
Selection & Adaptation

Leonie Moyle

lmoyle@indiana.edu

Workshop on Population and Speciation Genomics, Cesky Krumlov 2022



Selection and Adaptation: Today

A. Context: What is selection, what is adaptation?

B. Detecting selection: within populations

C. Detecting selection: between populations

D. Case study: Landscape genomics of adaptation to abiotic climate

E. Questions/chat

- sequence-based tests of selection

- association studies

- outlier analyses

- environmental association analyses



goals

general rationale underlying empirical tests of selection (and adaptation)

inferential structure of (some) tests of selection/adaptation, at varying scales 

(some) factors that can mislead genomic inferences 
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(some) practical considerations for sampling and experimental decisions

(from the perspective of an end user, e.g., me)



(classically) a consistent difference in survival and/or reproduction 

among individuals that differ in one or more traits (alleles)

the evolutionary force that 

maintains or increases the 

frequency of variants that 

contribute to fitness 

Selection and Adaptation



In a perfect world, depending upon the variant, selection:

• removes deleterious (fitness reducing) mutations

• promotes advantageous (fitness enhancing) mutations

• maintains advantageous (fitness enhancing) variation

‘negative’ or ‘purifying’ selection

‘balancing’ or ‘diversifying’ selection

‘positive’, or ‘divergent’, selection

‘directional’ 

selection

Flavours of natural selection



the process of evolutionary change whereby a lineage of organisms 

increases in average fitness (within an environmental context)

adaptation: a trait or 

characteristic that increases 

survival and/or reproduction 

in a given environment

the product of fitness-

enhancing selection

Selection and Adaptation
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beneficial allele (A1) is dominant

A1 is recessive

A1 is additive

pA = t / (s + t)

pA = 1 or 0

(e.g., selection on single SNPs)

Single-locus models of selection

at equilibrium



Starting 

phenotype

Selection 

gradient

Change in 

phenotype

Selection on quantitative traits



• Genetic basis

• Key selective agents (ecological forces)

• Relative importance compared to other 
evolutionary processes (geographic isolation, 
demographic history, relatedness, etc.) IBE IBD

Genetic 

divergence

why study selection and adaptation?

“Mechanisms”

Interactions with other forces



• what is the genetic architecture underlying adaptations?

• what is the genetic source of adaptation?

• what distribution and order of phenotypic effects, rate over time?

- simple versus complex genetic basis

- few versus many genes, allelic effects, epistasis, etc.

- distribution and average size of genetic effects

new mutation versus 

standing genetic variation 

(versus introgression)

why study selection and adaptation?

“Theoretical”: to understand how evolution works (in nature)

the genetic process of adaptation



“Theoretical”: to understand how evolution works (in nature)

• does (local) adaptation act in parallel across species or 

environments?

• are there common patterns of selection and adaptation 

(across populations or species) with respect to demography, 

traits, or history?

• how does gene flow interact with local selection to shape 

genetic/adaptive responses?

ecological and evolutionary context

why study selection and adaptation?



Practical/applied: to understand, predict, manipulate populations

• what genetic and ecological factors limit adaptation to future change 

(e.g. climate change)?

• what allows or constrains species range expansion/invasion?

• how is adaptive genetic variation distributed across a species range?

why study selection and adaptation?

• what is the evolutionary potential of specific lineages or species?



(Rellstab et al. 2015)

Detecting selection with pre-genomic data



Detecting selection with pre-genomic data

Classical evidence of adaptation

Trait-environment 

correlations

/associations



Detecting selection with pre-genomic data

Trait-environment 

correlations

/associations

Hoekstra et al. 2004, Evolution



Detecting selection with pre-genomic data

Trait-environment 

correlations

/associations

Hoekstra et al. 2004, Evolution
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Change in relative fitness of genotypes across environments

a crossing reaction norm for fitness == local adaptation

Detecting selection with pre-genomic data

Genotype x 

Environment

Interaction



Change in relative fitness of genotypes across environments

a crossing reaction norm for fitness == local adaptation

Detecting selection with pre-genomic data

Genotype x 

Environment

Interaction

wRR > wRC > wCC wRR < wRC < wCC



(Rellstab et al. 2015)

