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Admixture and assortative mating
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Machine learning (ML) in evolutionary
genomics

Morning session: introduction to
@ basic concepts in supervised ML (Matteo)
@ neural networks (Matteo)
@ deep learning (Flora)
@ unsupervised learning (Flora)

with examples from the literature.



Machine learning (ML) in evolutionary
genomics

Afternoon and evening sessions:
@ simple neural networks with keras and ImaGene (Matteo)
@ advanced architectures with pytorch (Flora)
@ scalable deep learning with dnadna (Flora)

with applications on detecting selection and inferring demographic
histories.
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Machine learning for
population genetics

A (gentle and brief) introduction

Matteo Fumagalli




Intended Learning Outcomes

By the end of this very first part, you will be able to:
@ Provide a basic definition of machine learning
@ lllustrate the concepts of data, labels, and task

@ Describe the difference between unsupervised and supervised
learning



What is machine learning?

A typical example

TASK:
predict y from x
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Angermueller et al Mol Syst Biol. (2016) 12: 878




What is machine learning?

A typical example

TASK: X—>Yy
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Data + Task: ? slide from Flora




What is the data?

« Learning something from data
data = multidimensional object with e.g lots of samples (rows) and lots of
variables/predictors/factors/features/markers ...
(one vector/one matrix/several matrix per sample )

indl A/A C/IC CIG indl 55 F baker 35k
ind2 T/A CIC GIG ind2 43 ™M

Quantitative and qualitative variables

Sport Hours of
activity  free time

indl A/A CIC

ind2 TA CIC

multidimensional and heterogeneous data

slide from Flora




What

is the data?

Learning something from data
data = multidimensional object with e.g lots of samples (rows) and lots of variables/
predictors/factors/features/markers ... (one vector/one matrix/several matrix per sample )

Gene expression  Geneticinteractions  Amino acid sequences
Condition

slide from Flora
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What is the learning task?

Data with or without label

* What's a label ? a target class or a target value observed for each sample
Data are not always labeled. They can also have multiclass labels
ex : pic of dog/person/catr..., price of house, level of cholesterol

« Task/objective ?



What is the learning task?

Data with or without label

* What's a label ? a target class or a target value observed for each sample
Data are not always labeled. They can also have multiclass labels
ex : pic of dog/person/catr..., price of house, level of cholesterol

« Task/objective ?

« Task/objective ?
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Task = predicting gene function labels

“onditio|

Gene

@ Run1+23CFP
1.GFP

J

Task = identifying groups (clusters) of eg single-
cell (T cells, NK cells ,..) with similar pattern of

ask = predicting protein 3D gene expression
structure/contact map from
DNA sequences and Tamasa
secondary structure, ...

(blue=truth, red=pred)




Unsupervised vs. Supervised Tasks

@ Learning something from data

e Either unsupervised (no labels) or supervised (discrete or
continuous labels)

Can you think of examples of unsupervised and supervised tasks in
evolutionary genomics?



Supervised learning

« Supervised = Learn a relationship (a general model) linking input data (or
features) to observed labels

Classification (predict a class) Regression (predict a variable)
X—>y
oot e/%n 1
What for: X

- Predict labels of new unlabeled samples (eg what's on an image?),
- Understand better the relationship between features and the label (eg
understand which set of genes allow to predict a disease risk),

(Flora will cover unsupervised learning later today)

slide from Flora



Intended Learning Outcomes

At the end of this very first part, you are now able to:
@ Provide a basic definition of machine learning
@ lllustrate the concepts of data, labels, and task

@ Describe the difference between unsupervised and supervised
learning



Intended Learning Outcomes

By the end of this session, you will be able to:

@ Describe the three key components of a classifier: score
function, loss function, optimisation

o Identify the elements of a neural networks, including neurons
and hyper-parameters

@ lllustrate the layers in a neural network

@ Demonstrate how to implement, train and evaluate neural
networks in python



What do you see?




What does the computer see?
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= What the computer sees

82% cat
. . . 15% dog

image classification 2% hat
1% mug

Is it THAT difficult?



Challenges

Viewpoint variation Scale variation
o

Deformation Occlusion
. -

Background cluer Intra-class variation

T2

@ invariant to the cross product of all these variations

@ retaining sensitivity to the inter-class variations




Data-driven approach

cat dog mug hat

R M 2 08 E o
4| lkcI il =28

o E NORARD
B IEE Camisl £ Ba®
il A S Y

We need a (large) training dataset of labeled images.




Pipeline for image classification

1. Training set: N images of K classes

dog mug hat

By W 210 el

2. Learning: training a classifier

3. Evaluation: against the ground truth

Sl E~B ERF 55




Nearest Neighbour Classifier
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Figure 1: CIFAR-10 dataset: 60k tiny images of 10 classes.

dog

The nearest neighbour classifier will take a test image, compare it
to every single one of the training images, and predict the label of
the closest training image.



Nearest Neighbour Classifier

test image
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Nearest Neighbour Classifier

test image training image
56 | 32|10 | 18 10 | 20 | 24 | 17
90 | 23 | 128|133 8 | 10 | 89 100
24 | 26 | 178|200 12 | 16 | 178 | 170
2 | 0 |255(|220 4 | 32 (233 112




Nearest Neighbour Classifier

pixel-wise absolute value differences

testimage training image
56 | 32 | 10 | 18 10 | 20 | 24 | 17 46 | 12 | 14 | 1
90 | 23 | 128|133 8 | 10 | 89 | 100 82 |13 |39 | 33
24 | 26 | 178|200 . 12 | 16 | 178|170 = 12|10 | 0 | 30
2 | 0 (255|220 4 |32 233|112 2 |32 | 2z 108

— 456



The choice of distance

L1 distance: di(f, k) =3 e IIf — 15

L2 distance: di (1, ) = \/Zp,xe/(/" 1Py

What's their accuracy?
What's human accuracy?
What's state-of-the-art neural networks’ accuracy?

Let's give it a try!



IUCN Red List of Threatened Species

LC: least concern EN: endangered




The challenge: predict whether a
species is endangered, vulnerable or of
least concern from genomic data.

15,

Ursus arctos marsicanus

Let's try it!



Nearest Neighbour Classifier

What went wrong when using this algorithm to predict the label

" conservation status” from population " genotype” data? Any
undesired behaviours? Any suggestions on how we can improve our
prediction accuracy?

Mentimeter live survey:



k-Nearest Neighbour Classifier

the data

Figure 2: An example of the difference between Nearest Neighbor and a
5-Nearest Neighbor classifier, using 2-dimensional points and 3 classes
(red, blue, green).

