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What is population genetics? (back to basics)

“The study of the genetic composition of natural populations
and its evolutionary causes and consequences” (Coop 2019)
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What is population genetics? (back to basics)

A set of theoretical models to understand how these forces interact
Simple as any model simplifying reality

(... all models are wrong but some are useful, Box 1979)

Useful for understanding real patterns - give accurate predictions
(e.g., medical genetics, crop improvements, species conservation)

Powerful as the basic rules of genetic transmissions are simple
and universal




Population genomics as a tool in conservation
biology

SIDE A: The extraordinary genomic history of lo
the endangered Apennine Brown Bear

SIDE B: Climate-driven range shifts in fragmented
ecosystems

Bonus track:. Ancient genomes reveal early farmers
selected common bean while preserving diversity
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Australia

- Greenland -

Generally holarctic with a more southern range in Asia

Brown bear distribution
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Brown bear distribution
Fragmented in South-Eastern Europe

More or less stable population,
ca. 17,000 individuals

(Status of Large Carnivore
Populations in Europe
2012-2016)
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Brown bear distribution
A small and isolated population in Central Italy

Less than 100 individuals since
it the population has been
checked (last century). Now ca.
50 individuals

Globally Threatened

JJJJJ

Critically Endangered

Lazio e Molise

National park since 1923
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Brown bear distribution

A small and isolated population in Central Italy

\_

Less than 100 individuals since
it the population has been
checked (last century). Now ca.
50 individuals

How long has this population
been so small and isolated?
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Brown bear distribution

A small and isolated population in Central Italy

\_

Less than 100 individuals since
it the population has been
checked (last century). Now ca.
50 individuals

How long has this population
been so small and isolated?

6 WGS (@),
12 whole mt genome
sequenced (O)




&

Whole-genome data
A few other samples from other European populations ...

J
Genome sequences from
previously published studies
POL1® JSWE1? =S
poe ToviEs Nt
POL42 HEBLK1P
a
RSt -y n
y 5
d -
SPAL APN1-s4
APN3
(Y
o APNZ
APN5

a: Liu et al 2014, b: Miller et al 2012
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Structure of genomic diversity

Whole-genome and mitochondrion contrasting histories =~

1,842,042,551 nuclear bp

0.004

ANGSD, ngsDist, nj from ape R package

16,485 mitochondrial bp

0.0045

Geneious, MAFFT, genetic distance (HKY), NJ
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Structure of genomic diversity

Whole-genome and mitochondrion contrasting histories
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Structure of genomic diversity
Y-chr agrees with whole-genome:

sex-biased dispersal? =~

1,842,042,551 nuclear bp

0.004

ANGSD, ngsDist, nj from ape R package

5.3 Kb Y-chromosome

BR3

BR1.2

BR1.5

BL1®

PO3 PO1.2
BL2®

BL3®
MAFFT, TCS
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Structure of genomic diversity

Robust to decay of linkage disequilibrium
G J

- A)

7,971 SNPs, 150bp thmnlng 3

100 SNPs, 10Mb thlnnlng

0.0e+00 5.0e+06 1.0e+07 1.5e+07 2.0e+07 2.50+07 3.08+07

distance

T T T T T T
0.0e+00 5.0e+08 1.0e:07 1.5e+07 2.0e+07 2.5e+07 3.0e+07

STRUCTURE, non-cds, non-rep ANGSD, ngsLD distance
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Genomic diversity - average
Low but the polar bear is worse

Bw (bp™)

0  0.0005 0.0010 0.0015 0.0020 0.0025
APN2 . O>14X
APN3 S N A-B4
APNA TN
APNG MR
APNG6 Ry
SPA1 ,

s m High coverage:
SLKL b vcftools, SNP density, 50kb windows

SLK2 R N (then downsampled and analyzed as
GRE1 R Y low coverage)
GRE2 N

Low coverage:

S
= ANGSD, realSFS, do_theta,
swe, I 50k windows

POL1-6* [
AONNANNNN N}




&

Genomic diversity - distribution
Low but the polar bear is worse...maybe not!

