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Admixture and assortative mating



Machine learning (ML) in evolutionary
genomics

Morning session: introduction to

basic concepts in supervised ML (Matteo)

neural networks (Matteo)

deep learning (Flora)

unsupervised learning (Flora)

with examples from the literature.



Machine learning (ML) in evolutionary
genomics

Afternoon and evening sessions:

simple neural networks with keras and ImaGene (Matteo)

advanced architectures with pytorch (Flora)

scalable deep learning with dnadna (Flora)

with applications on detecting selection and inferring demographic
histories.



Machine learning for
population genetics

A (gentle and brief) introduction

Matteo Fumagalli



Intended Learning Outcomes

By the end of this very first part, you will be able to:

Provide a basic definition of machine learning

Illustrate the concepts of data, labels, and task

Describe the difference between unsupervised and supervised
learning



What is machine learning?

Data + Task: ? slide from Flora
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What is the data?

slide from Flora



What is the data?

slide from Flora



What is the learning task?

slide from Flora



What is the learning task?

slide from Flora



Unsupervised vs. Supervised Tasks

Learning something from data

Either unsupervised (no labels) or supervised (discrete or
continuous labels)

Can you think of examples of unsupervised and supervised tasks in
evolutionary genomics?
...



Supervised learning

(Flora will cover unsupervised learning later today)

slide from Flora



Intended Learning Outcomes

At the end of this very first part, you are now able to:

Provide a basic definition of machine learning

Illustrate the concepts of data, labels, and task

Describe the difference between unsupervised and supervised
learning



Intended Learning Outcomes

By the end of this session, you will be able to:

Describe the three key components of a classifier: score
function, loss function, optimisation

Identify the elements of a neural networks, including neurons
and hyper-parameters

Illustrate the layers in a neural network

Demonstrate how to implement, train and evaluate neural
networks in python



What do you see?



What does the computer see?

Is it THAT difficult?



Challenges

invariant to the cross product of all these variations

retaining sensitivity to the inter-class variations



Data-driven approach

We need a (large) training dataset of labeled images.



Pipeline for image classification

  

1. Training set: N images of K classes

3. Evaluation: against the ground truth

2. Learning: training a classifier



Nearest Neighbour Classifier

Figure 1: CIFAR-10 dataset: 60k tiny images of 10 classes.

The nearest neighbour classifier will take a test image, compare it
to every single one of the training images, and predict the label of

the closest training image.



Nearest Neighbour Classifier



Nearest Neighbour Classifier



Nearest Neighbour Classifier



The choice of distance

L1 distance: d1(I1, I2) =
∑

pixel |I
p
1 − I p2 |

L2 distance: d1(I1, I2) =
√∑

pixel(I
p
1 − I p2 )

2

What’s their accuracy?
What’s human accuracy?
What’s state-of-the-art neural networks’ accuracy?

Let’s give it a try!



IUCN Red List of Threatened Species

LC: least concern

VU: vulnerable

EN: endangered

CR: critically endangered



The challenge: predict whether a
species is endangered, vulnerable or of
least concern from genomic data.

Ursus arctos marsicanus

Let’s try it!



Nearest Neighbour Classifier

What went wrong when using this algorithm to predict the label
”conservation status” from population ”genotype” data? Any
undesired behaviours? Any suggestions on how we can improve our
prediction accuracy?

Mentimeter live survey:



k-Nearest Neighbour Classifier

Figure 2: An example of the difference between Nearest Neighbor and a
5-Nearest Neighbor classifier, using 2-dimensional points and 3 classes
(red, blue, green).

What value of k should we use? Which distance?



Hyperparameter tuning

The engineer says: ”We should
try out many different values and
see what works best.”

Agree or disagree?



Validation test

The good engineer says:
”Evaluate on the test set only a
single time, at the very end.”

Split your training set into training set and a validation set.

Use validation set to tune all hyperparameters.

At the end run a single time on the test set and report
performance.



Data splits

Figure 3: The training set is split into folds: 1-4 become the training set
while 5 is the validation set used to tune the hyperparameters.

Where is the Nearest Neighbour classifier spending most of its
(computational) time?



Wrap up

the problem of image classification: predicting labels for novel
test entries

training set vs testing set

a simple Nearest Neighbour classifier requires hyperparameters

validation set to tune hyperparameters

Nearest Neighbour classifier has low accuracy (distances based
on raw pixel values!) and is expensive at testing

Our aim: a solution which gives very high accuracy, discards the
training set once learning is complete, and evaluates a test image
in less than a millisecond!