Detecting selection with genomic data



Detecting selection with genomic data

using only (or primarily) variant data using variant and other 

(phenotypic, environmental, fitness) data

(Hohenlohe et al. 2010) (Rellstab et al. 2015)



selection is locus-specific,  

whereas historical and/or demographic effects act genome-wide

therefore must be able to:

1. describe the background genomic context (demography/history)

2. differentiate it from the target signature (selection)

Detecting selection with genomic data



genetic structure or historical relatedness among individuals

genomic heterogeneity in summary statistics, incl. those 

used to infer selection

accounting for/incorporating background variation

CORE CHALLENGE =

Detecting selection with genomic data



Examples…. different species pairs of Heliconius butterflies

genomic heterogeneity in summary statistics 
(often spatially correlated across the genome)



Genetic structure Environmental structure

genetic structure or historical relatedness among individuals 
(often spatially correlated across geography)

Example….

spatial structure in 
wild tomato S. pimpinellifolium



(Hohenlohe et al. 2018)

Detecting selection with genomic data

lots (most?) of population 

genomics aims to 

characterize these genome-

wide/ ’background’ features

but this often 

isn’t easy…



your approach to detecting selection will depend 

upon your sample design and study goal

within populations 

between populations 

between species

Detecting selection with genomic data

time and/or spatial 

scale

contemporary

recent 

older



selection within populations

goal: 

identify loci

associated with segregating 

functional variation

sequence-based 

tests of selection

association studies

that depart from neutral or 

null expectations

undergoing recent selection 

(with or w/out phenotype)

underlying important 

functional variation

signature: 

variants/regions

approaches:



sequence-based 

tests of selection

Goal:
Identify markers/variants/SNPs that deviate from generic, null, or 

genome-wide patterns, due to the action of recent selection

Rationale:

• selection generates predictable changes in the kind, amount, and 

distribution of genetic variation

• targets of (recent) selection should be detectable based on characteristic 

patterns of population genetic statistics at local genomic locations, that 

differ from background regions



sequence-based 

tests of selection

in comparison to the 

genomic background, 

selection changes:

amount of 

sequence diversity

allele frequency 

spectrum

topology and depth 

of the coalescent

(Hohenlohe et al. 2010)directional background



selective sweeps time

in comparison to the 

genomic background, 

at the site of a 

selective sweep:

reduced sequence 

diversity

shifted allele 

frequency spectrum

(excess rare variants)



selective sweeps

in comparison to the 

genomic background, 

at the site of a 

selective sweep:

reduced sequence 

diversity

shifted allele 

frequency spectrum

(excess rare variants)

(Coop 2022; originally Williams and Pennings 2019)



(Nielson 2005)

selective sweeps

in comparison to the 

genomic background, 

at the site of a 

selective sweep:

reduced sequence 

diversity

shifted allele 

frequency spectrum

(excess rare variants)



selective sweeps

extent of hitchhiking region depends on 

(among other things): 

(Coop 2022, Chapter 13)

selection coefficient 

(how advantageous the new variant is)

recombination around 

the selected variant

features of the sweep 

can tell you something 

about the strength of 

selection (and/or 

interaction with  

recombination (time))



selective sweeps

(Figure 8.2, from Hahn 2018)

features of the sweep 

can tell you something 

about the strength of 

selection (and/or 

interaction with  

recombination (time))

strong/older

strong/recent



balancing selection

(from Hahn 2018)



sequence-based 

tests of selection

(Hohenlohe et al. 2010)directional balancing

potentially very 

powerful



sequence-based 

tests of selection
limitations

• soft selective sweeps

• polygenic basis to traits

• epistatic interactions among genes

selection based on 

incremental &/or collective 

changes at 2+ loci

• need tonnes of data (med to high coverage), for good inferences

• need genomic position information



selective sweeps

shift in 
environmental/selective 

conditions

(Coop 2022, Chapter 13)

new variation standing variation standing variation

polygenic traitsmonogenic traits?



