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Selection and Adaptation: Today

A. Context: What is selection, what is adaptation?

B. Detecting selection: within populations

- sequence-based tests of selection
- association studies

C. Detecting selection: between populations
- outlier analyses
- environmental association analyses

D. Case study: Landscape genomics of adaptation to abiotic climate

E. Questions/chat



goals

(from the perspective of an end user, e.g., me)

general rationale underlying empirical tests of selection (and adaptation)
Inferential structure of (some) tests of selection/adaptation, at varying scales

(some) factors that can mislead genomic inferences

broad overview of

(some) practical considerations for sampling and experimental decisions



Selection and Adaptation

the evolutionary force that

maintains or increases the

frequency of variants that
contribute to fitness

(classically) a consistent difference in survival and/or reproduction
among individuals that differ in one or more traits (alleles)



Flavours of natural selection

In a perfect world, depending upon the variant, selection:

‘directional’
selection

—

gum—

* removes deleterious (fithness reducing) mutations
‘negative’ or ‘purifying’ selection

« promotes advantageous (fithess enhancing) mutations
‘positive’, or ‘divergent’, selection

* maintains advantageous (fithess enhancing) variation

‘balancing’ or ‘diversifying’ selection



Selection and Adaptation

the product of fithess-
enhancing selection

adaptation: a trait or
characteristic that increases
survival and/or reproduction
In a given environment

the process of evolutionary change whereby a lineage of organisms
Increases in average fithess (within an environmental context)




Single-locus models of selection
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why study selection and adaptation?

“Mechanisms” \

 Genetic basis

» Key selective agents (ecological forces)

Interactions with other forces

Genetic
divergence

* Relative importance compared to other
evolutionary processes (geographic isolation,
demographic history, relatedness, etc.)




why study selection and adaptation?

the genetic process of adaptation

« what distribution and order of phenotypic effects, rate over time?

» what is the genetic architecture underlying adaptations?

- simple versus complex genetic basis
- few versus many genes, allelic effects, epistasis, etc.

- distribution and average size of genetic effects
- what is the genetic source of adaptation? new mutation versus

standing genetic variation
(versus introgression)

“Theoretical”: to understand how evolution works (in nature)



why study selection and adaptation?

ecological and evolutionary context

« are there common patterns of selection and adaptation
(across populations or species) with respect to demography,
traits, or history?

* how does gene flow interact with local selection to shape
genetic/adaptive responses?

* does (local) adaptation act in parallel across species or
environments?

“Theoretical”: to understand how evolution works (in nature)



why study selection and adaptation?

* how is adaptive genetic variation distributed across a species range?
« what allows or constrains species range expansion/invasion?

« what genetic and ecological factors limit adaptation to future change
(e.g. climate change)?

« what is the evolutionary potential of specific lineages or species?

Practical/applied: to understand, predict, manipulate populations



(Rellstab et al. 2015)

Detecting selection with pre-genomic data

Environment

Environmental
association analysis

Common garden expeniments
Reciprocal transplant experiments

Phenotype

GWAS
QTL mapping

Population genomics



Detecting selection with pre-genomic data

Tralt-environment
correlations
/associations

Classical evidence of adaptation
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Arizona

Detecting selection with pre-genomicsfjdata
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Detecting selection with pre-genomic data

Genotype x
Environment
Interaction

Change in relative fitness of genotypes across environments

—~
E aa
7))
O
= [ R Aa
=
V-
D
=
< AA
9
Env. 1 Env. 2

a crossing reaction norm for fitness == local adaptation



Detecting selection with pre-genomic data

Change in relative fitness of genotypes across environments

I8 W
Genotype x e
Environment »v
Interaction

Wgg < Wge < Wec

a crossing reaction norm for fitness == local adaptation



Detecting selection with genomic data

Selection

Environment

Environmental
association analysis

Common garden expeniments
Reciprocal transplant experiments

(Rellstab et al. 2015)



Detecting selection with genomic data
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Detecting selection with genomic data

selection iIs locus-specific,
whereas historical and/or demographic effects act genome-wide

therefore must be able to:
1. describe the background genomic context (demography/history)
2. differentiate it from the target signature (selection)




Detecting selection with genomic data

genomic heterogeneity in summary statistics, incl. those
used to infer selection

genetic structure or historical relatedness among individuals

CORE CHALLENGE =
accounting for/incorporating background variation



genomic heterogeneity in summary statistics
(often spatially correlated across the genome)

Aa Parapatric races: M. m. amaryllis (Per) versus M. m. aglacpe (Per)
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Examples.... different species pairs of Heliconius butterflies



genetic structure or historical relatedness among individuals
(often spatially correlated across geography)

BIC Cluster

@ Cluster 1
@ Cluster?2
O Cluster 3
© Cluster 4
@ Cluster5

Example....

spatial structure in Genetic structure Environmental structure
wild tomato S. pimpinellifolium



Detecting selection with genomic data

Table 1 Examples of research issues in ecology and evolution that are addressed with population

lots (most?) of population
genomics aims to
characterize these genome-
wide/ 'background’ features

but this often
iIsn’'t easy...

