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1 A probability foundation for population genomics

In the lessons that I will be teaching, my goal is to give you an introduction to some of
the probability and modeling frameworks that come into play in population and speciation
genomics, rather than teaching you specific software. This will be an introduction and a point
of departure for more learning.

I will be writing my notes on screen, so that you can take notes as we go. I will also provide
the pdf of my notes after the presentations.

Please interrupt me with your questions. I will continue with this material this afternoon
in my next session, and we’ll add in more hands-on work there.

1.1 Why do we need probability theory for genomics?

We want to estimate and model parameters in population genomics and probability gives us a
basis for estimation and inference.

1. (Example: genotype probabilities from sequence reads): the true genotype at a locus
sequenced from a sample individual is an unknown parameter and we want to estimate a
probability associated with the possible genotypes at a locus (P(genotype|reads)). e.g.:
AA (2): 0.99 AT (1): 0.01 TT (0): 0.00 (discrete probability distribution).

Genotype probabilities have become a common question with the random reads generated
from DNA sequencers and the necessity of modeling sequencing error. Common software
for variant calling results in genotype likelihoods.

2. (Example: population allele frequencies): we do not observe allele frequency directly, but
learn about it from a sample of individuals. For statistics.

3. (Example: theoretical models of allele frequency in finite populations). Additionally, in
some cases we have probability theory for the expectations of observations that derive
from theory.

1.2 Estimation of allele frequencies

Let’s consider the statistical usage first.

Suppose we have genotypic data for 100 individuals from a population and we want to
estimate the frequency of the two SNP alleles in the population (p for ‘A’ allele). Our sample
data contain: 63 AA, 34 AT, 3 TT.

Non-Bayesian point estimate of p parameter: z = 63 x 2 + 34 = 160, and n = 200, 160/200
= 0.8 (this is the maximum likelihood estimate)

Could the true allele frequency be 0.79 or 0.857 Yes! We have a finite sample from the true
population. We can build a probability model for alternative values of p.

1. probability estimate of p — However, what if we want to obtain a correct probability
distribution for the parameter p that reflects our uncertainty? What do we need to do?
We will need to calculate a Bayesian posterior probability density. Let’s do this, so that
we can study the effect of sampling more and to lay the groundwork for stuff that comes
later.
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We'll use Bayesian estimation (no MCMC required) and Bayes’ theorem.

(a)

(b)

()

P(datalp) - P(p)
P(data)

P(p|data) =

P(data|p) — binomial — Process suggests we should model the allele data as binomially
distributed (i.e., binomial probability function; a set of Bernoulli trials; discrete
samples from a discrete process) — this is the likelihood.

P(p) — We need to place a prior probability distribution on p.

i. p=[0,1] — p can only take on values between 0 and 1.

ii. Are certain values of p more likely a priori?
Ask students to draw what they believe the distribution of p likely is.
Yes, but for today, lets assume all equally likely.

iii. beta — The desirable prior for a binomial is a beta distribution, because of their
mathematical relationship (beta is conjugate prior to binomial).
So, lets chose a beta prior beta(a = 1, f = 1), although we could chose a uniform
prior and use simulations/MCMC instead.

In this example we won’t need to calculate P(data), but mathematically it’s there.
It normalizes expression to insure left side sums to 1.

2. Closed form solution for posterior distribution

(a)
(b)

Full model: P(p|x,n) o< P(z|p,n)P(p).

Binomial likelihood: P(z|p,n) = Cp*(1—p)"~*, where C is a constant that does not
depend on p (binomial coefficient).

beta prior with parameters a and 3: P(p) = Cp*~1(1 — p)?~!, where C is again a
constant that does not depend on p.

P(z|p,n)P(p) = Cp*to1(1 — p)n—oth-t

This function is the probability density function for a beta distribution with pa-
rameters © + « and n — z + § (our a and 8 = 1). So the posterior distribution is:
beta(x+1, n-x+1)

Rcode (line 16 in buerkle_code.R):

p<-seq(0,1,0.001)
plot(p, dbeta(p, shapel=160+1, shape2=200-160+1),

type ="1", xlab="p", ylab="density")
abline(v=gbeta(p=c(0.025, 0.975), shapel=160+1, shape2=200-160+1))
gbeta(p=c(0.025, 0.975), shapel=160+1, shape2=200-160+1)
## [1] 0.7390267 0.8494647

Obtain quantiles (2.5% to 97.5% is the 95% ETPI or credible interval for true pa-

rameter) and expectation (mean) from pdf.