sequence-based 

tests of selection

in comparison to the 

genomic background, 

selection changes:

amount of 

sequence diversity

allele frequency 

spectrum

topology and depth 

of the coalescent

(Hohenlohe et al. 2010)directional balancing



sequence-based 

tests of selection
limitations

• soft selective sweeps

• polygenic basis to traits

• epistatic interactions among genes

selection based on 

incremental &/or collective 

changes at 2+ loci

• too little, or too much, time since selection

• need tonnes of data (med to high coverage), for good inferences

• need genomic position information



sequence-based 

tests of selection

• selective conditions/agents

• locus identity (depending on system…)

• functional importance (“adaptation”)

no phenotypes, no fitness,

so no direct information on:

anonymous tests are a double-edged sword

limitations



selection within populations

goal: 

identify loci

associated with segregating 

functional variation

sequence-based 

tests of selection

association studies

that depart from neutral or 

null expectations

undergoing recent selection 

(with or w/out phenotype)

underlying important 

functional variation

signature: 

variants/regions

approaches:



(genome-wide) analysis of statistical associations 

between traits and markers in large population samples.

association 

studies

GWAS (genome-wide association study)

chromosome position
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(genome-wide) analysis of statistical associations 

between traits and markers in large population samples.

association 

studies

(Stinchcombe & Hoekstra 2008)

GWAS (genome-wide association study)



(genome-wide) analysis of statistical associations 

between traits and markers in large population samples.

Goal:
Identify markers/variants/SNPs statistically associated with 

variation in traits of interest, due to LD with causal loci

association 

studies



Reminder: what is LD (linkage disequilibrium)?

A statistical association between markers or loci, such that:

alternative alleles at 2 (or more) loci are found together more 

often than expected by chance (e.g. mendelian ratios)

L.D. can be due to (for example):

• chromosomal association (physical linkage) between loci

• historical/geneological associations (population structure) 

between alleles at different loci

• selection for/against particular allelic associations



markers in perfect LD 

with target locus

Physically adjacent  markers 

will remain associated with 

target locus (SNP) through 

many recombination events

subsequent recombination

origin of causal mutation
association 

studies

(Kruglyak 2008)

when LD is short, need high marker 

density so at least a few remain in 

LD with target locus



(genome-wide) analysis of statistical associations 

between traits and markers in large population samples.

Rationale:
• markers physically linked with (adjacent to) causal locus should be 

statistically associated with phenotypic effect of that locus

• natural populations (‘wild’ samples) have accumulated many 

recombination events (therefore resolution is very fine-scaled)

Goal:
Identify markers/variants/SNPs statistically associated with 

variation in traits of interest, due to LD with causal loci

association 

studies



Phenotypes of mapping population Genotypes of mapping population (1 csome)

Genotypes 

at locus A

Genotype 

alleles at 

locus A

Analyses estimate the degree of 

covariation/association between: 

• each marker (allele a vs A), and 

• phenotype (trait measurements)

QTL 

mapping

contrast with:



artificially segregating 

populations

QTL 

mapping

contrast with:

finite (small) populations 

means limited # recombination 

events, therefore limited 

resolution



(genome-wide) analysis of statistical associations 

between traits and markers in large population samples.

Rationale:
• markers physically linked with (adjacent to) causal locus should be 

statistically associated with phenotypic effect of that locus

• natural populations (‘wild’ samples) have accumulated many 

recombination events (therefore resolution is very fine-scaled)

Goal:
Identify markers/variants/SNPs statistically associated with 

variation in traits of interest, due to LD with causal loci

association 

studies



Requires:

In general: • test marker by marker associations (or sometimes haplotypes) 

• assess and control/account for population processes (especially 

historical demography and/or population structure/relatedness) 

• markers/variant sites (1000’s to WG) that differ between 

individuals

• linkage map or genome sequence

• quantitative phenotypes/trait variation

• methods to associate trait/genotype (and exclude confounding 

factors, correct for multiple testing)

(genome-wide) analysis of statistical associations 

between traits and markers in large population samples.

association 

studies



Why do we care about population structure?

population structure—heterogeneous genetic relationships among 

individuals—creates patterns of LD in a dataset

that have NOTHING to do with adaptive trait variation.