0.0100 —

0.0010 —

0, (bp™)

0.0001 —

0.0000 —
APN2 SPAL ALP1 SLK1 SWE1 SWE2 POL3

vcftools, SNP density in 50kb windows
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Long stretches with no diversity in the Apennine bear
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Inbreeding estimates
Much higher than any other European bear

J
APN2
B (0.75)
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) <t
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28 - (0-22) %‘-;_% Regions longer than 1Mb with less
o /3(«)L1P31_\ / than 25 segregating sites in the 13
C .
o 4 (0.13) longest scaffolds, ca. 0.5 Gb - sorted
2"
= (percent of the analyzed scaffolds)
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Inbreeding estimates
Much higher than any other European bear

Inbreeding
0 01 02 03 0.4 05 06 07 08 09 1

APN2
APN3
APN4
APN5
APNG6
SPAl
APL1
SLK1
SLK2
GRE1
GRE2
SWE1
SWE2
POL1
POL2
POL3

POL4 Based on the proportion of the genome
POLS segments that are mostly homozygous
EOLS (Prifer et al 2014)

APN2
20- 0.745

1.5~
1.0-

0.5-

0.0 AN

0 2 B 6

Density weighted by length

mean of log(8y,)
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Past demography F sy
Apennine population declined more than other Eu pops "~ ~
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Past demography
...and to very low Ne
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ABC-skyline (Boitard et al 2016),
fastsimcoal2, abc R package

Time in the past (ky)
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Past demography
Decline 3,000 years ago to about 100 individuals

\_
C Ng = 40K
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3] Simulation of expected pattern of
§ homozygosity regions using ms
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Past demography

Fragmentation of a large European population
\_ .
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Past demography

\_

Fragmentation of a large European population
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Past demography
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Apennine bears have been isolated since then

35

T

34

T

replicates

APN2 vs. SLK1 APN2 vs. ALP1

2 2

L L Il I L ! L
32 33 328 3 32 33 38 33

observed F (%)

33F

1}

32

simulated F (%)

T

30

2000 4000 6000

8000

time since population divergence (years)

F statistic (Green et al 2010), simulation with ms
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Past demography o
Expansion of Neolithic farming in Europe burned forests =~

Neolithic
Expansion

v Linear Band pottery y.eg?el
from Rauschenbeérg-Bracht
e 2 / .

\ ...";\'. - :. J." W \ i . 'l
$ '.'a'-:é:/'l o
X ~~Improssed Wares - ~
~4 - ~” . A _"




Why is this population still there?

Given such high extinction probability

AN Credits: Fabrizio Caputi



Selective processes
Retention of non-synonymous polymorphisms

g J
Two APN SLK1+SLK2 GRE1+GRE2
Reference genome
Pn-syn Psyn l:’n-syn Psyn I:’n-syn Psyn
ALP1 0.34 0.25 0.55 0.54 0.54 0.52
SLK1 0.36 0.26 - - 0.54 0.51

McDonald-Kreitman like test
Fraction of heterozygous sites in a European bear that are still heterozygote in the
Apennine bear, for synonymous and nonsynonymous sites

Pn-syn = Psyn: drift
Pn-syn > Psyn: balancing selection
Pn-syn < Psyn: directional selection



Selective processes: balancing
Retention of high diversity regions (HDR)

&

== Apennine
== non-Apennine

99" percentile

+10% Ow

[ ]

non-Apennine

[

Scaffold position
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Selective processes: balancing
HDR are enriched in immune and olfactory genes

® EUR

0.006 0.006 7 © APN

Six olfactory
Five MHC genes ' receptors genes

1 T T I T T 1

4e07 5e07 0 1e06 2e06 3e06
Scaffold118 Scaffold80




Selective processes: balancing

MHC genes are as diverse as in the rest of Europe
G J

- DQB, 225bp = DRB, 180bp
8
20

18
14
18 6 6
35 4 14 6 8
30
15
25
2
10 -
0 0
TRERE
< <O <

L
Sanger-sequencing of two MHC class Il loci in additional individuals from
Apennine and the rest of Europe

Segregating sites
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Genetic load

Accumulation of deleterious effects
\_ Y,

ATP synthase particles

Predicted deleterious substitution fixed R
in the Apennine bears (by Panther + Vot
Polyphen): 40 + 4 stop codon

. cristae
Ribosome

None in the other European bears! Granules

Inner membrane
Outer membrane

5 in the mt ND5 of which the most
deleterious is not found elsewhere

#APNs #NonAPNs

Gane Position (out of 6) (out of 45)
ND5 G526E 6 0
ND5 P447S 6 5

ND5 T555A 6 3 «2.52



Genetic load in a specific group of genes
Are Apennine bears less aggressive?