Bayesian point estimate (mean) is: E(p) = ;§5 = o = 0.797. Had we used a

different prior, we would likely have given less prior weight to p = 0.5.

Futher demo: Common question is how sample size affects confidence in an allele

frequency and how many individuals should I sample from a population. Adjust
model in Rcode to examine how confidence for 100 individuals differs from sample
of 10 individuals.
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gbeta(p=c(0.025, 0.975), shapel=16+1, shape2=20-16+1)
## [1] 0.5809340 0.9178241

Note the larger 95% credible interval for the allele frequency parameter. Interpreta-
tion is that the true parameter lies in this interval with 95% confidence.

3. This is a rare case in pop genomics where there is an analytical solution to the Bayesian
model. Otherwise we use MCMC to obtain samples from posterior distribution.

4. (Reflection and encouragement about allele frequency estimation modeling we just did) —
What was the goal of the math modeling exercise? — to develop a probabilty model for
our estimate of p, given our observations. The problem is that we are uncertain about p,
because we sampled from the population and we do not know the truth.

Suppose we had a population in a hatchery and one in a lake where we introduced fish.
We could observe the same alleles in each. We are sure to get different ¥ observations
in the pair. Does that mean the allele frequencies are different and the populations have
evolved? How would we know the true p; and ps, and therefore the true p; — p? — we
need a model for the truth, given our observations

Questions? — break?

1.3 Theoretical and statistical models for allele frequencies

Given the model that I have introduced so far, I would like to develop this further, to build
hierarchical models in which information can be shared among loci, or frequencies of alleles can
be correlated among populations.

1. single locus model — beta-binomial — as above
P(plz,n) oc P(x|p,n)P(p)

Loci exist in a genome, so they share their evolutionary history to some extent. We should
be able to use information from multiple loci to learn about population history (we will
do that in the second multilocus model below). T am leaving denominator (P(data) out
for convenience, which is why I am writing o rather than =.

2. Multilocus model for allele frequencies

Suppose we have genotypic data for several loci and individuals. Let’s generalize our
single locus model for allele frequencies at each locus (j).

P(ple) oc T1; P(x[p;) P(p)

Likelihood: P(z|p;) ~ binomial(p;) — This is one binomial for all allele copies sampled
from the population, as we did before for 160 A out of 200 total copies sampled.

~ means “is distributed as”.
Prior: P(p) ~ beta(1,1) — constant and used for all loci — draw this beta

What are we assuming in this model? We are assuming all loci are independent. But
in reality loci share a genome and some history (for example history of drift). We will
incorporate this in the next model.

This has the same analytical solution as the single-locus model, because it just a collection
of single-locus models.
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3. Multilocus model for allele frequencies and diversity

This is a model we’ll use in our hands-on session this afternoon.

We could allow the prior on allele frequencies to be a parameter that we estimate from
the data. We could make a hierarchical model that has a beta prior for allele frequencies
and a hyperprior for the parameter of the beta.

P(p; 0lz) oc Il P(x|p;) P(p;|0) P(6)

Likelihood: P(z|p;) ~ binomial(p;) — as before, a binomial for all allele copies sampled
from the population

Conditional prior for p;: P(p;|6) ~ beta(6,0)
Hyperprior for 6: P(6) ~ Uniform(0.001, ¢)

(a)

The 6 parameter describes diversity at loci. P(p;|€) is a version of the allele frequency
spectrum. A beta with small value for # would indicate that most loci have allele
frequencies that are near one or zero. So # is an interesting parameter itself.

Draw different between symmetrical beta distributions (with o = 8, and a < 0, =
0,> 0).