Historical structure due to 
selection and drift

Population structure produces LD among unlinked lociassociation 

studies individuals are more closely 
related to each other, share SNPs

individuals are more closely 
related to each other, share SNPs

(Anderson, Willis, Mitchell-Olds 2011)



Associations 
without 
correcting for 
population 
structure

Associations 
with controls 
for population 
structure

association 

studies

Population structure produces LD among unlinked loci

Historical structure due to 
selection and drift

(Anderson, Willis, Mitchell-Olds 2011)



Why do we care about population structure?

(!!similarly, when population history is correlated 

with the environment, false positives!!)

!!when population history is correlated with 

distribution of trait variation, false positives!!

that have NOTHING to do with adaptive trait variation.

population structure—heterogeneous genetic relationships among 

individuals—creates patterns of LD in a dataset



association 

studies



EXAMPLE

association 

studies



one of the biggest ‘problems’ with GWAS (etc.) is that trait variation 

is often confounded with historical/spatial population structure

producing spurious (non-causal) associations 

between markers and traits

association 

studies
limitations

• correcting for population structure can overcompensate

• need tonnes more data: collecting (high quality) trait data is hard…

• still several steps away from direct causal inference



selection within populations

goal: 

identify loci

associated with segregating 

functional variation
that depart from neutral or 

null expectations

undergoing recent selection 

(with or w/out phenotype)

underlying important 

functional variation

signature: 

variants/regions

sequence-based 

tests of selection
association studiesapproaches:

select and re-sequence (change 

over one or few generations)
…and others…..



your approach to detecting selection will depend 

upon your sample design and study goal

within populations 

between populations 

between species

Detecting selection with genomic data

time and/or spatial 

scale

contemporary

recent 

older



selection between populations

goal: 

identify loci

associated with segregating 

functional variation

sequence-based 

tests of selection
association studies

that depart from neutral or 

null expectations

undergoing recent selection 

(with or w/out phenotype)

underlying important 

functional variation

signature: 

variants/regions

approaches:

environmental association analyses

differentiation-based tests

divergent across space across space



population genomics + space

differentiation-based analyses

e.g. Fst outliers

sequence-based tests (in 2+ pops)

& geographical coordinates

differentiation-

based tests



Rationale:
• populations in different (spatial) locations experience different 

selective conditions 

• markers physically linked with (adjacent to) locally-adapted loci 

should show elevated/exaggerated patterns of differentiation, 

above background levels of population differentiation

Goal:
Identify markers/variants/SNPs that show interesting (elevated) 

patterns of differentiation among 2+ populations

differentiation-

based tests



Requires:

In general: • assess differentiation at every marker/locus across whole dataset 

• identify markers loci that are more differentiated than expected 

(given historical demography and/or population structure) 

• markers/variant sites (1000’s to WG) that differ between 

individuals in 2+ populations

• null pop gen. or demographically informed models of 

expected variation among populations

!!super easy!!

differentiation-

based tests



(Stinchcombe &Hoekstra 2008)

Are there any potential 

problems with this?

differentiation-

based tests



Examples…. different species pairs of Heliconius butterflies

genomic heterogeneity in summary statistics 

(often spatially correlated across the genome)



Requires:

In general: • assess differentiation at every marker/locus across whole dataset 

• identify markers loci that are more differentiated than expected 

(given historical demography and/or population structure) 

• markers/variant sites (1000’s to WG) that differ between 

individuals in 2+ populations

• null pop gen. or demographically informed models of 

expected variation among populations

!!super easy!! …& potentially super misleading

differentiation-

based tests



Requires:

In general: • assess differentiation at every marker/locus across whole dataset 

• identify markers loci that are more differentiated than expected 

(given historical demography and/or population structure) 

• markers/variant sites (1000’s to WG) that differ between 

individuals in 2+ populations

• null pop gen. or demographically informed models of 

expected variation among populations

• additional data on genomic location and/or

• data on ecological or evolutionarily relevant variation….

differentiation-

based tests



(Figure 4 in 
Hohenlohe et al. 2010))

between three independently 

derived freshwater populations 

and oceanic ancestral pops

between oceanic or 

between freshwater

Oceanic versus 

freshwater 

threespine stickleback

differentiation-

based tests

(Hohenlohe et al. 2010b)



• genome-wide heterogeneity in differentiation or diversity statistics can 

produce spurious (non-causal) signals of elevated differentiation

limitations

• need additional data on ecological or evolutionary context to 

interpret patterns of pairwise differentiation

• still several steps away from direct causal inference….

differentiation-

based tests



• selective conditions/agents

• locus identity (depending on system…)

• functional importance (“adaptation”)

no phenotypes, no fitness,

so no direct information on:

limitationsdifferentiation-

based tests



selection between populations

goal: 

identify loci

associated with segregating 

functional variation

sequence-based 

tests of selection
association studies

that depart from neutral or 

null expectations

undergoing recent selection 

(with or w/out phenotype)

underlying important 

functional variation

signature: 

variants/regions

approaches:

environmental association analyses

differentiation-based tests

divergent across space across space



population genomics + space + environmental variation

environmental association analyses (EAA)

genotype x environment analyses (GEA)

(within “landscape genomics”)

divergent selection between populations



environmental association analyses (EAA)

trait-environment associations

the conceptual origins of 

EAA are from classical 

clinal analyses



Rationale:
• populations in different (spatial) locations experience different 

selective conditions 

• markers physically linked with locally-adapted loci should show 

statistical associations with the causal selective agent, 

above background levels of SNP-environment associations

Goal:
Identify markers/variants/SNPs statistically associated with variation 

in environmental factors of interest, due to LD with causal loci

environmental association analyses (EAA)

EAAs are essentially association studies but association with environments not traits



use SNP-environmental associations to infer things like:

• contribution of spatially-varying (abiotic) selection 

to genome-wide genomic variation 

• specific genomic targets of environmental selection (loci)

• specific environmental components that impose selection (agents)

environmental association analyses (EAA)

• parallel versus unique responses to 

repeated environmental gradients



Requires:

In general: • test each marker OR composite genotypes associations with 

single environmental factors OR multivariate environmental variation

• assess and control/account for population processes (especially 

historical demography and/or population structure/relatedness)

EITHER sequentially or simultaneously. 

• markers/variant sites (1000’s to WG) that differ between individuals

• linkage map or genome sequence (ideally)

• quantitative environmental data (univariate or multivariate)

• methods to associate environment/genotype (and exclude 

confounding factors, correct for multiple testing)

environmental association analyses (EAA)

EAA is really a heterogeneous set of tools and approaches



and more…

environmental association analyses (EAA)

EAA is really a heterogeneous set of tools and approaches



EAA is really a heterogeneous set of tools and approaches

(half of) 

Table 1 from 

Rellstab et al. 2015

environmental association analyses (EAA)



tools vary depending upon the question(s), and:

EAA is really a heterogeneous set of tools and approaches

• distribution of samples across space and/or environment

• type of model (e.g. logistic regression, matrix correlation, 

mixed-effects models)

• statistical procedure used (e.g. FDR, p-values)

• method of handling/accounting for population structure

environmental association analyses (EAA)



divergent selection between populations

& geographical coordinates

population genomics + space + environmental variation

how you sample in space 

affects your power and what 

questions you can ask/answer



sampling for EAA

random or stratified

clustered or scattered

can detect weaker selection (but also 

depends on many other factors…)