Mazreo Vancine Photos




Fixed differences in 22 “tameness” genes

Not all deleterious fixations come to harm
\_ y,

p =0.037
10007 ¢ ‘
. 800 1L
o
GC) M
> 600 -
op )
L
L 400
71 Pattern confirmed with additional
200 - ‘1 | individuals in three of these genes:
M PLAXNB1, DCC, DLL3 (not yet
T checked in the others)
0 le-04 2e-04 3e-04

Proportion of fixed differences
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Maintaining and losing diversity in genes
Balancing selection and deleterious alleles fixation by drift
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Concluding
Surviving and diverging at very small population size

Apennine brown bear population is isolated since 300 generations (3,000 years)
likely due to slash-and-burn agriculture during Neolithic expansion in Europe.

Population size has been rather small (less than 100-300) since then causing high
inbreeding and massive loss of diversity genome-wide.

Genetic load of this population is high due to fixation of deleterious substitutions by
genetic drift.

Some regions retaining high genetic diversity due to functional or structural
reasons (duplicated loci, ectopic recombination) could have favoured survival.

Some alleles fixed by drift (or selected by hunting?) could have changed
behavior-related traits decreasing human persecution of this population and, again,
favouring survival.

(This work was done with just a handful of whole-genomes but about three years of
work of quite some peoplel!)
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Survival and divergence in a small group
The extraordinary genomic history of the
endangered Apennine brown bear stragglers

Andrea Benazzo*, Emiliano Trucchi*, James A. Cahill, Pierpaolo
/ Maisano Delser, Stefano Mona, Matteo Fumagalli, Lynsey
Bunnefeld, Luca Cornetti, Silvia Ghirotto, Matteo Girardi, Lino
Ometto, Alex Panziera, Omar Rota-Stabelli, Enrico Zanetti,
Alexandros Karamanlidis, Claudio Groff, Ladislav Paule, Leonardo
Gentile, Carles Vila, Saverio Vicario, Luigi Boitani, Ludovic
Orlando, Silvia Fuselli, Cristiano Vernesi, Beth Shapiro, Paolo
Ciucci, and Giorgio Bertorelle (2017) PNAS, 114, E9589-E9597







Climate-driven range shifts in fragmented ecosystems

Understanding the impact of climate
change on (sub-)Antarctic upper-level
predators




The Southern Ocean:
The Antarctic Polar Front

AUSTRALIA

| Sub' /’/
Temperate ' Antarctic Antarcti
water

ANTARCTICA

INDIAN
OCEAN
—————————————————— ,”‘V _;r :. —

ATLANTIC
OCEAN



The Southern Ocean:

Chlorophyll and marine productivity

Suomi NPP Austral Summer
VIIRS 21 Dec. 2011
through
20 Mar. 2012

Chlorophyll (mg/m®)



aerwie  The Southern Ocean:

v Food web

Elephant seal

Leopard seal /'

Fur seal etc.

Baleen whale

kriu = // )

Human
Zooplantko)\

_ .
a® ‘

Phytoplankton



Global warming:
A fact




Global warming:
Which is the effect in Antarctic ecosystems?




The Southern Ocean:
Penguins’ cradle

King penguin Emperor penguin



The King penguin’s foraging strategy:
The polar front area

Breeding grounds  Foraging grounds
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The Emperor penguin’s foraging strategy:
The coastal polynyas

Ice Sheet

-
-
.........




Question

Which will be the effects of climate change on
demography and distribution of the two species?




ﬁ Methods

Species distribution modeling...