Linear classification

New approach based on:

score function to map raw data to class scores

loss function to quantify the agreement between predicted
and true labels



Parameterised mapping from images to label
scores

Our aim is to define the score function that maps the pixel values
of an image to confidence scores for each class.

Assuming that:
N images, each with dimensionality D, and K distinct classes
xi ∈ RD is image i-th with dimensions D and label yi , with

i = 1...N and yi ∈ 1...K

then we define a score function: f : RD → RK



Linear classifier

Linear mapping: f (xi ;W , b) = Wxi + b

W are called weights and b is the bias vector.

What are the dimensions of xi , W and b?

xi has size [D x 1]
W has size [K x D]
b has size [K x 1]



Linear classifier

Linear mapping: f (xi ;W , b) = Wxi + b

W are called weights and b is the bias vector.

What are the dimensions of xi , W and b?
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Linear classifier



Interpreting a linear classifier (i)



Interpreting a linear classifier (ii)



Interpreting a linear classifier (iii)

Template (or prototype) matching.



Bias trick

Our new score function:
f (xi ;W ) = Wxi



Loss function*

To measure our ”unhappiness” with predicted outcomes.

* sometimes called cost function or objective



Multiclass Support Vector Machine (SVM)
loss

The SVM loss is set so that the SVM ”wants” the correct class for
each image to a have a higher score than the incorrect ones by
some fixed margin.

Li =
∑
j ̸=yi

max(0, sj − syi + δ)

Example:
s = [13,−7, 11],yi = 0,δ = 10
Li =

8



Multiclass Support Vector Machine (SVM)
loss

The SVM loss is set so that the SVM ”wants” the correct class for
each image to a have a higher score than the incorrect ones by
some fixed margin.
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∑
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Hinge loss

max(0,−) or max(0,−)2



Regularisation

If W correctly classifies each sample, then all λW with λ > 1 will
have zero loss.

Which W should we choose?

Our new multiclass SVM loss function is:

L =
1

N

∑
i

∑
j ̸=yi

[max(0, f (xi ;W )j − f (xi ;W )yi + δ)]+λ
∑
k

∑
l

W 2
k,l

including one data loss and one regularisation loss term λR(W ),
specifically L2 penalty.
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∑
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Softmax classifier

Generalisation of the binary logistic regression classifier to multiple
classes.

Cross-entropy loss function:

Li = − log(
efyi∑
j e

fj
) (1)



SVM vs. Softmax classifier



Wrap up

A score function maps image pixels to class scores (using a
linear function that depends on W and b).

Once we learning is done, we can discard the training data
and prediction is fast.

A loss function (e.g. SVM and Softmax) measures how
compatible a given set of parameters is with respect to the
ground truth labels in the training dataset.



Examples of using SVM to detect natural selection



Examples of using SVM to detect natural selection



Review



Key components for classification tasks

1 score function

2 loss function

3 optimisation

Optimisation is the process of finding the set of parameters W
that minimise the loss function L.



Visualising the loss function
If W0 random starting point, W1 random direction, then compute
L(W0 + aW1) for different values of a.

(averaged across all images, xi )



Optimisation

Random search

Random local search

Gradient descent (numerical or analytical)



Hyperparameters

Step size or learning rate

Batch size:
Compute the gradient over
batches (e.g. 32, 64, 128...) of
the training data.



Wrap up

The 3 elements: score function, loss function, optimisation.
Next: let’s put them all together in a neural network.



Neurons



Activation functions

It defines the firing rate

Sigmoid non-linearity squashes real
numbers to range between [0, 1]

Rectified Linear Unit (ReLU):
f (x) = max(0, x)



Neural network architecture
Collection of neurons connected in an acyclic graph.
Last output layer represents class scores.

A 2-layer Neural Network
Size:

4 + 2 = 6 neurons, [3 x 4] +
[4 x 2] = 20 weights and 4 + 2 = 6
biases, for a total of 26 learnable

parameters.

A 3-layer Neural Network
Size: 4 + 4 + 1 = 9 neurons, [3 x
4] + [4 x 4] + [4 x 1] = 12 + 16 +
4 = 32 weights and 4 + 4 + 1 = 9
biases, for a total of 41 learnable

parameters.
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A 2-layer Neural Network
Size: 4 + 2 = 6 neurons, [3 x 4] +
[4 x 2] = 20 weights and 4 + 2 = 6
biases, for a total of 26 learnable

parameters.