What value of k should we use? Which distance?



Hyperparameter tuning

The engineer says: " We should
try out many different values and
see what works best.”

Agree or disagree?




Validation test

The good engineer says:
"Evaluate on the test set only a
single time, at the very end.”

@ Split your training set into training set and a validation set.
@ Use validation set to tune all hyperparameters.

@ At the end run a single time on the test set and report
performance.



Data splits

| train data | test data |

v
[ fold1 | fold2 [ fold3 | fold4

fold 5 | testdata |

Figure 3: The training set is split into folds: 1-4 become the training set
while 5 is the validation set used to tune the hyperparameters.

Where is the Nearest Neighbour classifier spending most of its
(computational) time?



Wrap up

@ the problem of image classification: predicting labels for novel
test entries

training set vs testing set
a simple Nearest Neighbour classifier requires hyperparameters

validation set to tune hyperparameters

Nearest Neighbour classifier has low accuracy (distances based
on raw pixel values!) and is expensive at testing

Our aim: a solution which gives very high accuracy, discards the
training set once learning is complete, and evaluates a test image
in less than a millisecond!



Linear classification

New approach based on:
@ score function to map raw data to class scores

@ loss function to quantify the agreement between predicted
and true labels



Parameterised mapping from images to label
scores

Our aim is to define the score function that maps the pixel values
of an image to confidence scores for each class.

Assuming that:
N images, each with dimensionality D, and K distinct classes

x; € RP is image i-th with dimensions D and label y;, with
i=1.Nandy €l.K

then we define a score function: f : RP — RK



Linear classifier

Linear mapping: f(x;; W,b) = Wx; + b

W are called weights and b is the bias vector.

What are the dimensions of x;, W and b?



Linear classifier

Linear mapping: f(x;; W,b) = Wx; + b

W are called weights and b is the bias vector.

What are the dimensions of x;, W and b?
x; has size [D x 1]
W has size [K x D]
b has size [K x 1]



Linear classifier

stretch pixels into single column

02 |-05| 01 | 20 56 1.1 96.8
15 [ 13| 21 [ 00| |231 3.2 437.9
e 0 |025[02|-03| |24 1.2 61.95
w 2 b flai; W,b)
Ti

cat score

dog score

ship score



Interpreting a linear classifier (i)
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Interpreting a linear classifier (ii)
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Interpreting a linear classifier (iii)

Template (or prototype) matching.

plane car bird at deer dog frog horse ship truck




Bias trick

Our new score function:
f(xi; W) = Wx;

02 |-05][ 01|20 56 1.1 02 |-05[01 |20 11 56

15 | 13 |21 (00| |231| 4| 32| «— [[ 15| 13|21 |00 |32 231

0 |025] 02 |-03]-12 24

0 |025| 0.2 | -0.3 24 -1.2
w 2 b w b )
xi new, single W P

Zq



| oss function*®

To measure our "unhappiness” with predicted outcomes.

stretch pixels into single column

02 |-05| 01 | 20 cat score

1513 | 21 | 0.0 dog score

0 [025| 02 |-03

input image ship score

* sometimes called cost function or objective




Multiclass Support Vector Machine (SVM)

loss

The SVM loss is set so that the SVM "wants” the correct class for
each image to a have a higher score than the incorrect ones by
some fixed margin.

L = z max(0,s; — s, + )
J#Yi
Example:
s=[13,-7,11],y; = 0,0 = 10
L=




Multiclass Support Vector Machine (SVM)

loss

The SVM loss is set so that the SVM "wants” the correct class for
each image to a have a higher score than the incorrect ones by
some fixed margin.

L = z max(0,s; — s, + )
J#Yi
Example:
s=[13,-7,11],y; = 0,0 = 10
Li=28




Hinge loss

max(0, —) or max(0, —)?

scores for other classes

delta *

score for correct class

score



Regularisation

If W correctly classifies each sample, then all AW with A > 1 will
have zero loss.

Which W should we choose?



Regularisation

If W correctly classifies each sample, then all AW with A > 1 will
have zero loss.

Which W should we choose?

Our new multiclass SVM loss function is:
1 ) . 2
L=y ;[max(a f(xi; W)j— F(xi; W)y, +6)] sz: ZI: W2,
i jyi

including one data loss and one regularisation loss term AR(W),
specifically L2 penalty.




Softmax classifier

Generalisation of the binary logistic regression classifier to multiple
classes.

Cross-entropy loss function:

el
Li = —log(=—¢) (1)

.el
Je



SVM vs. Softmax classifier

hinge loss (SVM)

285
matrix multiply + bias offset max(0, -2.85-0.28 + 1) +
0.86 max(0, 0.86 - 0.28 + 1)
001 | -0.05 | 0.1 | 0.05 =
0.28 1.58

0.7 0.2 0.05 0.16

cross-entropy loss (Softmax)

0.0 |-045 | -0.2 | 0.03

0.016
normalize
0.631 | -log(0.353)
(to sum =
to one) 1.04
0.353




Wrap up

@ A score function maps image pixels to class scores (using a
linear function that depends on W and b).

@ Once we learning is done, we can discard the training data
and prediction is fast.

@ A loss function (e.g. SVM and Softmax) measures how
compatible a given set of parameters is with respect to the
ground truth labels in the training dataset.



Examples of using SVM to detect natural selection

Copyright © 2010 by the Genetics Society of America
DOI: 10,1534/ geneties.1 10116459

Searching for Footprints of Positive Selection in Whole-Genome SNP
Data From Nonequilibrium Populations

Pavlos Pavlidis,*' Jeffrey D. Jensen' and Wolfgang Stephan*

*Department of Biology 1, Ludwig-Maximilians-University Munich, 82152 Planegg, Germany and ' Program in Bioinformatics
and Integrative Biology, University of Massachuselts Medical School, Worcester, Massachuselts
Manuscript received March 9, 2010
Accepted for publication April 7, 2010



Examples of using SVM to detect natural selection

Learning Natural Selection from the Site
Frequency Spectrum

Roy Ronen,*' Nitin Udpa,* Eran Halperin,' and Vineet Bafna*

*Bioinformatics and Systems Biclogy Program, University of California, San Diego, California 92093, " The Blavatnik School of
Computer Science and Department of Molecular Microbiology and Biotechnology, Tel-Aviv University, Tel-Aviv 69978, lsrael-
International Computer Science Institute, Berkeley, California 94704, and *Department of Computer Science and Engineering,
University of California, San Diego, California 92093



Review

Trends in Genetics Cel

REVIEWS

Supervised Machine Learning for Population
Genetics: A New Paradigm

Daniel R. Schrider'* and Andrew D. Kern'*



Key components for classification tasks

@ score function
@ loss function

© optimisation

Optimisation is the process of finding the set of parameters W
that minimise the loss function L.