(Hohenlohe et al. 2018)

genomic approaches

Issue in ecology and evolution

Analytical methods and metrics

Broad-sense genomics

Estimation of genetic diversity

Heterozy gosity, allelic diversity, nucleotide diversity

Effective population size

Linkage disequilibrium (LD), two-sample methods

Population structure, admixture

Bayesian clustering, principal component
analysis (PCA)

Source population assignment

Clustenng methods

Inbreeding

Identity-by-descent methods

Narrow-sense genomics

Mapping phenotypic traits

Genome-wide association studies (GWAS)

Fine-scale demographic history

Coalescent, diffusion approximation methods

Fine-scale estimates of current his-
toric hybridization

Phylogenetic, haplotype-based methods

Loci for local adaptation

Outlier methods, genotype-environment association
(GEA), muliilocus covariance

Loci for inbreeding depression GWAS
Loci for adaptive introgression Outlier, cline analysis
Defining population units on local | Outlier, GEA

adaptation




Detecting selection with genomic data

contemporary within populations
recent  |timefand/or|spatial |between populations
older scale between species

your approach to detecting selection will depend
upon your sample design and study goal




selection within populations

goal:
identify loci undergoing recent selection underlying important
(with or w/out phenotype) functional variation
signature:
variants/regions that depart from neutral or associated with segregating
null expectations functional variation
approaches: sequence-based association studies

tests of selection



seguence-based
tests of selection

Goal:

|dentify markers/variants/SNPs that deviate from generic, null, or
genome-wide patterns, due to the action of recent selection

Rationale:

* selection generates predictable changes in the kind, amount, and
distribution of genetic variation

« targets of (recent) selection should be detectable based on characteristic
patterns of population genetic statistics at local genomic locations, that
differ from background regions
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selective sweeps

In comparison to the
genomic background,
at the site of a
selective sweep:

reduced sequence
diversity
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selective sweeps
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selective sweeps

In comparison to the
genomic background,
at the site of a
selective sweep:

reduced sequence
diversity

shifted allele
frequency spectrum
(excess rare variants)
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Figure 1

The effect of a selective sweep on genetic variation. The figure is based on
averaging over 100 simulations of a strong sclective sweep. It illustrates
how the number of variable sites (variability) 1s reduced, LI is increased,
and the frequency spectrum, as measured by Tajima’s 1D, is skewed, in the
region around the selective sweep. All statistics are calculated in a sliding
window along the sequence right after the advantageous allele has reached
frequency 1 in the populadon. All statstics are also scaled so that the

cxpected value under neutrality equals one. (Nielson 2005)
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selective sweeps

extent of hitchhiking region depends on
(among other things):
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selective sweeps
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balancing selection

(from Hahn 2018)
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seguence-based
tests of selection

limitations

* need tonnes of data (med to high coverage), for good inferences
* need genomic position information

» soft selective sweeps selection based on
« polygenic basis to traits Incremental &/or collective

- epistatic interactions among genes  changes at 2+ loci



selective sweeps

new variation standing variation standing variation
Hard sweep. Multiple mutation soft sweep.  Single mutation soft sweep
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seguence-based
tests of selection

limitations

* need tonnes of data (med to high coverage), for good inferences
* need genomic position information

» soft selective sweeps selection based on
« polygenic basis to traits Incremental &/or collective

- epistatic interactions among genes  changes at 2+ loci

 too little, or too much, time since selection



seguence-based
tests of selection

limitations

no phenotypes, no fithess,
SO no direct information on:

* selective conditions/agents
* locus identity (depending on system...)
» functional importance (“adaptation”)

anonymous tests are a double-edged sword



selection within populations

goal:
identify loci undergoing recent selection underlying important
(with or w/out phenotype) functional variation
signature:
variants/regions that depart from neutral or associated with segregating
null expectations functional variation
approaches: sequence-based association studies

tests of selection



asso_matlon (genome-wide) analysis of statistical associations
studies between traits and markers in large population samples.

GWAS (genome-wide association study)
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asso_matlon (genome-wide) analysis of statistical associations
studies between traits and markers in large population samples.

GWAS (genome-wide association study)

Box 1 Recent approaches for gene mapping in populations without a known cross or pedigree structure

LD mapping: A strategy to identify genes or genetic regions influencing a trait by comparing the phenotype of individuals with alternate

alleles at a genetic marker which is presumed to be in LD with the causal loci. Phenotypes can either be the mean phenotype of a
ntitative trait, or the frequency of occurrences for traits that are scored as presence /absence (e.g., cases or controls in medical studies).

For many self-fertilizing plant species, inbred lines are used in lieu of individuals, provided there is little within-line genetic variation.

For an example, see Palsson and Gibson (2004) and Hirschhorn and Daly (2005) for a review.

Candidate genefassociation mapping: A variation on LD mapping, with the difference that associations are examined between phenotypes

and alternate alleles at a candidate gene. For a review, see Long and Langley (1999) and for examples, see Thomsberry et al. (2001),

MNachman et al. (2003) and Wilson et al. (2004).

Haplotype mapping: Another a variation on LD mapping, with the difference that haplotype blocks rather than individual genetic markers

or candidate genes are utilized. For an example, see Olsen ef al. (2004) and Aranzana ef al. (2005).

Admixture-LD mapping: A strategy to identify genes or genetic regions influencing a trait in genetically ad mixed populations by testing for

a non-random association between a phenotype and a genetic region that has ancestry predominantly from one of the parental

populations. See Smith and ('Brien (2005) for a review, and Reich et al. (205) for an example in human medical genetics.

Hitchhuking mapping: A mapping strategy to identify regions of the genome that have recently been under positive selection by detecting
regions of reduced levels of genetic variation, due to the fact that fixation of beneficial mutation also reduces genetic variation at linked
sites. In contrast to the approaches outlined above, hitchhiking mapping can be pursued without knowledge of the phenotype associated
with the genetic region. For reviews, see Schlotterer (2003) and Storz (2005).