Lotterhos & Whitlock 2015

e.g. power

paired transectsrandom



sampling for EAA

random or stratified

clustered or scattered

can detect weaker selection (but also 

depends on many other factors…)

Lotterhos & Whitlock 2015

no a priori 

knowledge required

e.g. power

paired transectsrandom

when pairs span repeated 

categorical contrast: 

“quasi-experimental”
(Rellstab et al. 2015)

hot-cold

high-low

on-off



sampling for EAA

random or stratified

clustered or scattered

can detect weaker selection (but also 

depends on many other factors…)

Lotterhos & Whitlock 2015

no a priori 

knowledge required

binary selective 

agent?

e.g. power

e.g. distribution of 

environmental factors

paired

clinal selective 

agent?

parallel responses to selection

transectsrandom



sampling for EAA

how you sample in space 

affects your power and what 

questions you can ask/answer

e.g. population genomic factors

individual-based analyses better when: 

population-based analyses better when: 

• many coordinates

• enviro data has high variation 

across sampling area

• local Ne is low

• samples are clustered at local sites

• enviro data changes at scales >> 

than local samples

• local Ne is higher

e.g. distribution of 

environmental factors



sampling for EAA

e.g. distribution of 

environmental factors
how you sample in space 

affects your power and what 

questions you can ask/answer

e.g. population genomic factors

individual- versus population-based analyses

Both also affect how to incorporate demographic/historical/neutral 

genetic structure into an EAA



Why do we care about population structure?

(!!similarly, when population history is correlated 

with the environment, false positives!!)

!!when population history is correlated with 

distribution of trait variation, false positives!!

that have NOTHING to do with adaptive variation.

population structure—heterogeneous genetic relationships among 

individuals—creates patterns of LD in a dataset



(half of) 

Table 1 from 

Rellstab et al. 2015

different 

methods 

incorporate 

population 

structure in 

different ways



some common approaches for EAA

e.g. (LFMM) Latent Factor MM

LMM that uses environment (specific climate 

variables) as a fixed effect

incorporates population structure 

by using K (e.g. STRUCTURE) as latent 

factors (representing random effects)

environmental effect and population 

structure are assessed simultaneously



some common approaches for EAA

e.g. BAYENV

LMM method to assess evidence for 

correlation (of SNPs) with environment 

(specific climate variables)

incorporates population structure 

by generating a kinship matrix from allelic data, to 

estimate a null model of demographic structure

compares models (in a Bayesian framework) 

that do (alternative) and do not (null) 

include environment



some common approaches for EAA

e.g. Redundancy Analysis (RDA)

Multiple linear regression method for testing 

associations between SNPs and multivariate 

environment

incorporates population structure 

via constrained ordination matrix of spatial 

relationships 

multivariate environmental effects and 

spatial (population) structure are assessed 

simultaneously



environmental association analyses (EAA)

CASE STUDY



Gibson & Moyle, 2020 Molecular Ecology

Case study: Landscape genomics of adaptation to abiotic climates



Matthew Gibson

Case study: Landscape genomics of adaptation to abiotic climates



<0.5MY

Image: Peralta et al. 2008

S. pimpinellifolium

(Pease et al., 2016 PLoS Biology)

Wild tomatoes

<2.5MY



<0.5MY

S. pimpinellifolium

(Pease et al., 2016 PLoS Biology)

Wild tomatoes

variable abiotic habitats

<2.5MY



Diversity pics here: phenotypes
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S. pimpinellifolium

Wild tomatoes

variable abiotic habitatsquantitative trait diversity



Diversity pics here: phenotypes

S. pimpinellifolium

Wild tomatoes

variable abiotic habitatsquantitative trait diversity

Abiotic conditions are proposed to 

shape numerous traits

• Days to wilting (Nakazato et al., 2008, 2010)

• Leaf shape (Chitwood et al, 2012)

• Shade response (Chitwood et al, 2012)

• Rooting depth (Nakazato et al., 2008)



Goals

1. Estimate the independent 

contributions of climate and space to 

explaining genome-wide diversity

2. Infer abiotic climate variables most 

predictive of gene-environment 

associations

3. Identify genetic variants most strongly 

associated with major axes of 

multivariate climate

loci & trait variants?

selective agents?