Visualising the loss function

If Wy random starting point, Wi random direction, then compute
L(Wp + aWh) for different values of a.

(averaged across all images, x;)



Optimisation

@ Random search
@ Random local search

@ Gradient descent (numerical or analytical)




Hyperparameters

Step size or learning rate

Batch size:

Compute the gradient over
batches (e.g. 32, 64, 128...) of
the training data.




Wrap up

regularization loss
| score function

The 3 elements: score function, loss function, optimisation.
Next: let's put them all together in a neural network.




Neurons
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Activation functions

It defines the firing rate

~10 5 " 5 10

Rectified Linear Unit (ReLU):
f(x) = max(0, x)

Sigmoid non-linearity squashes real
numbers to range between [0, 1]




Neural network architecture

Collection of neurons connected in an acyclic graph.
Last output layer represents class scores.

output layer
input layer
hidden layer

A 2-layer Neural Network
Size:



Neural network architecture

Collection of neurons connected in an acyclic graph.
Last output layer represents class scores.

QO
AT
SR
=\ . Ipu( layer

input layer
output layer hidden layer 1 hidden layer 2

input layer
R A 3-layer Neural Network

A 2-layer Neural Network Size:

Size: 4 + 2 = 6 neurons, [3 x 4] +
[4 x 2] = 20 weights and 4 +2 =16
biases, for a total of 26 learnable
parameters.



Neural network architecture

Collection of neurons connected in an acyclic graph.
Last output layer represents class scores.

output layer
input layer
hidden layer
A 2-layer Neural Network
Size: 4 + 2 = 6 neurons, [3 x 4] +
[4 x 2] = 20 weights and 4 + 2 =6
biases, for a total of 26 learnable
parameters.

input layer

hidden layer 1 hidden layer 2

A 3-layer Neural Network
Size: 4 + 4 + 1 = 9 neurons, [3 x
4 + [4x4]+[4x1]=12+16 +
4 = 32 weightsand 4 +4+4+1=09

biases, for a total of 41 learnable
parameters.



Representational power

Given any continuous function f(x) and some € > 0, there exists a
Neural Network g(x; W) with one hidden layer (with a reasonable
choice of non-linearity, e.g. sigmoid) such that for all x,

[ f(x) —8(x) I<e

In other words, the neural network can approximate any continuous
function.

In practice, more layers work better...



Setting up the architecture

3 hidden neurons 6 hidden neurons 20 hidden neurons

Capacity vs. 7




Setting up the architecture

3 hidden neurons 6 hidden neurons 20 hidden neurons

Capacity vs. 7 Overfitting
We aim at a better generalisation.




Setting up the data

Data preprocessing:
@ mean subtraction
@ normalisation
e PCA and Whitening



Setting up the model

Weight initialisation:
@ all zero
@ small random numbers
@ calibrate the variances

@ sparse



Setting up the model

Regularization

A =0.001 A=0.01 A=0.1

Options: L2, L1, maxnorm and dropout.




Dropout

(b) After applying dropout.

(a) Standard Neural Net

Dropout can be interpreted as sampling a Neural Network within

the full Neural Network, and only updating the parameters of the

sampled network based on the input data.



Setting up the model

Loss functions:
SVM (hinge loss)

cross-entropy

°

@ hierarchical softmax
@ attribute classification
°

regression (?)



Setting up the learning

loss

low learning rate

high learning rate

good learning rate

2=

loss decay

epoch

effects of different learning rates



Setting up the learning

Training vs. validation accuracy

- Lon
accuracy training accurac

validation accuracy
little overfitting

validation accuracy: strong overfitting

epoch



Wrap up

@ Neural Networs are made of layers of neurons/units with
activation functions

@ Choice of the architecture: capacity vs overfitting

@ Preprocessing of the data and choice of hyperparameters for
the model and learning



ANNSs to detect natural selection
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ANNSs to detect natural selection

Deciphering signatures of natural

selection via deep learning

Xinghu Qin', Charleston W. K. Chiang?, Oscar E. Gaggiotti'

! Centre for Biological Diversity, Sir Harold Mitchell Building, University of St Andrews,

Fife, KY16 9TF, UK



What about images or highly-dimensional data (like images)? Can
we use neural networks straight from individual data points?
What's the issue?



Intended Learning Outcomes

At the end of this session, you are now able to:

@ Describe the three key components of a classifier: score
function, loss function, optimisation

o Identify the elements of a neural networks, including neurons
and hyper-parameters

@ lllustrate the layers in a neural network

@ Demonstrate how to implement, train and evaluate neural
networks in python



Practical
The case of LCT gene and lactase persistance

(https://en.wikipedia.org/wiki/Lactase_persistence)

Task: to predict positive selection at LCT locus in European
populations using deep learning in python.


https://en.wikipedia.org/wiki/Lactase_persistence
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Outline

Machine Learning: basic concepts and terminology

ML, application to popgen ; neural networks

|. From ABC to deep learning for population genetics
ll. Learning directly from SNP data with neural networks

lll. Dissecting two published networks for effective population size
inference

[\VV. Opening on applications of unsupervized deep learning to popgen

V. Tonight’s hands-on: building/training/re-using DNNs for population
genetics (demography/selection) inference with dnadna



Approximate Bayesian Computation:

likelihood free inference based on simulations

* Data summarized by handcrafted summary statistics

* Real and simulated summary statistics are compared

* The comparison informed on the likely demographic scenario

* Application to demography: Boitard et al 2016 , Jay et al 2019 and many other works

Linkage Disequilibrium

Site Frequency Spectrum
Genetic dataset D
LACGTTAGTGATTTTG

A —> Identity By State
SUMMARY —_— ABC

LACTTTACTGATTATGA..
CACTTTAGTGATTATGA.., Distribution Between

Segregating Sites

ad-hoc / expert/
handcrafted
sumstats

Here and in all DL methods presented afterwards training is based on large datasets
of simulated data with labels (i.e. for which we know the evolutionary parameters)




Deep learning on summary statistics (+ABC)

® Generally fully connected net / multilayer perceptron (MLP), e.g.:

B selection and demo inference, Sheehan and Song 2016 (no ABC)

B Model selection+inference (archaic admixture models), Mondal et al. 2019 (with ABC)

® Those were inspired by Jiang et al 2017 (MLP)

but see as well Creel 2017 (MLP), Raynal et al. 2017 (random forest), Fernhead and Prangle 2012 (posterior mean as s(.))