(Stinchcombe & Hoekstra 2008)



asso_matlon (genome-wide) analysis of statistical associations
studies between traits and markers in large population samples.

Goal:

|ldentify markers/variants/SNPs statistically associated with
variation in traits of interest, due to LD with causal loci



Reminder: what is LD (linkage disequilibrium)?

A statistical association between markers or loci, such that:
alternative alleles at 2 (or more) loci are found together more
often than expected by chance (e.g. mendelian ratios)

L.D. can be due to (for example):
« chromosomal association (physical linkage) between loci

* historical/geneological associations (population structure)
between alleles at different loci

» selection for/against particular allelic associations



(Kruglyak 2008)

Ancestral

Present-day chromosomes

i
11l

chromosome

<

q

ql

markers in perfect LD
with target locus

associlation
studies

origin of causal mutation

subsequent recombination

Physically adjacent markers
will remain associated with
target locus (SNP) through
many recombination events

when LD is short, need high marker
density so at least a few remain in
LD with target locus



asso_matlon (genome-wide) analysis of statistical associations
studies between traits and markers in large population samples.

Goal:

|ldentify markers/variants/SNPs statistically associated with
variation in traits of interest, due to LD with causal loci

Rationale:
« markers physically linked with (adjacent to) causal locus should be
statistically associated with phenotypic effect of that locus

* natural populations (‘wild’ samples) have accumulated many
recombination events (therefore resolution is very fine-scaled)



contrast with:
QTL
mapping
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contrast with:
QTL
mapping

: \

Parent 1 Parent 2

artificially segregating
populations

finite (small) populations
means limited # recombination
events, therefore limited
resolution




asso_matlon (genome-wide) analysis of statistical associations
studies between traits and markers in large population samples.

Goal:

|ldentify markers/variants/SNPs statistically associated with
variation in traits of interest, due to LD with causal loci

Rationale:
« markers physically linked with (adjacent to) causal locus should be
statistically associated with phenotypic effect of that locus

* natural populations (‘wild’ samples) have accumulated many
recombination events (therefore resolution is very fine-scaled)



associlation
studies

Requires:

In general:

(genome-wide) analysis of statistical associations
between traits and markers in large population samples.

« markers/variant sites (1000’s to WG) that differ between
iIndividuals

* linkage map or genome sequence
 quantitative phenotypes/trait variation

* methods to associate trait/genotype (and exclude confounding
factors, correct for multiple testing)

« test marker by marker associations (or sometimes haplotypes)

 assess and control/account for population processes (especially
historical demography and/or population structure/relatedness)



Why do we care about population structure?

population structure—heterogeneous genetic relationships among
Individuals—creates patterns of LD in a dataset

that have NOTHING to do with adaptive trait variation.



associlation

Population structure produces LD among unlinked loci

StUd|eS individuals are more closely

(a)
related to each other, share SNPs Ni"h .. .

Historical structure due to
selection and drift

individuals are more closely ()
related to each other, share SNPs South OO

(Anderson, Willis, Mitchell-Olds 2011)
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associlation Population structure produces LD among unlinked loci
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Why do we care about population structure?

population structure—heterogeneous genetic relationships among
Individuals—creates patterns of LD in a dataset

that have NOTHING to do with adaptive trait variation.

llwhen population history is correlated with
distribution of trait variation, false positives!!

(!!'similarly, when population history is correlated
with the environment, false positives!!)
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associlation
studies

104 DPYD

—log16(P)

Phenotype: Types of physical activity in last 4 weeks:
Heavy DIY (eg: weeding, lawn mowing, carpentry, digging)
This phenotype can be found on the UK Biobank Showcase for code 6164. Neale Lab GWAS results
are available for 359,263 unrelated individuals of European ancestry. This is a binary phenotype
with 156,597 cases and 202,666 controls.

N. cases=200432; N. controls=252505
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associlation limitations
studies

one of the biggest ‘problems’ with GWAS (etc.) is that trait variation
Is often confounded with historical/spatial population structure

3
3¢is
¢ N
e

* need tonnes more data: collecting (high quality) trait data is hard...

« correcting for population structure can overcompne

» still several steps away from direct causal inference



selection within populations

goal:
identify loci undergoing recent selection underlying important
(with or w/out phenotype) functional variation

signature:

variants/regions that depart from neutral or associated with segregating
null expectations functional variation

approaches: sequence-based association studies
tests of selection

_and others. . ... select and re-sequence (change

over one or few generations)



Detecting selection with genomic data

contemporary within populations
recent  |timefand/or|spatial |between populations
older scale between species

your approach to detecting selection will depend
upon your sample design and study goal




selection between populations

goal:

identify loci undergoing recent selection underlying important
(with or w/out phenotype) functional variation
divergent across space across space

signature:

variants/regions that depart from neutral or associated with segregating

null expectations functional variation
approaches: sequence-based association studies

tests of selection

differentiation-based tests

environmental association analyses



differentiation-
based tests

Sampling

population genomics + space
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sequence-based tests (in 2+ pops)

differentiation-based analyses
e.g. Fst outliers



differentiation-
based tests

Goal:

|ldentify markers/variants/SNPs that show interesting (elevated)
patterns of differentiation among 2+ populations

Rationale:

 populations in different (spatial) locations experience different
selective conditions

« markers physically linked with (adjacent to) locally-adapted loci
should show elevated/exaggerated patterns of differentiation,
above background levels of population differentiation



differentiation-
based tests

Requires: - markers/variant sites (1000’s to WG) that differ between
iIndividuals in 2+ populations

 null pop gen. or demographically informed models of
expected variation among populations

lIsuper easy!!