A 3-layer Neural Network
Size: 4 + 4 + 1 = 9 neurons, [3 x
4] + [4 x 4] + [4 x 1] = 12 + 16 +
4 = 32 weights and 4 + 4 + 1 = 9
biases, for a total of 41 learnable

parameters.



Representational power

Given any continuous function f (x) and some ϵ > 0, there exists a
Neural Network g(x ;W ) with one hidden layer (with a reasonable
choice of non-linearity, e.g. sigmoid) such that for all x ,
| f (x)− g(x) |< ϵ.

In other words, the neural network can approximate any continuous
function.

In practice, more layers work better...



Setting up the architecture

Capacity vs. ?

Overfitting
We aim at a better generalisation.



Setting up the architecture

Capacity vs. ? Overfitting
We aim at a better generalisation.



Setting up the data

Data preprocessing:

mean subtraction

normalisation

PCA and Whitening



Setting up the model

Weight initialisation:

all zero

small random numbers

calibrate the variances

sparse



Setting up the model

Regularization

Options: L2, L1, maxnorm and dropout.



Dropout

Dropout can be interpreted as sampling a Neural Network within
the full Neural Network, and only updating the parameters of the
sampled network based on the input data.



Setting up the model

Loss functions:

SVM (hinge loss)

cross-entropy

hierarchical softmax

attribute classification

regression (?)



Setting up the learning

effects of different learning rates
loss decay



Setting up the learning

Training vs. validation accuracy



Wrap up

Neural Networs are made of layers of neurons/units with
activation functions

Choice of the architecture: capacity vs overfitting

Preprocessing of the data and choice of hyperparameters for
the model and learning



ANNs to detect natural selection



ANNs to detect natural selection



What about images or highly-dimensional data (like images)? Can
we use neural networks straight from individual data points?
What’s the issue?



Intended Learning Outcomes

At the end of this session, you are now able to:

Describe the three key components of a classifier: score
function, loss function, optimisation

Identify the elements of a neural networks, including neurons
and hyper-parameters

Illustrate the layers in a neural network

Demonstrate how to implement, train and evaluate neural
networks in python



Practical
The case of LCT gene and lactase persistance
(https://en.wikipedia.org/wiki/Lactase_persistence)

Task: to predict positive selection at LCT locus in European
populations using deep learning in python.

https://en.wikipedia.org/wiki/Lactase_persistence
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Outline

Machine Learning: basic concepts and terminology

ML, application to popgen ; neural networks

I. From ABC to deep learning for population genetics

II. Learning directly from SNP data with neural networks

III. Dissecting two published networks for effective population size 
inference

IV. Opening on applications of unsupervized deep learning to popgen

V. Tonight’s hands-on: building/training/re-using DNNs for population 
genetics (demography/selection) inference with dnadna 



 Data summarized by handcrafted summary statistics
 Real and simulated summary statistics are compared 
 The comparison informed on the likely demographic scenario
 Application to demography: Boitard et al 2016 , Jay et al 2019 and many other works

Here and in all DL methods presented afterwards training is based on large datasets 
of simulated data with labels (i.e. for which we know the evolutionary parameters)





Present-day 
humans

Present-day 
humans

Archaics
Neandertal+
Denisova 

Archaics
Neandertal+
Denisova 

Ancestors of modern humans, Neandertal and Denisova



Reminder: you could bypass summary statistics

Prob(image is a cat)

Prob(image is a bird)

Eg 
Ex1 

x1=Height

x2=Nb legs

xn=Hair 

x1

x2

xn

From summary statistics (handcrafted features):



Reminder: you could bypass summary statistics
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Outline

Machine Learning: basic concepts and terminology

ML, application to popgen ; neural networks

I. From ABC to deep learning for population genetics

II. Learning directly from SNP data with neural networks
III. Dissecting two published networks for effective population size 

inference

IV. Opening on applications of unsupervized deep learning to popgen

V. Tonight’s hands-on: building/training/re-using DNNs for population 
genetics (demography/selection) inference with dnadna 



(e.g. DNN tries to predict N1, ... Np etc) and these are used later as automatic summary 
statistics (or automatic features)  processed by ABC
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DL - learning hierachical representations

Deep Learning (DL)  = deep neural networks = nnet with multiple layers 
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DL - learning hierachical representations

● Able to learn a hierarchy of representations with increasing level of 
abstraction

Eg. for image :
pixel → edge → motif → part → full object → combination (eg landscape, scene)