Genefic dataset D

CACGTTAGTGATTTTGAL

CACTTTACTGATTATGAL

CACTTTAGTGATTATGAL

SUMMARY

ad-hoc / expert/
handcrafted
sumstats

Linkage Disequilibrium

Site Frequency Spectrum

Identity By State

Distribution Between

Segregating Sites

param 1

param 2

— (DNN — [LABC ]

param p

semi automatic
sumstats
(posterior mean)



Deep learning on summary statistics

® Generally fully connected net / multilayer perceptron (MLP), e.g.:

B Selection and demo inference, Sheehan and Song 2016 (no ABC)

B Model selection+inference (archaic admixture models), Mondal et al. 2019 (with ABC)

Mondal et al. 2019 :
ABC [ MLP (joint SFS) ]

2 models selected among 8 models + parameter estimation

-> third archaic introgression in Asia and Oceania from

Neandertal-Denisova clade or from Denisova related lineage

(early divergence)

Ancestors of modern humans, Neandertal and Denisova

1475 KYA . 1452 KYA
o I
531 KYA ceclitty
320 KYA IN-D 314 KYA IN-D
300 KYA | Xa
ZTOKYA |Xe
a0 K¥A [00A 121 KYA |ODA
I |
mmnlea SBK\'AIEA
I |
Present-day  Archaics Present-day Archaics
humans Neandertal+ humans Neandertal+

Denisova Denisova



Reminder: you could bypass summary statistics

From summary statistics (handcrafted features):

Hidden
Ex1 Input

x1=Height ° .
" .‘ . Prob(image is a cat)
x2=Nb legs ‘
s .

Output

. Prob(image is a bird)
Xn=Hair °



Reminder: you could bypass summary statistics

Pixel n

o
"

e Internal layer(s) . learn an hidden representation
from the data (ie learn how to encode the data)

>
NOT handcrafted features!



Outline

Machine Learning: basic concepts and terminology

ML, application to popgen ; neural networks

|. From ABC to deep learning for population genetics
ll. Learning directly from SNP data with neural networks

lll. Dissecting two published networks for effective population size
inference

[\VV. Opening on applications of unsupervized deep learning to popgen

V. Tonight’s hands-on: building/training/re-using DNNs for population
genetics (demography/selection) inference with dnadna



Deep learning on "raw" genetic data

® Process directly the genetic data to bypass handcrafted features
® Often convolution neural networks (CNN)

® |nspired by Jiang et al 2017 but previous works in popgen skip the ABC step

param 1
Genetic dataset D
LACGTTAGTGATTTTG param 2
A.. —_— DNN — ABC

LACTTTACTGATTATGA..

LACTTTAGTGATTATGA.. opn'onal
param p
automatic
sumstats

(e.g. DNN tries to predict N1, ... Np etc) and these are used later as automatic summary
statistics (or automatic features) processed by ABC



DL - learning hierachical representations

Deep Learning (DL) = deep neural networks = nnet with multiple layers

Deep Neural Netwaork

Output Layer



DL - learning hierachical representations

e Ableto learn a hierarchy of representations with increasing level of
abstraction

Eg. for image :
pixel = edge = motif = part = full object = combination (eg landscape, scene)

Eg. for text :
letter = word = word group -> sentence = story

e A layer = trainable function that transforms input into features at a certain
hierarchy level

10



Deep learning on "raw" genetic data

- Convolution networks work well for computer vision

o C3: f. maps 16@10x10
: leature maps. 54:1. maps 16@5x5
Hose DB S2:1. maps N cs:|
+y layer pe. TPUT
6@14x14 Wiz FSlayer QUTPU

5 1st neuron
: ’ Fully Connected NN

Convolutions

Full connection

Subsampling Convolutions  Subsampling

Gaussian connections
Full connection

Lecun et al.

1998
- Already used on DNA sequences:

Current batch

Motif scans Features
of inputs

=

Motif
detectors

TTAGGGGCACCAGTACT)
TAGCACCTCTATTGCACCC
CTCGGGGCCCTGCAT
TACAAATGAGCACAR

Thresholds

Current model kY
parameters | : :

Parameter
updates

i

g {zmm.  Alipanahi et al.
2015



DL - convolution

e Why using convolution networks? (convnet)

Fully connected :

— huge number of parameters
to learn (each edge
correspond to a weight)

Convnet

locally connected

— smaller number of
parameters to learn

© Yann LeCun
12



DL - convolution

e Why using convolution networks? (convnet)

i I A

<4
.l...l.uww

2]
T2l
12[
i

Input image
¥ Discrete convolution
l..
mask
: '-'1' 0™ Output of
Mt~ ——T _ convolution
EI [ H' — |- -?
r 3 5 __,—'—'_'_“
L e ?
1=1+ 3 ?__ R
20+ | "
1=0+ 3 5 T__;
2x1=3 L

Convnet

locally connected

— smaller number of
parameters to learn

© Yann LeCun
13



Convolution operation

« Convolution with padding and stride=1 — no dimension reduction

Kernel
0 | 60 [113 | 56 | 139 | 85 0 0 -1 0 114 | 328 | -26 | 470 | 158
0 73 (121 | 54 84 | 128 0 -1 5 -1 53 | 266 | -61 | -30 | 344
0 |131| 99 | 70 (129|127 | O 0 -1 0 403 | 116 | -47 | 295 | 244
0 134 0 108 |-135 | 256 |-128 | 344
0 130 [ O 314 .
0 0 0

 No padding and/or stride > 1 — dimension reduction

Kernel
60 (113 | 56 | 139 | 85 0 -1 0
73 | 121 | 54 | 84 | 128 -1 5 -1 266 | 61 | -30
131 | 99 70 | 129 | 127 0 -1 0 116 | 47 | 295
69 | 134 -135 | 256 |-128
95 | 130




Exercise

Computer by hand a convolution operation (see below)

Compute the number of parameters (how does it sacle with input size)

Design a 3x3 filter (with fixed weights) that could detect horizontal edges
(detect a pattern ~ maximal activation for this pattern)

Input data

01100
11010
10001

Convolutional
operation (with Output ?
fixed weights)