In general: - assess differentiation at every marker/locus across whole dataset

* identify markers loci that are more differentiated than expected
(given historical demography and/or population structure)




differentiation-
based tests
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(Stinchcombe &Hoekstra 2008)



genomic heterogeneity in summary statistics
(often spatially correlated across the genome)

Aa Parapatric races: M. m. amaryllis (Per) versus M. m. aglacpe (Per)
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Examples.... different species pairs of Heliconius butterflies



differentiation-
based tests

Requires: - markers/variant sites (1000’s to WG) that differ between
iIndividuals in 2+ populations

 null pop gen. or demographically informed models of
expected variation among populations

lIsuper easy!! ...& potentially super misleading

In general: . jssess differentiation at every marker/locus across whole dataset

* identify markers loci that are more differentiated than expected
(given historical demography and/or population structure)




differentiation-
based tests

Requires: - markers/variant sites (1000’s to WG) that differ between
iIndividuals in 2+ populations

 null pop gen. or demographically informed models of
expected variation among populations

« additional data on genomic location and/or

» data on ecological or evolutionarily relevant variation....

In general: . jssess differentiation at every marker/locus across whole dataset

* identify markers loci that are more differentiated than expected
(given historical demography and/or population structure)




differentiation- (A)
based tests

F

0.8

064

0.4 4

ST

Oceanic versus
freshwater
threespine stickleback (B)

(Hohenlohe et al. 2010Db)

(Figure 4 in
Hohenlohe et al. 2010))

0.24

04

024

0.012 «

0.01 4

0.008 4

0.006 +

0.004 -

between three independently

4 _~ derived freshwater populations

and oceanic ancestral pops

10000 12000

\ between oceanic or

between freshwater




differentiation- limitations
based tests

* need additional data on ecological or evolutionary context to
Interpret patterns of pairwise differentiation

« still several steps away from direct causal inference....



differentiation- limitations
based tests

no phenotypes, no fithess,
SO no direct information on:

* selective conditions/agents
* locus identity (depending on system...)
» functional importance (“adaptation”)



selection between populations

goal:

identify loci undergoing recent selection underlying important
(with or w/out phenotype) functional variation
divergent across space across space

signature:

variants/regions that depart from neutral or associated with segregating

null expectations functional variation
approaches: sequence-based association studies

tests of selection

differentiation-based tests

environmental association analyses



divergent selection between populations

population genomics + space + environmental variation

environmental association analyses (EAA)
genotype x environment analyses (GEA)
(within “landscape genomics”)



environmental association analyses (EAA)

Arizona
}
the conceptual origins of -~y
EAA are from classical
clinal analyses xinas . Artzona, USA o

Tule
Sonora, Mexico

Substrate color: |
enwronment associations e () (1 @) @ @ D

Xmas Tule West Mnd East O'Neill
Sample size: 77 = 225




environmental association analyses (EAA)

EAAs are essentially association studies but association with environments not traiis

Goal:
|ldentify markers/variants/SNPs statistically associated with variation
In environmental factors of interest, due to LD with causal loci
Rationale:

 populations in different (spatial) locations experience different
selective conditions

« markers physically linked with locally-adapted loci should show
statistical associations with the causal selective agent,
above background levels of SNP-environment associations




environmental association analyses (EAA)

use SNP-environmental associations to infer things like:

» specific genomic targets of environmental selection (loci)
* specific environmental components that impose selection (agents)

* contribution of spatially-varying (abiotic) selection
to genome-wide genomic variation

* parallel versus unique responses to
repeated environmental gradients



environmental association analyses (EAA)

Requires: « markers/variant sites (1000’s to WG) that differ between individuals
* linkage map or genome sequence (ideally)
 quantitative environmental data (univariate or multivariate)

* methods to associate environment/genotype (and exclude
confounding factors, correct for multiple testing)

In general: - test each marker OR composite genotypes associations with
single environmental factors OR multivariate environmental variation

« assess and control/account for population processes (especially
historical demography and/or population structure/relatedness)

EITHER sequentially or simultaneously.

EAA is really a heterogeneous set of tools and approaches



environmental association analyses (EAA)

INVITED REVIEWS AND SYNTHESES .
A practical guide to environmental association analysis The relative power of genome scans to detect local
P & y adaptation depends on sampling design and statistical

in landscape genomics method

KATIE E. LOTTERHOS' and MICHAEL C. WHITLOCK

CHRISTIAN RELLSTAB,* FELIX GUGERLI,* ANDREW ]J. ECKERT,t ANGELA M. HANCOCK}® and
Depadmesl of Toolopy, Ussisersily of Brilich Columbia, 6370 Lbsivesdly Bl | Viscosmes, BC, VET 124, Cosa i

ROLF HOLDEREGGER*§

Comparing methods for detecting multilocus adaptation with The search for loci under selection: trends, biases and
multivariate genotype—environment associations progress
Brenna R Forester'() | Jesse R Lasky” | Helene H Wagner” | Dean L Urban' Collin W. Ahrens! | Paul D. Rymer! | Adam Stow? | Jason Bragg® | Shannon Dillon® |

Kate D. L Umbers™® | Rachael Y. Dudaniec?

Redundancy analysis: A Swiss Army Knife for landscape

enomics
5 and more...
Thibaut Capblancg! © | Brenna R. Forester?