In theory, 6 ~ 4Ny — if drift and mutation were the only the processes that affect
diversity and they are constant, allele frequencies will equilibrate to a beta distri-
bution with parameter ¢, which under these circumstances is an estimate of 4N p.
That’s interesting. A parameter in a conditional prior for allele frequencies can be
the population size-scaled mutation rate.

Draw corresponding beta distribution with large and small theta and HWE quadrat-
ics.

Transformation — in Bayesian analysis we can transform parameter estimates and
the distribution of the transformed estimates will be a posterior distribution for the
transformed value. In this case we are estimating allele frequencies with P(p;|0) and
getting a posterior distribution for p;. So we can calculate expected heterozygosity
H. = 2p(1 — p) (a transformation of p), as we estimate p, and get a posterior
distribution for H..

The beta distribution of allele frequencies — what shape (#) do you think holds for
real populations? This is a parametric version of the site frequency distribution.
show Nelson et 2012 (“An Abundance of Rare Functional Variants in 202 Drug
Target Genes Sequenced in 14,002 People” — 10.1126/science.1217876).

In terms of the parameters of the beta distribution, real populations have something
like o = B << 1.

1.4 The F-model of population differentiation

Given those fundamentals, let’s consider another hierarchical model. The model can be used
as a theoretical, generative model for allele frequencies, or we can use it as a statistical model
to learn about allele frequencies in populations.

The amount of genetic variation within populations and differentiation among populations
are determined by evolutionary processes, such as:

e effective population sizes (N,) and genetic drift

e mutation rate
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e gene flow
e selection

e recombination and gene conversion

Estimates of genetic differentiation can potentially inform us a bit on these underlying
processes. Fgr is commonly used to quantify differentiation and is a measure of the variance
in allele frequencies among populations.

There are multiple definitions (implementations) and not all people mean precisely the same
thing by Fsr.

One major distinction is whether Fsr is a simple summary statistic of allele frequencies
(also, a fixed effects parameter) or it is an evolutionary (random effects) parameter.

1. deterministic, fixed effects parameter — Fgy can be a simple deterministic summary of
allele frequencies (e.g., Nei’'s Ggr). For example, Gsr = HTH;THS Here, all uncertainty in
Fsr is due to uncertainty in allele frequencies (finite sample). NB: this approach does not

define a multi-locus estimate of Fyrp.

2. Random effects, evolutionary parameter — the same evolutionary parameter can give rise
to different allele frequencies (a random draw from the process). Uncertainty in Fsr is
due to finite sampling of population and limited sampling of the evolutionary process
(evolutionary sampling).

Weir and Cockerham’s Fsr estimator (sometimes written fsr) and various “F-models”
implement this random effects estimate.

We will mostly consider Fsr as an evolutionary parameter and on F-models.

1.4.1 Theoretical, generative F-model

The F-model we will consider is an elaboration of our beta distribution of allele frequencies at
loci and introduces a parameter for the variance (or correlation) of allele frequencies at a locus
among populations.

The F-model posits that the distribution of allele frequencies at a locus among populations
is beta(a, (), where the parameters « = 76 and = (1—7)0, 6 = % —1 and 7 is the expected
(mean) allele frequency.

Recall that the mean of any beta distribution is given by z = ﬁ After substituting

a =76 and § = (1 — m)#, through rearrangement we obtain & = .

This reparameterization of the beta to use # and 7 is used in other settings also and is
useful because now one parameter corresponds to the mean (7) and the second parameter (6)
is a multiplier that corresponds to the precision (inverse of the variance).

The F-model arises (approximately) under two conditions (formal population genetic mod-
els):

1. Infinite-island model — when many populations exchange migrants, the equilibrium allele
frequency (equilibrium between drift and gene flow) is beta where 7 is the migrant gene
pool allele frequency and § = 4Nm, which at equilibrium has a direct relationship to Fsr.
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2. Divergence from a common ancestor — when populations diverge simultaneously from a
common ancestor, the distribution of allele frequencies in the descendant populations is
approximately beta, where 7 is the ancestral allele frequency and 6 is inversely propor-
tional to the effect of drift following divergence, and is a function of time and N,.

Draw ancestor (7) and three descendant populations connected by § = =~ — 1 amount

. Fsr
of evolution.