05 -1 2
-1 05 3

15



Exercise

Computer by hand a convolution operation (see below)
Compute the number of parameters

Design a 3x3 filter (with fixed weights) that could detect horizontal edges
(detect a pattern ~ maximal activation for this pattern)

Convolutional

Input data operation (with Output ?
fixed weights)
01100 1.5
“lo1olto 05 -1 2 %
\;‘ 10001 -1 05 3

0%0.5 + 1*(-1)+1*2
+0*(-1)+1*0.5+0*3




Exercise

Computer by hand a convolution operation (see below)

Compute the number of parameters

Design a 3x3 filter (with fixed weights) that could detect horizontal edges
(detect a pattern ~ maximal activation for this pattern)

Input data

011
010010
1000 1

Convolutional
operation (with Output
fixed weights)

05 -1 2 1.5 25 1
-1 05 3 2 25 2

— ‘

17



Exercise

Computer by hand a convolution operation (see below)
Compute the number of parameters

Design a 3x3 filter (with fixed weights) that could detect horizontal edges
(detect a pattern ~ maximal activation for this pattern)

Convolutional

Input data operation (with Output Output of max
fixed weights) pool operation

01100

01010 05 -1 2 1.5 25 1 o5

1000 1 -1 05 3 2 25 2 '

18



Exercise

« Computer by hand a convolution operation (see below)
« Compute the number of parameters

» Design a 3x3 filter (with fixed weights) that could detect horizontal edges
(detect a pattern ~ maximal activation for this pattern)

OR applying a
Convolutional RELU activation Output
Input data operation (with Output and another conv
fixed weights) filter (e.g. 2x2)
01100
01010 05 1 2 1.5 25 1 1.5 2.5 |1
10001 -1 05 3 -2 25 2 0 25 |2

another conv filter
with fixed weigts

4 -0.1
-1.2 0.6

19



Exercise

Computer by hand a convolution operation (see below)
Compute the number of parameters

Design a 3x3 filter (with fixed weights) that could detect horizontal edges
(detect a pattern ~ maximal activation for this pattern)

Convolutional operation (with
fixed weights) detecting
horizontal edges

-1 -1 1
1 1 1
-1 -1 1




Reminder of steps for a simulation-based
supervised ML approaches

Define clearly your task

- Regression/classification of xXx ; score function, loss

- Define one or several models e.g. Constant size, Fluctuating size,
Fluctuating+selection

— Pick priors for the parameters of these models
e.g. Ne~U[0,100], selection coeff~N(0,10), ...

Randomly draw parameters

Simulate thousands/millions of such SNP matrices thanks to genetic
simulators (msprime, msms, slim, bactSLiMulator, ...) USing the random parameters

Design, train and evaluate a model directly on these matrices

Typical input for population genetics methods

Multiple Sequence Alignment m SNPs

ol
-

A4

w1111 0.,
00 I...

LACIGTTAGITGATTTIT GA..
LACTTTAICTGATTIANGA..

n haplotypes

1 0...

m relative Q12
positions

CACITTTAIGTGATTIATGA..,




DNN on "raw" data in popgen: SNPs (and distance) matrix

- Detection of recombination hotspot, exchangeable CNN net

SNPs Additional Permutation- B
and Conv + Invariant Flatten Additional
Distances Conv , - Relu ; Function +FC FC
] : | + i T 1 Filters 1 Layers
Row Sample : ReLU L » [ 1
Exchangeable | Size \L : I = — . 0.
A e
Chan et al. 2018 5
ét}ﬂ‘:fﬂ

- Inference of introgression, selection, recombination rate and
population size histories with 5 parameters (3-step history), CNNs

b Recent migration

Flattened output ﬁ

First 2D First pooling Second 2D Second i
B convolution _step convolution  pooling step

@
(5]
L /'
r .-: I

28 A ] | - Second branch: 4"; connected Migrant [
L1 posttions of NN layer + output haplotype

from pooling step

Input image
!

--------

polymorphisms N — N
and first fully Recombination/\
connected layer
s
=
Flagel et al. 2019

Nature Reviews | Genetics




DNN on "raw" data in popgen: SNPs (and distance) matrix

- Predicting selection (under fixed demography), CNN

Trained on 3-epoch model

|

5] -, LI T 0.014  0.003

T [ [l Ly 2
| e s f..§J,_*' CNN . Torada et al.
- .:'4- ~.:'-'. l ;[l'}}';'-: > EE 200 2019
il T 5

e it 3 related: Isildak et al bioRxiv (balancing

el e T § P & apo4 0.016 0.209 3 i
S R " selection vs incomplete sweep),
1] 50 100

0 200 400
Predicted

- Inference of recombination with recurrent networks (RNN)

A
1. 20=07 4
E = Dyl 2L
g = ReLERNN
';' 8.0a-08
E "= 1= ]
 &.00-08 MAE =3.720-00
B
2 3.0e0-08 r
: Adrion et al.
T 000400 i

o -] L] 15 ZU I 2020

Chromosome position (Mb)



DNN on "raw" data in popgen: SNPs (and distance) matrix

- Predicting fluctuating population size (21 steps), exchangeable CNN
Comparison and combination with ABC

ANN (MLP, CNN,
SPIDNA)

—P'| Predictions —W Predictions

Demagraphic o
Histories

Prior P T - i . ABC‘*'—HPredictions
andom msprime
(b, N2,y N1)Lbraws [ Ne ¥ .. lsimitator| >
R "' ' SNP Distances Summary Statistics
g b _| o ={ABC2 |—D-|Predictions
=
. 3 Ham . -
Time ) 12 n dist
g | w4 » MLP | —»]{Predictions
I+ LU h e
12 dist
Decline Expansion
10°
104
Sanchez et al.
10° 2020
102

Tective population size {log scale)



DNN on "raw" data in popgen: SNPs (and distance) matrix

CNN

“Coalescent-based species

delimitation meets deep learning:
Insights from a highly fragmented
cactus system.” Perez et al 2021

0.0% 1.8% 0.0% 0.0% 10.6% 0.0%

82.4% 0.0% 0.9% 0.5% 0.0% 16.0%
0.0% 0.0% 99.8% 0.2% 0.0% 0.0% 0.0%

IT'r";-.
0.2%

———

Lumper+M Lumper Splitter+M Splitter

" _
w

®

% 00% 01%  46% MMOXUM 23% 00%  0.1%
@ 2

©

=

Eq - 00% 01%  00% 01% MRCROM 00%  01%
NEo

4.8% 0.0% 1.8% 0.0% 0.0%

BPP

BPP
noGDI+M noGDI

0.0% 2.2% 0.2% 1.6% 0.4%

BPP  BPP  BPP

Splitter Splitter+M Lumper Lumper+M GDI GeRpl ainRie

Predicted Class

To keep going: the introduction of Sanchez*, Bray*, et al (preprint) lists many more papers on DNN for popgen