EAA is really a heterogeneous set of tools and approaches



environmental association analyses (EAA)

Table 1 (verview of meathods and softwase avalable for environmental assodation analysis in landscape genomics. Note that for some methods, other software or & packages

are avallable
Incorporat ion
of netral I orpsorabiog Individiial’ Maode for Corres Hon
Asspaabon :H.I:II.P'!‘IH penetic of .-\.|.u.rJal Popu latisn |.|-\.H.l|dJ Poar Software /
Melethond Eeference bype desagn b tune aubovonrrel ation data data sample size k package
Categories Categorical Calegorical Puossdble Possdble Bty Possible Possible Various
statistical
methods
Sr.uti.s] Joost & al (007 |JEi.1lh.' Gradient / Passsible (in Posssible (in Individual Mo Mo Sand (ot o al.
analysis scatterad S flana) Saiflea s 2B}, sasflana
mmethd Shucki & al
(SAM) s bl bed )
h alf O lualtiple Logglst ic Gradient / Possible Fossible Individual Mo Mo wiR
Ling i scuterad Development
regression Core Team
Table 1 f
a e ro m Ciamviralizd Carl & Kubn Ix-b"i.-\.l i Gradient / No Yes Individiual Mo i cErracy (Yan &
ki |'|5..His1_5 (20407, wa Hepind Fime 2000
equations Poncet & al
Rellstab et al. 2015
Partial S Linear/ Gradient / Yes Psasibile Barth Mo Mo T | Gosles
Mante] st o al (158 rarnk- wa Hread i Urban 3007,
linear WRCAN
OHsanen of al
2013
\.-fulliplr Limear Gradient / Poasible Prsasibile Parh M M iR
limar acaHwred Development
regression, Com Temm
Geneml 1), TassmL
limear (Bradbury of ol
rodels 2y
Canonical Legendre & Limear Gradient / Paosaible Possible Both Mo M vECaN (D sanen
correlation Legendre scattened ef al. 201H
analysis (2012)
(OCA)
(Partlab Legendre & Linear Gradient / Paossible Posssible Beoith Mo Mo vecay (D laanen
redundancy Legendre scattened ef al. 201H
analysis (20123
(RDA)

EAA is really a heterogeneous set of tools and approaches



environmental association analyses (EAA)

tools vary depending upon the gquestion(s), and.:

‘ « distribution of samples across space and/or environment

* type of model (e.g. logistic regression, matrix correlation,
mixed-effects models)

« statistical procedure used (e.g. FDR, p-values)

‘ * method of handling/accounting for population structure

EAA is really a heterogeneous set of tools and approaches



divergent selection between populations

population genomics + space + environmental variation
Sampling

———————————————————————————————————————

'|.
1
1
1
m

how you sample in space
affects your power and what
guestions you can ask/answer

- o o o oo oo

Environmental data

Factor type

Pool?

Targeted

__________________________________________

Factor selection




sampling for EAA

can detect weaker selection (but also

€.g. power depends on many other factors...)
random paired transects
LR 2. .
> .o " . :' * 2 .
-, .o : e : .
Random (90 locations) 45 Pairs 0 Transects by 10 locations each

Lotterhos & Whitlock 2015



sampling for EAA
can detect weaker selection (but also

€.9. power depends on many other factors...)

transects

when pairs span repeated
categorical contrast:

“‘quasi-experimental”
(Rellstab et al. 2015)

hot-cold
high-low
on-off

45 Pairs 0 Transects by 10 locations each

Lotterhos & Whitlock 2015



sampling for EAA

can detect weaker selection (but also

€.g. power depends on many other factors...)
random paired transects _
o r - s
s . " . i [1]
.o . . : .t :
L i ; .l . 2
o A& . 8 .Y " a
e - Do .
' e ’ .
Random (90 locations) 45 Pairs 0 Transects by 10 locations each
no a priori binary selective clinal selective
knowledge required agent? agent?
e.g. distribution of parallel responses to selection

environmental factors
Lotterhos & Whitlock 2015



sampling for EAA

e.g. distribution of how you sample in space
environmental factors affects your power and what
guestions you can ask/answer

e.g. population genomic factors

Individual-based analyses better when: < many coordinates
 enviro data has high variation
across sampling area
* local Ne is low

population-based analyses better when: « samples are clustered at local sites
 enviro data changes at scales >>
than local samples
* local Ne is higher



sampling for EAA

e.g. distribution of how you sample in space
environmental factors affects your power and what
guestions you can ask/answer

e.g. population genomic factors

Individual- versus population-based analyses

Both also affect how to incorporate demographic/historical/neutral
genetic structure into an EAA



Why do we care about population structure?

population structure—heterogeneous genetic relationships among
Individuals—creates patterns of LD in a dataset

that have NOTHING to do with adaptive variation.

llwhen population history is correlated with
distribution of trait variation, false positives!!




different
methods
Incorporate
population
structure in
different ways

(half of)
Table 1 from

Table 1 (werview of methods and software available for envirormental assodation analysis in landscape genomics. Mote that for some methods, other software or ® packages