Environment/climate data

Geographic/spatial data

140 georeferenced accessions of 
S. pimpinellifolium (TGRC; Davis, CA)

Datasets

lat/long of collection locations

29 (of 54) non-redundant abiotic variables 

at each location

(WorldClim, CGIAR, ClimateSA, and SoilGrids)

PCA on centered, scaled data 

(multivariate climate variation)

Genetic data



environmental variation follows spatial clines 

PCA: 29 bioclimatic variables 

for accession locations

first 2 axes ~70% variance

(EnvPC1: 48.0%) (EnvPC2: 22.7%)



Environment/climate data

Geographic/spatial data

ddRAD (PstI & EcoRI) and Stacks 

ref_map genotyping pipeline

140 georeferenced accessions of 
S. pimpinellifolium (TGRC; Davis, CA)

Datasets

lat/long of collection locations

29 (of 54) non-redundant abiotic variables 

at each location

(WorldClim, CGIAR, ClimateSA, and SoilGrids)

PCA on centered, scaled data 

(multivariate climate variation)

Genetic data

model-based (fastStructure) and 

non-model based (PCA) methods



mapped

sequenced 

filtered 

• tagged >450,000 loci 

• average coverage: 66x (s.d. 36.7x)

• reference based (tomato genome, ITAG 3.2)

• low missing, high depth SNPs: 44,064

• LD-filtered SNPs: 17,358

• ~360,000 SNPs (single nucleotide polymorphisms)

analyzed • genomic distribution

• predicted variant categories



Multilocus PCA: 

first 2 axes ~22% variance

5 clusters (minimizing BIC 

with K-means clustering)

fastStructure: 

4 populations 

(maximizing marginal 

likelihood over K)

(fastStructure, Raj et al., 2014)

Genetic structure also follows spatial clines



!!Collinearity!!

Genetic structure Environmental structure

latitude is a very 

strong driver in 

this species



independent contributions of climate vs space (historical structure) 

to genetic variation

Structural equation modeling (SEM) 

(lavaan; Rosseel, 2012) 

Variance partitioning by 

Redundancy Analysis (RDA)

(vegan; Oksansen, 2018) 

Generalized dissimilarity modeling (GDM) 

(lgdm; Manion, 2018) 



independent contributions of climate vs space (historical structure) 

to genetic variation

Multiple linear regression: 

multiple response variables on 

multiple explanatory variables

Variance partitioning by 

Redundancy Analysis (RDA)

(vegan; Oksansen, 2018) 



independent contributions of climate vs space (historical structure) 

to genetic variation

SPACE:

truncated ordination matrix

(transformed euclidean distances)

ENVIRONMENT:

matrix of multivariate 

environmental differences

GENETICS

matrix of multivariate SNP genotypes

Variance partitioning by 

Redundancy Analysis (RDA)

(vegan; Oksansen, 2018) 



independent contributions of climate vs space (historical structure) 

to genetic variation

what is the explanatory power 

of multivariate predictors 

(enviro & spatial variables) 

for multivariate responses 

(SNP genotypes)?

Variance partitioning by 

Redundancy Analysis (RDA)

(vegan; Oksansen, 2018) 



independent contributions of climate vs space (historical structure) 

to genetic variation

what is the explanatory power 

of multivariate predictors 

(enviro & spatial variables) 

for multivariate responses 

(SNP genotypes)?