Sanchez*, Bray*, et al (preprint) https://hal.archives-ouvertes.fr/hal-03352910v2
“Dnadna: Deep Neural Architecture for DNA - A deep learning framework for population genetic inference”


https://hal.archives-ouvertes.fr/hal-03352910v2

Outline

Machine Learning: basic concepts and terminology

ML, application to popgen ; neural networks

|. From ABC to deep learning for population genetics
ll. Learning directly from SNP data with neural networks

lll. Dissecting two published networks for effective population size
inference

[\VV. Opening on applications of unsupervized deep learning to popgen

V. Tonight’s hands-on: building/training/re-using DNNs for population
genetics (demography/selection) inference with dnadna

26



4

A

n haplotypes

m relative 9612
positions

Exercice: define the task and loss for a net that could inform you whether there
was a strong decline of effective population size

What's my model(s)? What are the parameters? Regression or classification task?
--> |oss?



Exercice: define the task and loss for a net that could inform you whether there
was a strong decline of effective population size

What’'s my model(s)? What are the parameters? Regression or classification task?

--> |oss? )
Inferred demographic model parameters ¢
m SNPs
E: 101110... g
g 1 l... 5
=
m relative S 062 T
positions
m SNPs
% ~F0I V10
s ] bor — » Decline? OR Expansion?
2 10...
=
m relative . I6H 2T

positions




Dissecting a NN architecture

 Flagel et al. 2019 network

Flattened output

First 2D First pﬂoling Second 2D Second from p.oﬂ"ng step
B mnvolutlon step mnunlutlon pooling step
Input image =
s rse” . I
.. 5990‘?;_’ b’a“;ﬁ“ Fully connected
positions o
L colymarphisme NN layer + output
and first fully
connected layer

n haplotypes




How ?

1
1
) §
1

Input image
pixels

wpy

.;'-.j.“] 4 -

L mask
0n |

N

'
e

.,,
b

0 -
. 0[20

11+
2x0+4
1x0+
2x1=3 —

u\ w \u Ill".-




Convolution operation

« Convolution with padding and stride=1 — no dimension reduction

Kernel
0 | 60 [113 | 56 | 139 | 85 0 0 -1 0 114 | 328 | -26 | 470 | 158
0 73 (121 | 54 84 | 128 0 -1 5 -1 53 | 266 | -61 | -30 | 344
0 |131| 99 | 70 (129|127 | O 0 -1 0 403 | 116 | -47 | 295 | 244
0 134 0 108 |-135 | 256 |-128 | 344
0 130 [ O 314 .
0 0 0

 No padding and/or stride > 1 — dimension reduction

Kernel
60 (113 | 56 | 139 | 85 0 -1 0
73 | 121 | 54 | 84 | 128 -1 5 -1 266 | 61 | -30
131 | 99 70 | 129 | 127 0 -1 0 116 | 47 | 295
69 | 134 -135 | 256 |-128
95 | 130




Pooling operation

* Pooling (max, average, sum pooling)
-> reducing dimension without additional parameter to learn

Single depth slice

| WU ON
max pool with 2x2 filters
51 B | 7 | 8 and stride 2
32010 ]
112 3| 4
:

https://medium.com/@RaghavPrabhu



Why a 2D convolution ?

First 2D First pooling Secon
B convnlutlnn step . convol

Flagel et al. 2019




Why a 2D convolution ?

First 2D First pooling Secon
B convolution step convol
>

Flagel et al. 2019

. e )

Hidden Layer 1 Hidden Layer 2 Hidden Layer 3

But popgen data is different
H EE S

combinations of edges object models
Y LeCun




Chromosomes

How to be invariant ?

n haplotypes

e Solution 1: specify an order
ex: individual similarity (rows) e 5976127..
SNP similarity (columns) Rosiane

Torada et al.
2019

A unsorted B sorted by row

b T

25 '- :‘ o |I||l|||| II'I |l'llll 'l
Flagel et al. 2018 o oty gV
Haplotype 5 N A N Y
R III'..-:Tllll el Wy "J."I‘,:.A.
754 .. 1o T EOXNEY .
1004 i
1254 N

R 1
25 7 ot
Segregating Sites 50 | =& e
Haplotype R
75 == ik
1001 - - i
125 =2 Lttt
0 50 100

Position Position



How to be invariant ?

n haplotypes

m relative a2 7.

positions

* Solution 2: data augmentation: apply transformation(s) to the

input data that should not affect its label.
Ex. in some tasks of computer vision: rotating images

Exercice: give examples of data augmentation relevant for
population genomics



How to be invariant ?

n haplotypes

m relative a2 7.

positions

* Solution 3: encode invariance in the network (permutation-
invariant network, exchangeable network) (e.g. Chan et al.
2018, Wiqvist et al. 2019, Sanchez et al 2020)



Adapt the network to the data features

- Invariant to the permutation of rows

Equivariant function Invariant function

P(x:) Plz)

——

Exercice: give an example of invariant operation



Adapt the network to the data features

- Invariant to the permutation of rows

Equivariant function Invariant function

Stacking invariant and equivariant layers covers the full space of
permutation invariant function (Zaheer et al. 2017,Lucas et al. 2018)

S ;)
- I
Eaee——)

-p;x:)
- D —S e
]

S— 'z
EEe et




Adapt the network to the data features

- Each block of SPIDNA defines an equivariant function

Sanchez et al 2020

e qul"Ck(:;ci) N

1 x 3, 50 filters

|
I




M haplotypes

Our Neural Network Architecture: SPIDNA

Sequence Position Informed Deep Neural Architecture

1 x 3,50 fitters Al

e [nvariant to haplotype permutation
e Adaptive to the number of SNPs

5 SNPs —f_% A3 B
— ] EI‘{PﬁEfl:umﬁ Ad
.. e
1% bl | SNP distances
featbumes
S SNP distances '« 3 sofkers A2 SPIDMA block *7
' network outputs
L 1 — "
C2
~ MB
1 = 3, 50 filters e —
B4 BS
[ﬂwﬁhﬁm"l —%—h Features fimm Bl pb| | Features from Bl
comvobition y oonvolution maxpaol
Bl § *

mean | B3

i
| fully-connected layer | B

Cl1

L ]

W2 .