Eg. for text :
letter → word → word group –> sentence → story

…

● A layer = trainable function that transforms input into features at a certain 
hierarchy level
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DL - convolution

● Why using convolution networks? (convnet)

© Yann LeCun

Fully connected : 
→ huge number of parameters 
to learn (each edge 
correspond to a weight) 

Convnet 
locally connected 
→ smaller number of 
parameters to learn
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DL - convolution

● Why using convolution networks? (convnet)

© Yann LeCun

Convnet 
locally connected 
→ smaller number of 
parameters to learn

mask

Input image

Output of 
convolution

mask



Convolution operation

● Convolution with padding and stride=1  →  no dimension reduction

● No padding and/or stride > 1  →  dimension reduction 
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Exercise 

● Computer by hand a convolution operation (see below) 
● Compute the number of parameters (how does it sacle with input size)
● Design a 3x3 filter (with fixed weights) that could detect horizontal edges

(detect a pattern ~ maximal activation for this pattern)

0 1 1 0 0
1 1 0 1 0
1 0 0 0 1

0.5    -1    2
-1     0.5   3 

Convolutional 
operation (with 
fixed weights)

Input data Output ?
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Exercise 

● Computer by hand a convolution operation (see below) 
● Compute the number of parameters
● Design a 3x3 filter (with fixed weights) that could detect horizontal edges

(detect a pattern ~ maximal activation for this pattern)

0 1 1 0 0
0 1 0 1 0
1 0 0 0 1

0.5    -1    2
-1     0.5   3 

Convolutional 
operation (with 
fixed weights)

Input data Output ?

1.5   ..   ..

0*0.5 + 1*(-1)+1*2
+0*(-1)+1*0.5+0*3
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Exercise 

● Computer by hand a convolution operation (see below) 
● Compute the number of parameters
● Design a 3x3 filter (with fixed weights) that could detect horizontal edges

(detect a pattern ~ maximal activation for this pattern)

0 1 1 0 0
0 1 0 1 0
1 0 0 0 1

0.5    -1    2
-1     0.5   3 

Convolutional 
operation (with 
fixed weights)

Input data Output 

1.5   2.5   1
 -2    2.5   2
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Exercise 

● Computer by hand a convolution operation (see below) 
● Compute the number of parameters
● Design a 3x3 filter (with fixed weights) that could detect horizontal edges

(detect a pattern ~ maximal activation for this pattern)

0 1 1 0 0
0 1 0 1 0
1 0 0 0 1

0.5    -1    2
-1     0.5   3 

Convolutional 
operation (with 
fixed weights)

Input data Output 

1.5   2.5   1
 -2    2.5   2

Output of max 
pool operation 

 2.5 
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Exercise 

● Computer by hand a convolution operation (see below) 
● Compute the number of parameters
● Design a 3x3 filter (with fixed weights) that could detect horizontal edges

(detect a pattern ~ maximal activation for this pattern)

0 1 1 0 0
0 1 0 1 0
1 0 0 0 1

0.5    -1    2
-1     0.5   3 

Convolutional 
operation (with 
fixed weights)

Input data Output 

1.5   2.5   1
 -2    2.5   2

OR applying a 
RELU activation 
and another conv 

filter (e.g. 2x2)

1.5  2.5   1
 0    2.5   2

Output 

... 

  4      -0.1 
-1.2     0.6 

another conv filter 
with fixed weigts
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Exercise 

● Computer by hand a convolution operation (see below) 
● Compute the number of parameters
● Design a 3x3 filter (with fixed weights) that could detect horizontal edges

(detect a pattern ~ maximal activation for this pattern)

-1    -1    -1
1      1     1
-1    -1    -1 

Convolutional operation (with 
fixed weights) detecting 

horizontal edges



Reminder of steps for a simulation-based 
supervised ML approaches 

● Define clearly your task
– Regression/classification of xXx ; score function, loss
– Define one or several models e.g. Constant size, Fluctuating size, 

Fluctuating+selection

– Pick priors for the parameters of these models 
e.g. Ne~U[0,100], selection coeff~N(0,10), ... 