Variance partitioning by 

Redundancy Analysis (RDA)

(vegan; Oksansen, 2018) 

% SNP variance 

explained

Total

Climate+Space

Space only

Climate only

22.0

17.0

2.0

3.0

colinear with both spatial 

and environmental variation

genetic variation explained 

by environment alone

P < 0.001 for all proportions



both are correlated with latitude!



independent contributions of climate vs space (historical structure) 

to genetic variation

Structural equation modeling (SEM) 

(lavaan; Rosseel, 2012) 

Variance partitioning by 

Redundancy Analysis (RDA)

(vegan; Oksansen, 2018) 

Generalized dissimilarity modeling (GDM) 

(lgdm; Manion, 2018) 

RDA SEM GDM
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P < 0.001 for all proportions



Goals

RDA SEM GDM
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Total The abiotic environment 

explains more SNP variation 

than spatial structure 
1. Estimate the independent 

contributions of climate and space to 

explaining genome-wide diversity

2. Infer abiotic climate variables most 

predictive of gene-environment 

associations

3. Identify genetic variants most strongly 

associated with major axes of 

multivariate climate



Variance partitioning by 

Redundancy Analysis (RDA)

(vegan; Oksansen, 2018) 

conditioned on spatial structure,

what is the contribution of each 

environmental predictor to the 

RDA model?

environmental variables most predictive of SNP variation 

evapotranspiration and 

seasonality variables are 

the strongest contributors



environmental variables most predictive of SNP variation 

evapotranspiration and 

seasonality variables are 

the strongest contributors

especially variation in 

vapor pressure and

precipitation

**warning: conservative!!**



**warning: conservative!!**

evapotranspiration and 

seasonality variables are 

the strongest contributors

environmental variables most predictive of SNP variation 



Goals

RDA SEM GDM
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Total The abiotic environment 

explains more SNP variation 

than spatial structure 

evapotranspiration and 

seasonality variables are 

the strongest contributors*

1. Estimate the independent 

contributions of climate and space to 

explaining genome-wide diversity

2. Infer abiotic climate variables most 

predictive of gene-environment 

associations

3. Identify genetic variants most strongly 

associated with major axes of 

multivariate climate



Accounting for population structure

[Genotypes] ~ [Environment] + [Space] 

[Genotypes] ~ [Environment]

SNPs with strongest environmental associations

estimated 

by strength 

of loading 

on first 

RDA axis



Accounting for population structure

**

**

SNPs with strongest environmental associations

in or near 

known genes
environmental 

response functions

Top 15 associations 

with RDA axis 1 



Goals

RDA SEM GDM
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Total The abiotic environment 

explains more SNP variation 

than spatial structure 

evapotranspiration and 

seasonality variables are 

the strongest contributors

extreme SNPs are 

associated with genes 

relevant to climate 

adaptation

1. Estimate the independent 

contributions of climate and space to 

explaining genome-wide diversity

2. Infer abiotic climate variables most 

predictive of gene-environment 

associations

3. Identify genetic variants most strongly 

associated with major axes of 

multivariate climate

loci & trait variants?

selective agents?



use SNP-environmental associations to infer things like:

• contribution of spatially-varying (abiotic) selection 

to genome-wide genomic variation 

• specific genomic targets of environmental selection (loci)

• specific environmental components that impose selection (agents)

environmental association analyses (EAA)

• parallel versus unique responses to 

repeated environmental gradients



environmental 

assoc. analyses
limitations

• environmental variation can be confounded with historical/spatial 

population structure producing spurious (non-causal) associations 

• correcting for population structure can overcompensate

• collecting (high quality, relevant) environmental data can 

be challenging

• still several steps away from direct causal inference…



selection within and between populations

goal: 

identify loci

associated with segregating 

functional variation

sequence-based 

tests of selection
association studies

that depart from neutral or 

null expectations

undergoing recent selection 

(with or w/out phenotype)

underlying important 

functional variation

signature: 

variants/regions

approaches:

environmental association analyses

differentiation-based tests

incl.divergent across space incl. across space



take-homes

all approaches have limitations

(being aware of these is imp!!)

most are still challenging 

except in ‘developed’ systems

all are (at least) several steps 

from direct causal inferences 

about adaptation
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