...coupled with genomics (RADseqg + WGS) to
validate model assumptions and hindcasting results




Our model of habitat suitability
Increasing temperature and shifting Polar Front

DIVERGENT CHANGE

ANTARCTICA



Our model of habitat suitability
Increasing temperature and shifting Polar Front

DIVERGENT CHANGE

ANTARCTICA

ANTARCTICA



Bio-physical ecological niche model
Major constraints

SST (°C)

. Sea Surface
Temperature (SST)
and efficient

I, foraging

Scheffer et al. 2010



Bio-physical ecological niche model
Major constraints

44°S

46° 4. 1996

48° i

50° 4.

52° -

54° ++V—F+——l+———i -+

49° 51° 53°E
2001
2005@
2006 2007 2009 2010

|||||

Bost et al. 2015

vvvvv

-----

Sea Surface
Temperature (SST)
and efficient
foraging



Probability of annual survival

0.96

0.94

0.92

0.90

0.88

0.86

0.84

0.82

Bio-physical ecological niche model
Major constraints

2002

Foraging distance -> 700 km limit

| I

1.1

1.2 1.3
Annual mean SST (C°) at 56°S, 46-56° E

1.4

Le Bohec et al. 2008



Bio-physical ecological niche model
Major constraints

Temperature -> year-round
ice-free breeding grounds

NASA Earth Observatory



Our model finds all suitable islands

Accurate description of current distribution

PRESENT

Y




Our model suggests cold ice age refugia
Hindcasting very few suitable islands at the LGM

PRESENT

PAST




LGM

E

Genomic inference of past demography
In agreement with the species distribution model

HOLOCEN

J

PRESENT

Kyr Before Present

(spuesnoyy) azis uonendod aAno9y3

PAST

frequency spectrum estimated by ANGSD

Stairway plot using unfolded site



What is our prediction for the future?
Under ongoing climate change scenario (up to 2100
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Our model predicts largest colonies will be lost

Few islands will become suitable

1000

Crozet [8]
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PC2 (0.91%)

Genomic inference of high gene flow
World-wide connectivity in the King penguin

0.2-

0.0~

-0.2-

1
0.0

PC1 (0.93%)

Archipelago
Crozet
o Fakdand
: South Georgia
‘ Heard
E \ Kerguelen

" 1Pnnce Edward

0.2

One single highly
connected
metapopulation

Long-range dispersal is
not an issue

About 50,000 loci genotyped
in ca. 160 individuals from 13
colonies in 6 archipelagos.

PCA
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Genomic inference of high gene flow
World-wide connectivity in the King penguin

One single highly
connected
metapopulation

Long-range dispersal is
not an issue

About 50,000 loci genotyped
in ca. 160 individuals from 13
colonies in 6 archipelagos.

NJ tree



Ice Sheet

Modelling wind stress on
coastal ice area




The Emperor penguin’s foraging strategy:
Coastal polynyas are maintained by wind stress

6 models assessed for 4 variables,
under 6 « forcing periods »

Rearing

Ice Sheet

ues|\

Modelling wind stress on
coastal ice area




Genomic inference shows a constant population
No detectable effect of past climatic shifts

HOLOCENE
LGM

- 75 Polynyas move along the
- *%  coast but were (and likely
| will be) always present

v
1
1
1
1
1
1
1
1
1
1
1
a

Effective population size (thousands)

Stairway plot using unfolded site
frequency spectrum estimated by ANGSD




« Catastrophic pulse dispersal »?

i < N E - e
E148° E147° S66° E146° E145° E144° E143° E148° E147° S66° E146° E145° E144°

Mertz glacier, Adelie Land, before & after 2010

« Mass dispersal » events: Emperors need to stay flexible



Genomic-based inference of high gene flow
Full circumpolar migration in the Emperor penguin

Very weak signal of
genetic differentiation
between colonies from the
opposite site of Antarctica.

About 35,000 loci genotyped
in ca. 110 individuals from 6
colonies.

VA



Genomic-based inference of high gene flow
Full circumpolar migration in the Emperor penguin

49 [47, 52] ™~

139, 17]

16 [13,19]
2[2,3]

~= 47 [43, 52]

357 [250, 464]

One single highly
connected
metapopulation

Long-range dispersal is
not an issue

About 35,000 loci genotyped
in ca. 110 individuals from 6
colonies.