are available
Incorporation
of neutral Incorporation Individual/ Maode for Ciorres Hon
Association Sarnpling, genetic of spatial populabon poaled fior Software /
Method Reference type design structune autocorrelation data data sample size R package
Categaories Categarical Catepaorical Poszible Possible Baoth Possible Peossible Various
statistical
methods
Spatial Joost & al (2T Logistic Gradiert / Possible (in Possible (in Individual Mo Mo san (Joost o al.
analysls scatterad san flana) sanmflanal 2008, samfana
rrethod (Stuckl o al
[SAN) subrmitted)
Multiple Logistic Gradient / Possible Possible Indiwidual Mo Mo rR(E
logistic scatterad Development
regression Core Team
2011
Generalized Carl & Kuhn Logistic Gradient / Mo Yes Individual Mo Mo cERPACK (Yan &
estimating (2N, scatterad Firve 2}
equations Porcet o al
(GEEs) (0100
Partial Smouse Limear/ Gradient / Yes Possible Baoth Mo Na soomET (Gosles
Mantel test a al (198 rarik- scatterad dz Ulrban 2007,
lirear VEGRAN
(Dksanen e al.
20130
Multiple Linear Gradient / Poszible Possible Baoth Mo Mo R(R
linsar scatterad Development
régression, Caore Team
General A1), TassmL
linear (Bradbury el al.
models bl h o
Canaonical Legendre & Linear Cradient / Poszible Fossible Baoth Mo Mo vEcay [Dkzanan
correlation Legendre scatterad ef al 201H
anahysis iyl
(OCA)
(Partal Legendne & Lirear Gradient / Possible Possible Baoth Mo Mo vecay ((ksanen
redundancy Legendre scatterad el al 2013
anahysis (22

Rellstab et al. 2015 &2




some common approaches for EAA

e.g. (LFMM) Latent Factor MM

LMM that uses environment (specific climate
variables) as a fixed effect

Incorporates population structure
by using K (e.g. STRUCTURE) as latent
factors (representing random effects)

environmental effect and population
structure are assessed simultaneously



some common approaches for EAA

e.g. BAYENV

LMM method to assess evidence for
correlation (of SNPs) with environment
(specific climate variables)

Incorporates population structure
by generating a kinship matrix from allelic data, to
estimate a null model of demographic structure

compares models (in a Bayesian framework)
that do (alternative) and do not (null)
iInclude environment



some common approaches for EAA

e.g. Redundancy Analysis (RDA)

Multiple linear regression method for testing
associations between SNPs and multivariate
environment

Incorporates population structure
via constrained ordination matrix of spatial
relationships

multivariate environmental effects and
spatial (population) structure are assessed
simultaneously



environmental association analyses (EAA)

CASE STUDY



Case study: Landscape genomics of adaptation to abiotic climates

Cluster 1
A Cluster 2
t Cluster 3
¢+ Cluster 4
® Cluster 5

Gibson & Moyle, 2020 Molecular Ecology



Case study: Landscape genomics of adaptation to abiotic climates

ORIGINAL ARTICLE

Regional differences in the abiotic environment contribute to
genomic divergence within a wild tomato species

Matthew J. S. Gibson | Leonie C. Moyle

Matthew Gibson



Wild tomatoes
S. pimpinellifolium

. galapagense 0436
. galapagense 3909
cheesmaniae 0429
cheesmaniae 3124

. lycopersicum 3475
lyco. Hemz 1706

ey neoncku 1322
E . neorickii 2133
© . arcanum 2172
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. chmielewskii 1316
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sect.
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7 SE—— S. lycopersicoides 4126
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I L * ) = 1 ' 1
5 2 1 OMa

Image: Peralta et al. 2008

(Pease et al., 2016 PLoS Biology)



Wild tomatoes

S. pimpinellifolium 4
g. galapagense 0436 -
. galapagense 3909 =3
<0.5MY [ S. cheesmaniae 0429 g
\ S. cheesmaniae 3124 2 o
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(Pease et al., 2016 PL0oS Biology) variable abiotic habitats



Wild tomatoes
S. pimpinellifolium

(wy) spnin|y

o
o

0
_l_

(=0
glandular trichome count
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I
_-_
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—-—
.—

1
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-

o O,

443 1237 1263 1345 1472 1547 1581 1670 1729 1921 1950 2102 2649 2656 2839

(wo) uoneydinaid |enuuy (9,) ainjesadwa] uesy

guantitative trait diversity variable abiotic habitats



Wild tomatoes
S. pimpinellifolium

(wy) spnin|y

Abiotic conditions are proposed to
shape numerous traits

« Days to wilting (Nakazato et al., 2008, 2010)
« Leaf shape (chitwood et al, 2012)

« Shade response (chitwood et al, 2012)

» Rooting depth (Nakazato et al., 2008)

o O,

(wo) uoneydivald |enuuy (9,) ainjesadwa| uesy

guantitative trait diversity variable abiotic habitats



Goals

1. Estimate the independent
contributions of climate and space to
explaining genome-wide diversity

2. Infer abiotic climate variables most

predictive of gene-environment
associations

3. Identify genetic variants most strongly

associated with major axes of
multivariate climate

(wy) spnin|y

(wo) uoneydinaid |enuuy (9,) ainjesadwa] uesy



140 georeferenced accessions of
Datasets S. pimpinellifolium (TGRC,; Davis, CA)

Geographic/spatial data

lat/long of collection locations

Environment/climate data

29 (of 54) non-redundant abiotic variables
at each location

(WorldClim, CGIAR, ClimateSA, and SoilGrids)

PCA on centered, scaled data
(multivariate climate variation)

Genetic data




environmental variation follows spatial clines

PCA: 29 bioclimatic variables
for accession locations

first 2 axes ~70% variance

(EnvPC1: 48.0%) (EnvPC2: 22.7%)



140 georeferenced accessions of
Datasets S. pimpinellifolium (TGRC,; Davis, CA)