3. when these conditions are not met, model is still useful — distribution of allele frequencies
can still be modeled as beta, where 6 = F—T — 1 is a measure of genetic differentiation (the

variance in allele frequency among populations) and 7 is the expected allele frequency.

Use the following R code to plot the distribution of allele frequencies across populations
with: 7 =0.1,0.5 and Fsr = 0.01,0.4

R code (line 26 in buerkle_code.R):

p<-seq(0,1,0.01)
plot(p, dbeta(p, shapel=0.5 x (-1 + 1/0.4), # Fst 0.4
shape2=(1-0.5)* (-1 + 1/0.4)), col="red", type="1", ylab="density",
xlab="p", ylim=c(0,10))
lines(p, dbeta(p, shapel=0.5 * (-1 + 1/0.01), # Fst 0.01
shape2=(1-0.5)* (-1 + 1/0.01)), col="purple")
abline(v=0.5, col="blue") # ancestral allele frequency

Repeat this for an initial frequency of 0.1. Experiment with different parameters.

1. What effect does a larger Fgr have on resulting allele frequencies?

2. What effect does the starting frequency have on the distribution of allele frequencies and
the variance introduced by Fgp?

3. Which results best illustrate the lack of one-to-one correspondence between process (here
Fs7) and empirical pattern?

e Allele frequency variation from a intermediate frequency variant: low and high drift.

e Allele frequency variation from a very common or rare variant (two sides of same
coin, typical case). Large magnitude allele frequency variation (drift) often will
not be that evident, because it will happen to common/rare alleles and result in
fixation/loss after small shift in allele frequency.

So we have a model for how drift can influence allele frequencies. Let’s put this to use!
Let’s use our generative model to create reasonable population genetic data and investigate the
relationship between global allele frequency and Fgr.

We will use Hudson’s Fgr as a summary statistic on the variance in allele frequencies, but
we could also use other definitions of Fgr.

Activity: using the code that starts on line 38, let’s learn about the relationship between
global allele frequency and Fgr

Have students do this, walk through the code as a group and answer student questions.

What are the implications of this? — for a single value of simulated process Fst that generates
variance in allele frequencies, we get a wide range of observed Fst in the data. Fst is enormously
constrained by global (ancestral) allele frequency.

How will this play out across the genome?
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1.4.2 Statistical F-model

In addition to its use as a generative, theoretical model, we can use the F-model for statistics.

Different versions of the F-model have been used as a foundation for several important
Bayesian population genomic models and software: e.g., 1) Foll and Gaggiotti’s F-model and
Bayescan software (uses a locus specific model) and 2) Pritchard et al. F-model (correlated
allele frequencies) in structure software (simple F-model with one Fgr for all loci).

Specification of the F-model: Let us consider the specification of the F-model stepwise, rather
than facing the full equation all at once.

1. Likelihood term: as before, the data x;; are the count of the reference allele at each locus
(), but are now also indexed by the population that is being considered (j), with n allele
copies sampled from each population (n = 2x the number of diploid individuals).

The probability of the data is a function of allele frequencies in each population and locus.
Thus, the likelihood is a product of binomial distributions (their joint probability):
P(x|p,n) ~I1; I1; binom(%‘j ’Pij, nz’j)

Remember: ~ means “is distributed as”.

2. Conditional prior for allele frequencies: the allele frequencies for each locus follow a beta
distribution with parameters a = m;0; and 5 = (1 — m;)0;. Recall, § = % —1(le,fisa
transformation of Fsr). Taking the product across loci:

P(ﬂﬁ", 9) ~ HZ beta(m@l, (1 — 7T1>01)

3. Priors on 7 and Fyr:

(a) 7 — For simplicity, we’ll place independent priors on each 7; as beta(1,1). Clearly we
could incorporate another layer in the hierarchy and share information among loci
as we did in earlier allele frequency models.

(b) Fsp — Various possibilities. A natural choice would be beta, because it is constrained
to the scale of Fsr and can assume many shapes (does not need to be symmetrical,
and can be uni- or bimodal). For now, let us define Fgr as beta(1,1) and assume
that all loci in the genome share the same Fsr.

