-wide
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How quickly does a mutation spread
in the neutral case?

ah |

The coalescent is simple so it is possible to analytically write down the probability a
mutation arising while k lineages are in the tree has some number of descendants

Example: if k=2, this is just a uniform distribution

P(5 descendants)=1/6



=2 case
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P-value for evidence of positive selection

years ago

k lineages

#descendants subtending each lineage:

uniform in possible assignment of
haplotypes to lineages

NERERERRERRRE RN RRA AR
N haplotypes

How much has a mutation out-competed other mutations?
Robust to population size history

| | k lineages when mutation had frequency 2

In=1y(N=fn—1
Pl — L)l )

N haplotypes N
NN e

fn deri'ved allele carriers
N—k+2

p-value = Z P(f|k)
f=In



P-values: very well calibrated under
null simulations of no selection

N=1000, 250Mb
Bottleneck population size

a 8
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Much better power to see weak selection
than existing approaches
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Genome-wide selection p-values

Given most traits are highly polygenic, expect mainly weak, polygenic selection

c15-

GBR

—
?

-log10 SNP p-value

-y

How does weak selection evidence vary by functional class of SNP?
By individual trait?



GWAS hits are most enriched, among
selection sighals we observe
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Increasing evidence of selection

Intronic SNP

Synonymous coding SNP

5" untranslated region
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Non-synonymous coding SNP
Genome-wide significant GWAS hits




Evidence of selection on a trait: hair colour

We use
* Effect direction of "genome-wide significant” associations
 Compare selection p-values to frequency matched random SNPS
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Correlated phenotypes

Pleiotropy

Biased effect sizes (e.g., due to genetic structure)
Unbalanced power for different ancestries



Evidence of selection on a trait: type Il diabetes

With Anubha Mahajan (Oxford), Mark McCarthy (Genentech)

e 171,262 cases and 1,075,072 controls from diverse ancestries
* 337 independent loci with T2D risk associations
e 209 (MSL) — 297 (FIN) segregating hits per population
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Type Il diabetes: selection via fat related traits?

a B T2D risk increase
Il + association with arm fat mass increase
B + no association with arm fat mass increase
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36 of 76 traits tested)

Directional effects (GBR

Physical
traits

Blood
pressure

Platelets

Red
blood cells

White
blood cells

Lipids

Other
traits

Educational attainment (years of education)
Schizophrenia (PGC) ]
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Many GWAS signals of trait selection,

clustering geographically
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Evidence for trait increase
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Conclusions and future work

It is now possible to build genealogical trees for huge datasets, in humans and
other species (currently 10,000 people or more)

These trees capture information about many processes including ancient
introgression, mutation rate evolution, and trait evolution (and many more
things)

There is evidence of widespread, relatively weak, selection on SNPs impacting
human traits

» Pleiotropy, differences in power among human groups, etc. complicate
interpretation

Future work:
* deeper analysis of varying types of selection
* Trait evolution through time and space
* Recombination evolution, directional migration

....creative approaches to leverage trees to answer biological questions!
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