. . PC1
Geographic/spatial data 7
lat/long of collection locations 6
. . 5
Environment/climate data
29 (of 54) non-redundant abiotic variables 4
at each location 3
(WorldClim, CGIAR, ClimateSA, and SoilGrids)
2
PCA on centered, scaled data .’g'
(multivariate climate variation) R 1
. \ 0
Genetic data Y
y
ddRAD (Pstl & EcoRI) and Stacks .
ref_map genotyping pipeline \ -2
model-based (fastStructure) and e 3

non-model based (PCA) methods AN



sequenced

{}

mapped

{}

filtered

i}

analyzed

{}

* tagged >450,000 loci
 average coverage: 66x (s.d. 36.7x)

* reference based (tomato genome, ITAG 3.2)
« ~360,000 SNPs (single nucleotide polymorphisms)

* low missing, high depth SNPs: 44,064
 LD-filtered SNPs: 17,358

« genomic distribution
* predicted variant categories



Genetic structure also follows spatial clines

Multilocus PCA:
first 2 axes ~22% variance

5 clusters (minimizing BIC
with K-means clustering)

1.0
fastStructure: :
: g 08
4 populations nE.
(maximizing marginal ¢ %°
likelihood over K) £ 04
. E
(fastStructure, Raj et al., 2014) 2 0.2

0.0

BIC Cluster

o
—

PC2 (6.53%)
-5 0 5
1 1

-10

@ Cluster 1
© Cluster2
O Cluster3
O Cluster 4
@ Cluster5

Cluster 1

PC1 (18.03%)

Cluster 2




lCollinearity!!

BIC Cluster

@ Cluster 1
@ Cluster?2
© Cluster 3
© Cluster 4
@ Cluster5

latitude Is a very
strong driver In
this species

Genetic divergence

Genetic structure Environmental structure




Independent contributions of climate vs space (historical structure)
to genetic variation

BIC Cluster

Variance partitioning by ® Cluster 1
Redundancy Analysis (RDA) @ Cluster 2
(vegan; Oksansen, 2018) O Cluster 3
© Cluster 4

@ Cluster5

Structural equation modeling (SEM)
(lavaan; Rosseel, 2012)

Generalized dissimilarity modeling (GDM)
(lgdm; Manion, 2018)




Independent contributions of climate vs space (historical structure)
to genetic variation

BIC Cluster

@ Cluster 1
@ Cluster2
O Cluster 3
© Cluster 4
@ Cluster5

Variance partitioning by
Redundancy Analysis (RDA)
(vegan; Oksansen, 2018)

Multiple linear regression:
multiple response variables on
multiple explanatory variables




Independent contributions of climate vs space (historical structure)
to genetic variation

BIC Cluster

Variance partitioning by ® Cluster 1
Redundancy Analysis (RDA) @ Cluster 2
(vegan; Oksansen, 2018) O Cluster3
© Cluster 4
@ Cluster5
SPACE:

truncated ordination matrix
(transformed euclidean distances)

ENVIRONMENT:
matrix of multivariate
environmental differences

GENETICS
matrix of multivariate SNP genotypes




Independent contributions of climate vs space (historical structure)
to genetic variation

BIC Cluster

Variance partitioning by ® Cluster 1
Redundancy Analysis (RDA) @ Cluster 2
(vegan; Oksansen, 2018) O Cluster 3
© Cluster 4
@ Cluster5

what is the explanatory power
of multivariate predictors
(enviro & spatial variables)

for multivariate responses
(SNP genotypes)?




Independent contributions of climate vs space (historical structure)
to genetic variation

Variance partitioning by % SNP variance
Redundancy Analysis (RDA) explained
(vegan; Oksansen, 2018) 29 0 Total
colinear with both spatial __ — 17.0 Climate+Space
and environmental variation 2.0 Space only
/ 3.0 Climate only
what is the explanatory power P < 0.001 for all proportions

of multivariate predictors genetic variation explained
. : . by environment alone

(enviro & spatial variables)

for multivariate responses

(SNP genotypes)?



BIC Cluster

@ Cluster 1
@ Cluster2
O Cluster 3
O Cluster 4
@ Cluster5

both are correlated with latitude!




Independent contributions of climate vs space (historical structure)
to genetic variation

D _
Variance partitioning by § @ O Space
Redundancy Analysis (RDA) T Q@ - | O Environment
. o B Environment+Space
(vegan; Oksansen, 2018) X 65 || m Tom P
O (Q\
&)
c o _|
Structural equation modeling (SEM) -% ~
(lavaan; Rosseel, 2012) > 0
o
Z
5 S -
. . .. . . -
Generalized dissimilarity modeling (GDM) Q5
(lgdm; Manion, 2018) &3 X X
O —
RDA SEM GDM

P < 0.001 for all proportions



Goals

O Space
O Environment
B Environment+Space

= ol | The abiotic environment
explains more SNP variation
than spatial structure

1. Estimate the independent
contributions of climate and space to =l I
explaining genome-wide diversity ROA  SEM  GODM

0 5 10 15 20 25 30 35
|

Per cent SNP variance explained

2. Infer abiotic climate variables most
predictive of gene-environment
associations

3. ldentify genetic variants most strongly
associated with major axes of
multivariate climate



environmental variables most predictive of SNP variation

Variance partitioning by
Redundancy Analysis (RDA)
(vegan; Oksansen, 2018)

evapotranspiration and
seasonality variables are
the strongest contributors

RDA (constrained on space)

Contribution to

Variable model
CV vapor pressure 2.76
Prec. seasonality 2.43
Soil texture 2.25

Annual max solar radiation 2.23
Max potential evapotransp. 2.16
Min potential evapotransp. 1.64

conditioned on spatial structure,
what is the contribution of each
environmental predictor to the
RDA model?