With these components, we can write an F-model:

P, 7, Fsr|7,n O<HH (@ij|pij, n) P(pij|mi, Fsr)] T[[P(m:)] P(Fsr)

i

1.5 Activity: statistical population models in JAGS

Software for Bayesian parameter estimation in population genomics uses Markov Chain Monte
Carlo methods. These are methods to obtain samples from the posterior distribution, particu-
larly when there is no analytical solution for it (the typical situation).
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1.5.1 Algorithms and software for MCMC

Generally there are two types of algorithms for new values in a chain (ultimately from the
posterior distribution):

1. Gibbs — following sufficient burn-in to a stationary distribution, each and every sample
will be from the posterior distribution. Used when the parameter being updated involves
a product of two distributions that is known analytically (i.e., the are conjugate).

2. Metropolis (one variant is Metropolis-Hastings)

In Metropolis, there are independence chains and random-walk chains. We need to mon-
itor mixing in updates that use Metropolis (the rate of acceptance of new values).

The Metropolis-Hastings algorithm meets criteria that ensure we will eventually converge
to and sample the posterior distribution. Unfortunately, this could take a long time and
there is no way to be completely certain of convergence to the posterior distribution.
We use diagnostics to get a sense of mixing and convergence. We discard initial samples
as a burn-in and run multiple chains, each long enough to obtain a good number of
independent samples from the posterior and to gauge convergence among the replicate
chains.

JAGS is software that implements methods to generate stochastic samples from Markov
chains. It is easy to specify the models, and the JAGS software determines what algorithms to
use for updating chain.

1.5.2 Implementation of MCMC for our multilocus model for allele frequencies
and diversity

Hands-on — Please execute and experiment with the code in buerkle_code.R (lines 79-201).

The questions and tasks are embedded in the code comments and they are also in the
webpage for this activity.

1. Examine the plots for estimates of # at each of the 500 retained steps from each of your
three replicate chains.

(a) Does it appear that you have proper mixing within chains?
(b

)
) What would an example of poor mixing look like?
(¢) Does it appear that you good convergence among the three chains?
)
)

(d) What would an example of poor convergence look like?
(a) Does the 95% credible interval for 6 include the true value that you simulated
(sim.theta on line 83 of the code)?

(b) What does this mean?
3. For a simulation that sets sim.theta to 5:

(a) how well do the estimates agree if you simulated 20 individuals, compared to their
agreement if you sampled 100 individuals?
You'll need to simulate new data for each (nind<—20 and nind«-100) and run the
MCMC on each simulated data set.
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(b) What do you think is the cause of the difference?
4. Compare a simulation with sim.theta<5 to a simulation with sim.theta<0.1.

(a) How does this affect the genome-wide mean H, statistic on the data?

(b) Does this fit with your expectations about how # and H, relate to diversity?

1.5.3 Implementation of MCMC for F-model

Exercise: continue on lines 203-271 in the code and answer the corresponding questions for
this section on the webpage (statistical F-model).

1. How realistic is it to assume all populations and loci share a single Fst parameter?
2. How could we relax this assumption?

3. Please explain the plot on line 22 for a simulation with simFst set to 0.01 and again for
a simulation with simFst set to 0.3. What are the noteworthy aspects?

4. (a) (line 65) Does the 95% credible interval for Fgr include the true value that you
simulated (simFst=0.01 on line 8 of the program)?

(b) What does this mean?
5. For a simulation that sets simFst to 0.3:

(a) Does the 95% credible interval for Fgr include the true value of Fgr = 0.37
(b) What do you think is a likely cause of the discrepancy?

6. Compare a plot of a PCA of populations simulated with simFst<0.01 to populations
simulated with simFst<0.3.

(a) In which of these simulations are individuals more readily assigned to clusters in the
PC2 vs. PC1 plot?

(b) Does the percentage of variation explained by PC1 scale with simFst?
7. Compare a plot of a PCA of populations simulated with simFst<0.01 to a PCA of

the very similar simulation to which a small number of loci were added that were more
differentiated (line 107). What is the effect on clustering?