Migration rate (around) and
Fst (inside) estimates



Conclusions

HOLOCENE

Habitat fragmentation more than

extreme-cold adaptation drives
response to global warming
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Research In progress
Understanding the genetic basis of the adaptations to
the coldest environment on Earth

Behaviour

Insulation

Metabolism




Research In progress
Understanding the genetic basis of the adaptations to
the coldest environment on Earth

s Cariama cristata

- Corvus brachyrhynchos

- Haliaeetus leucocephalus

— Tyto alba

- Phaethon lepturus

L. Eurypyga helias Long term selection
— Gavia stellata
—— Fulmarus glacialis genes with significantly
—— Aptenodytes forsteri different dN/dS along
—e Aptenodytes patagonicus

the target branches

— Pygoscelis adeliae

Pygoscelis papua

— Eudyptes chrysolophus

—s Eudyptula minor minor

= Spheniscus magellanicus

. PRl Using published reference genome
Nipponia nippon CDS data within a custom pipeline
.+ Egretta garzetta to find orthologs and run PAML
Pelecanus crispus

—e Opisthocomus hoazin



Research In progress
Understanding the genetic basis of the adaptations to
the coldest environment on Earth

Aptenodytes

Pygoscelis
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Sub-Antarctic

Polar

Long term selection

Testing ca. 7,500
orthologs, 3.5X more
genes show a signal in
the Emperor branch



Research In progress
Understanding the genetic basis of the adaptations to
the coldest environment on Earth
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Research In progress
Understanding the genetic basis of the adaptations to
the coldest environment on Earth
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Ancient genomes reveal early farmers selected
common beans while preserving diversity




Understanding tempo and mode of
domestication
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Understanding tempo and mode of

domestication

Selection on traits of interests

Genetic drift due to
the domestication bottleneck
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Which is the underlying genetics of selected phenotypic traits?

What is the temporal dynamics of both selection and loss of
genetic diversity (genomic erosion)?




Common bean double independent
domestication in meso and south America

165K years ago
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Schmutz et al 2014



Common bean double independent
domestication in meso and south America

165K years ago

N

75K years ago

OO wild populations
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common bean |

Schmutz et al 2014

Bitocchi et al 2012; Gaut 2014



Ancient genomics focus on south America
domestication

5 museum collections
/ geographic area

9 archaeological sites
in North-West Argentina

150 bean seeds collected
(and 16 pod fragments)




Ancient genomics focus on south America
domestication

Preliminary low coverage
sequencing of 30 ancient seeds

15 ancient seeds whole-genome
sequenced at 4-18X coverage

14 modern seeds, wild and
domesticated

Domesticated
Ancient
Modern andean
Modern mesoamerican
Wild




High quantity and quality of endogenous
DNA in ancient common bean seeds

Average read length (bp)
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Better preservation of ancient DNA at high

altitude sites

Deamination patterns
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Loss of genetic diversity is recent in
common bean domestication
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Loss of genetic diversity is recent in
common bean domestication
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All ancient seeds belong to the
same genomic clade
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Gene-by-gene scan of enrichment in fixed
alternative alleles

Timing of selection
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Selection affected 4.5X more genes
in ancient than in recent times

Timing of selection
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Different functional gene groups were
selected by ancient vs. recent selection

Ancient selection targets: glycerol
metabolism, carbohydrate and sugar
transport and metabolism, intracellular
transport, regulatory elements,
modification of proteins, glycosylation

Recent selection targets: immunity
and defense, regulatory elements and
transmembrane transport

A few immune genes show signature
of both ancient and recent selection
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Concluding, ancient selection but recent ge a8
erosion characterize bean domestication i dat

Early selection was probably based on larger -
number of seeds . | ¢ .
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Seeds or cultivars exchange was common -
More sustainable than modern breeding programs Selected
genes

(since Green revolution)
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Concluding, ancient selection but recent ge a8
erosion characterize bean domestication i dat
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Modern landraces from Chile are the most similar
to the ancient Andean cultivars
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Take home message?

Any species can be a model species
Analyses are more important than data

Get many collaborators
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