environmental variables most predictive of SNP variation

=nv oorreiatuon muUuA |

especially variation in
vapor pressure and
precipitation

RDAZ2 site score

**warning: conservative!!**

evapotranspiration and
seasonality variables are
-10

the strongest contributors | : , . | . I
-4 -2 0 2 4 6 8

RDA1 site score



environmental variables most predictive of SNP variation

A " % B
RDA (constrained on space) o Average vapor Precipitation
Contribution to : 3 BESNSUID seasonality
Variable
model
CV vapor pressure 2.76
Prec. seasonality 2.43
Soil texture 2.25

Annual max solar radiation 2.23
Max potential evapotransp. 2.16
Min potential evapotransp. 1.64

**warning: conservative!!**

2.5

- 2.0

evapotranspiration and P
seasonality variables are &%
the strongest contributors 0 200 400km ®



Goals

O Space
O Environment
B Environment+Space

= ol | The abiotic environment
explains more SNP variation
than spatial structure

1. Estimate the independent
contributions of climate and space to
explaining genome-wide diversity

0 5 10 15 20 25 30 35
|

Per cent SNP variance explained

RDA SEM GDM

2. Infer abiotic climate variables most
predictive of gene-environment
associations

evapotranspiration and
seasonality variables are
the strongest contributors*

3. Identify genetic variants most strongly
associated with major axes of
multivariate climate



SNPs with strongest environmental associations

Full RDA
: 2 '
estimated 3T g3
L2 o
by stre_ngth z
of Io_admg T o
on first g °
RDA axis &
I I I I I | I I I I I
Ch 1 Ch3 Ch4 Ch5 Cheé Ch7 Ch& Ch9 Ch10 Ch11 Ch12
- Accounting for population structure
2 37 i
= <
g s : R : ' :
E o :. I i * t-*. ."- .t ot . 3 L
E el R LY > FEEEE TR '::- --'----’----, ------- =- --. --------- ;"‘h-‘-t:----
o 2" . s * o ke .
E g ':l _ L F.oa 3
5 ° . ﬁi [Genotypes] ~ [Environment] + [Space]
)
= I I I I I I I [ I I
Ch3 Ch4 Chb5 Cheé Ch7 Chg& Ch9g Ch10 Ch11 Ch12



SNPs with strongest environmental associations

Chr.

S N

11

SMNP position

46,907,724
37,812,488
44,823 444
49,678,371

66,381,751

3,609,439
88,554,548

45,372,222

26,166,364
39.445,574

4179466
27,570,643

5709,08%

45,599,110

23,509,033

Locus

Solyc04g050390
Solyc04g047830
Solyc04g049930
Solyc04g051150

Solyc03g115070

Solyc05g009440
Solyc01g098080

Solyc04g050080

Solyc08g041710
Solyc06g0623560
Solyellg005560
Solyc0Bg023500

Solyc04g0154%0

Solyc04g050150

Solyc08g042140

SNP Distance from locus
category {bp)
Intergenig 30
Intergenig 4,389
Missense 0
Intron 0
Intergenid LTs!
Intron 0
Intran 0
Missense 0
Intron 0
Intran 0
Intergenic 658
Intran 0
3 UTR 0
Intran L}
Intran 0

in or near

known genes

RDA 1 loading

0.015
0.013
0.013
0.013

0.012

0.012
0.011

0.011

0.011
0.011
0.011
0.011

0.011

0.011

0.011

Locus description

&05 ribosomal subunit
DMA glycosylase
Unknown protein

Sterol glucosyl
transferase 4 (SGT4)

Exocyst complex
component 7 (EXO70)

Muclease 51

BY-2 kinesin-like
protein 5

MY B transcription
factor 73

Transmembrane protein
Syntaxin-like protein
Cellulose synthase

Metallohydrolase/
oxioreductase

Magnesium chelatase
subunit D

RMA helicase DEAH-
Box 13

Translation initiation
factor 3 subunit

environmental

response functions

* Xk

* Xk

Top 15 associations
with RDA axis 1



Goals

1. Estimate the independent
contributions of climate and space to
explaining genome-wide diversity

2. Infer abiotic climate variables most
predictive of gene-environment
associations

3. Identify genetic variants most strongly
associated with major axes of
multivariate climate

—

Bqureos A
-

O Space

O Environment

B Environment+Space
W Total

0 5 10 15 20 25 30 35

Per cent SNP variance explained

A SEM

RD

A [ o
N Prcphadae
3 S e erasaeatny

GDM

selective agents?

loci & trait variants?

AOA consiralncd on space

The abiotic environment
explains more SNP variation
than spatial structure

evapotranspiration and
seasonality variables are
the strongest contributors

extreme SNPs are
associated with genes
relevant to climate
adaptation



environmental association analyses (EAA)

use SNP-environmental associations to infer things like:

» specific genomic targets of environmental selection (loci)
* specific environmental components that impose selection (agents)

* contribution of spatially-varying (abiotic) selection
to genome-wide genomic variation

* parallel versus unique responses to
repeated environmental gradients



environmental limitations
assoc. analyses

* collecting (high quality, relevant) environmental data can
be challenging

« still several steps away from direct causal inference...



selection within and between populations

goal:
identify loci undergoing recent selection underlying important
(with or w/out phenotype) functional variation
incl.divergent across space Incl. across space
signature:
variants/regions that depart from neutral or associated with segregating
null expectations functional variation
approaches: sequence-based association studies

tests of selection

differentiation-based tests

environmental association analyses



take-homes

all approaches have limitations
(being aware of these Is Imp!!)

most are still challenging
except in ‘developed’ systems

all are (at least) several steps
from direct causal inferences
about adaptation
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