Final note on DL applied to population genetics

 Still a recent “combo” (2016 for DL on summary statistics, 2018 for DL on raw
population genetic data) -> space for creativity and new proposals!

« Remember some important rules in stat/ML/DL.:

* Think properly about your task, statistical model, evaluation scheme/metrics
« Watch out for overfitting, use train/validation sets
 Compare to previously published methods

- Choose or explore hyperparameter space for each approach (grid
search, Bayesian hyperoptimisation, ...) based on validation set

Final comparison on an independent test set

» Evaluate method robustness to data corruption, model misspecification, ...
Particularly relevant for simulation-based inference approaches where simulators and
simulation scenarios have underlying assumptions that can be violated in th real life.

* You might gain in accuracy but loose in explainability/interpretability (ex: CNN versus
a previous approach based on SFS). Improving interpretability is actively studied in
DL field.



Robustness?

- Eg to selection while predicting demography or vice versa
Sanchez et al. 2020, Torada et al 2019.

- To data damage, ...

Same care should be taken for all model-based inference models (even without
simulations, such as PSMC, dadi etc.)

+ Additional unknown regarding what the NN is using



Interpreation”?

Examples
- Sheehan and Song 2016. Pinpoint summary statistics used by the NN for a
prediction
- Gower et al. 2021 Pinpoint parts of an image used for predicting adaptive
introgression

Dream goal? And what about demography?

— »  “Water Bird”

HOOM

[ololom

[Tl

Can we have such a clear signal?
Active area of research in the machine/deep leaning community



Deep learning hyper-parameters (HP)

« You still have to make decisions about (1) your achitecture (#layers, #nodes
per layer, layer type,...) ; (2) the algorithm/optimization hyper-parameters

e Usually done by training numerous networks with numerous HP and
keeping the one performing the best. Can be done in a smart way with e.g.
bayesian HP optimization. Automatic Deep Learning : active area of research

Just a taste of some NN
algo hyper-parameters

Table 2. Central parameters of a neural network and recommended

settings.
Mame Range Default value
Learning rate 01, 0,01, Q001, 0.01

Cu0o0o1
Batch size g4, 128, 256 128
Momentum rate 08, 0.9, 055 k)

Weight initialization

Wormal, Uniform,
Glorot uniform

Glorot uniform

Per-parameter adaptive RMSprop, Adagrad, Adam

learning rate methods Adadelta, Adam

Batch normalization ¥es, no Yes

Learning rate decay Mone, linear, Linear {rate 0.5)
exponential

Activation function Sigmoid, Tanh, Rell, Rell
Softmax

Dropout rate 01, 0.25 05 075 0.5

L1, L2 regularization 0, 007, 0.001

46



Outline

Machine Learning: basic concepts and terminology

ML, application to popgen ; neural networks

|. From ABC to deep learning for population genetics
ll. Learning directly from SNP data with neural networks

lll. Dissecting two published networks for effective population size
inference

IV. Opening on applications of unsupervized deep learning to
popgen

V. Tonight's hands-on: building/training/re-using DNNs for population
genetics (demography/selection) inference with dnadna
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Unsupervised / Supervised Tasks

Learning something from data

Either unsupervised (no labels) or supervised (discrete or continuous labels)

49



Unsupervised learning

Learning something from data without labels

Unsupervised = discovering patterns in data without prior knowledge
You do NOT have labels, or you do NOT use them

Exercice: Give examples of unsupervised tasks in population genetics

50



Unsupervised learning

Unsupervised = discovering patterns in data without prior knowledge
You do NOT have labels, or you do NOT use them

- Dimension reduction methods, e.g. PCA, Matrix factorization
- Clustering algorithms, e.g. K-means, hierarchical clustering, ...
- Outlier detection (can be then used for filtering, ..)

51



Unsu pervised Iearning examples (not only deep neural nets here)

- Dimension reduction methods, e.g. PCA, Matrix factorization
- Clustering algorithms, e.g. K-means, hierarchical clustering, SNMF ...
- Outlier detection (can be then used for filtering, ..)

B 1
L

PCA to reduce high dimensional genotype data for human populations

The 1st axis (ie the linear combination of markers) explains the largest part of the variance among
samples. The 2nd axis explains the largest part of the remaining variance, and so on..

Novembre et al 2008

52



Neural networks for unsupervized tasks

(i) reconstructing oneself after a strong reduction in dimension

: I____®____| Vr“‘@““l
AAA AL NS
@@@W Convolutional Autoencoder (AE)
Ausmees et al 2021
7575 2 75 75
Ly L L _\,4 L L) L L]
conv conv conv maxpool conv conv upsample conv conv conv conv
8 8 8 2 8 fully-connected layers 8 2 9 9 8 i
| | J
encoder decoder
Encoder Decoder

T Battey et al 2021

KL-divergence(u,o)

1 L_h
1 ] olo ] 0 /
1]010J0]1]0

™ reconstruction loss

E Latent Space E

E _./\/__\\-5 E ° °

= | Mo = Variational Autoencoder (VAE)
] \ =

’ ‘_»
/L;

KL-divergence(u,o) + reconstruction loss = VAE loss



Non-linear dimension reduction based on neural networks
for visualizing genetic data

Yelmen et al. 2021
restricted Boltzman machine
RBM

RBM - model 1kNvBOSNh100RELUILe-d_itr800.h5 - hidden space

-1

-2

-3 -2 -1 0 1 2 3

RBM - model 1kNvBOSNh10ORELUILe-4_itr800.h5 - hidden space

P

15 } ;j"__!w
e

-4 -3 -2 -1 Q L
3

REM - mode|_1kNvBOSNh10ORELUIrLe-4_itr800.h5 - hidden space

LA I

SUPEIRSR
African
American
East Aslan
European
South Asian
-1

-4

5

4

B
SUpEIpog
Afrlcan
American
East Asian
Europran
Sauth Asian

Ausmees & Nettelblad 2022 convolutional autoencoders

GCAE

100

02
9 00
300
400
500
60 -100

Battey et al. 2021 - variational autoencoders (VAE)

VAE
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Generative models (unsupervised learning)

Data with no label
Goal Generate samples having the same distribution as the data

Training data ~ p__ (X) Generated samples ~p___ (X)
(distribution unknown)




Neural networks for unsupervized tasks
(i) generating realistic genomes that do not belong to a real individual

bjhidden Probabilistic model of the joint distribution of v and h

| P(v,h) = e ®0M 12
Hidden layer h Z: partition function

E(v,h) = >  Wyw;h, + bias terms
Weights W g

Restricted Boltzman Machine (RBM)

OO0Q O O Homiii

visible
ci

Real haplotype

f00001010.. 0 0 0 0 o0

Generator Discriminator
d
_ 5 Generative Adversarial
5 g Networks (GAN)
S o 1T » . Yelmen et al 2021
53 Fake >] > ngel?
§ 1 haplotype orear:

001010001




Unsupervised learning for generating realistic genomes

- Generative models (can also be used for dimension reduction and

exploring latent space) Yelmen et al 2021 (GAN and RBM neural networks) ; Battey et al 2021
(VAE) ; Ausmees et al 2021

|ooo1o1o... 0 0 0 0 o|
N Iooo1o1o... 0 0 0 0 ol
Trai d t ) o001010. 0 0 0 0 0
rained generator £
~ m o 0000110 . w0 0 0 0 0
i [
s c 0001010 "o o 0o o o
o
O) o100010. o o o 0 O
| ® 0000110 . o 0o 0o o0 o0
O 0000110 . o o o0 0 o0
=
sssss b 0100010 . o 0o 0o 0 0
"""" . < 0000110. 0 0 0 0 0
4 HGO00% A 0 0001010 o 0 0 0 0 IOOO]D]D 0 0 0 0 OI
HGO00096B 0 0 0 0 1 0 1 0 .. o 0o 0 0o o =
HGO007A 00001010.. 0 0 0 0 0 |0001D1D.. 0 0 0 0 OI
HG000S7 B 1 0 0 0 0 1 1 0 0 0 0 o [ (’)
@ 0001010 . 0o o o 0 o0
HGO0099. A 0 0 0 0 1 0 1 0 .. 0 0 0 0 0
HGO0099B 0 0 100 0 1 0 o 0o 0o o o E 0000110 . 0 0 0 0 0
HGO0100A 1 0 0 0 0 1 1 0 .. 0 0 0 0 0 o
HG00100B 1 0 0 0 0 1 1 0 o 0 o 0 0 — C 0001010 . 0 0 0 0 0
HGO0101.A 0 0 1 0 0 0 1 0 0 0 [ 0 0 _— Q) 0 1 0 0 0 1 0 . 0 o 0 0 0
HG00101 B 1 0 0 0 0 1 1 0 .. 0 0 o 0 0 o)
— 0000110 . 0o 0o o 0 o0
©
[ 0000110 . 0 o o o0 o0
o 0100010 . 0o 0o o0 0 0
0000110 . 6 o o 0 o0
Real Bernoulli Markov_w10
64 & [ B
44 "] 4 4 q
24 2 24 2
o . . .
. 2 e 20 s
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-50 =25 0.0 25 50 7.5 10.0 -50 -5 00 5 50 75 100 -50 =15 0.0 25 50 15 100 -50 -25 00 25 50 75 100 -5.0 =25 00 5 50 7.5 100
FC1 PC1L PC1 PC1 PC1

Yelmen et al 2021



Allele LD LD
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Outline

Machine Learning: basic concepts and terminology

ML, application to popgen ; neural networks

|. From ABC to deep learning for population genetics
ll. Learning directly from SNP data with neural networks

lll. Dissecting two published networks for effective population size
inference

[\VV. Opening on applications of unsupervized deep learning to popgen

V. Tonight’s hands-on: building/training/re-using DNNs for
population genetics (demography/selection) inference with
dnadna

60



Population size

Task of the tutorial

Population size history Genetic dataset D Inferred demographic model parameters ]

~ 6.2 - 10° base pairs
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DNADNA: Deep neural architectures for DNA,
a toolbox for population genetics inference
Théophile Sanchez*, EM Bray*, Pierre Jobic, Jerémy Guez, Guillaume Charpiat, Jean Cury*, Flora Jay*

dnadna: a command-line tool for your DL-popgen pipeline https: //gitlab.com/mlgenetics/dnadna ﬁ Python-based package

+ High level interface

, A + extendable YAML-based
- - e config format
plugin Tram plugin
A — 00010101 — > Ne
e —_— 10010010 Valldanon
01001101 Filter out ! Test '
______ —

S — Time

Time

{

Simulations Genetic Data Preprocessing Training Prediction
msprime, SLiM, ... SNP, TreeSequence, ... pyTorch regression
dnadna simulation dnadna preprocess dnadna train dnadna predict

* Reproductibility + sharing more easily networks within/ouside your lab
* Designing networks or training an already designed network on your training
set/task

* Predicting evolutionary history for your data using a pretrained network

* Being flexible with proper test, continuous integration, documentation
Beta version — feedback welcome!

https://hal.archives-ouvertes.fr/hal-03352910v1


https://hal.archives-ouvertes.fr/hal-03352910v1

dnadna: a command-line tool for your DL-popgen pipeline https: //gitlab.com/mlgenetics/dnadna

# the simulation configuration

simulaticn:
inherit: model simlation_config.yml

Standard workflow: train a newly implemented network on Worssipilimer

existing simulations Example of a ype. regeession

log_transform: true

loss_func: MSE
event sizae:

type: regression

describes a previously

‘/— simulated training set tra i[li[lg

1/ dnadna preprocess Demo preprocessing config.yml log transform: trus

--datasat-config=Demo dataset config.yml c(}nﬁg ﬁle loss_func: MSE

OatWors:
name: mybat
params:
paraml: 3
—output data and results in different self-contained folder named run_xxx = ek §
. optimizer:
- Try new architecture name: Adam
params:
- Updﬁte h}-’pet‘paramcters learning _rate: O.00L
weight decay: 0.1

2/ dnadna train Demo training config.yml

3/ dnadna predict run xxx/Demo run xxx best net.pth Testset/*/*npz

plugins are embedded in the .pth file
to facilitate sharing and reusing

E Example of a network plugin

c from dnadna import nets
from terch.nn.functional import relu

Standard workflow: reuse a trained network on one's dataset

class myNet(nets.HNetwork):

1/ dnadna predict trained net.pth myData/*npz prepocessing def  init (paraml):

Contai timized weight ’/‘ A supar() .__init__{} Only change
ontains optimized weight, , ey i G
and all config parameters s Apply same prepocessing et 4 compared to

T e.g. filter out sequences with less 2 . I
; . ey def f d (x): using on
Used forAramung than X SNPs and N individuals o Sva—. i) s

Contains means and std to unstandardize prediction s pytorch
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