● Randomly draw parameters
● Simulate thousands/millions of such SNP matrices thanks to genetic 

simulators (msprime, msms, slim, bactSLiMulator, ...) using the random parameters
● Design, train and evaluate a model directly on these matrices

Typical input for population genetics methods



Flagel et al. 2019

Chan et al. 2018







“Coalescent-based species 
delimitation meets deep learning: 
Insights from a highly fragmented 
cactus system.” Perez et al 2021

To keep going: the introduction of Sanchez*, Bray*, et al (preprint) lists many more papers on DNN for popgen

Sanchez*, Bray*, et al (preprint)  https://hal.archives-ouvertes.fr/hal-03352910v2  
“Dnadna: Deep Neural Architecture for DNA - A deep learning framework for population genetic inference”

https://hal.archives-ouvertes.fr/hal-03352910v2
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Outline

Machine Learning: basic concepts and terminology

ML, application to popgen ; neural networks

I. From ABC to deep learning for population genetics

II. Learning directly from SNP data with neural networks

III. Dissecting two published networks for effective population size 
inference

IV. Opening on applications of unsupervized deep learning to popgen

V. Tonight’s hands-on: building/training/re-using DNNs for population 
genetics (demography/selection) inference with dnadna 
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Exercice: define the task and loss for a net that could inform you whether there 
was a strong decline of effective population size

What’s my model(s)? What are the parameters? Regression or classification task? 
--> loss?
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Exercice: define the task and loss for a net that could inform you whether there 
was a strong decline of effective population size

What’s my model(s)? What are the parameters? Regression or classification task? 
--> loss?

Expansion?Decline? OR



Dissecting a NN architecture

● Flagel et al. 2019 network





Convolution operation

● Convolution with padding and stride=1  →  no dimension reduction

● No padding and/or stride > 1  →  dimension reduction 



Pooling operation

● Pooling (max, average, sum pooling)
-> reducing dimension without additional parameter to learn

https://medium.com/@RaghavPrabhu



Why a 2D convolution ?

Flagel et al. 2019



Why a 2D convolution ?

Flagel et al. 2019

But popgen data is different 
from a classical image!



● Solution 1: specify an order 
ex: individual similarity (rows)
SNP similarity (columns)

Flagel et al. 2018

Torada et al. 
2019



● Solution 1: specify an order (ex: individual similarity) (e.g. 
Flagel et al. 2018, Torada et al. 2019, ... )

● Solution 2: data augmentation: apply transformation(s) to the 
input data that should not affect its label. 
Ex. in some tasks of computer vision: rotating images

Exercice:  give examples of data augmentation relevant for 
population genomics



● Solution 1: specify an order (ex: individual similarity) (e.g. 
Flagel et al. 2018, Torada et al. 2019, ... )

● Solution 2: data augmentation (e.g. shuffling the lines)

● Solution 3: encode invariance in the network (permutation-
invariant network, exchangeable network) (e.g. Chan et al. 
2018, Wiqvist et al. 2019, Sanchez et al 2020)



Exercice: give an example of invariant operation





Sanchez et al 2020





Final note on DL applied to population genetics
● Still a recent “combo” (2016 for DL on summary statistics, 2018 for DL on raw 

population genetic data)  -> space for creativity and new proposals!

● Remember some important rules in stat/ML/DL:
● Think properly about your task, statistical model, evaluation scheme/metrics
● Watch out for overfitting, use train/validation sets
● Compare to previously published methods

- Choose or explore hyperparameter space for each approach (grid 
search, Bayesian hyperoptimisation, ...) based on validation set

- Final comparison on an independent test set 

● Evaluate method robustness to data corruption, model misspecification, ... 
Particularly relevant for simulation-based inference approaches where simulators and 
simulation scenarios have underlying assumptions that can be violated in th real life. 

● You might gain in accuracy but loose in explainability/interpretability (ex: CNN versus 
a previous approach based on SFS). Improving interpretability is actively studied in 
DL field. 



Robustness?

- Eg to selection while predicting demography or vice versa
Sanchez et al. 2020, Torada et al 2019. 

- To data damage, ...

Same care should be taken for all model-based inference models (even without 
simulations, such as PSMC, dadi etc.)

+ Additional unknown regarding what the NN is using



Interpreation?
Examples

- Sheehan and Song 2016. Pinpoint summary statistics used by the NN for a 
prediction
- Gower et al. 2021 Pinpoint parts of an image used for predicting adaptive 
introgression

Can we have such a clear signal?
Active area of research in the machine/deep leaning community

?

Dream goal?  And what about demography?
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Deep learning hyper-parameters (HP)

● You still have to make decisions about (1) your achitecture (#layers, #nodes 
per layer, layer type,...) ; (2) the algorithm/optimization hyper-parameters 

● Usually done by training numerous networks with numerous HP and 
keeping the one performing the best. Can be done in a smart way with  e.g. 
bayesian HP optimization. Automatic Deep Learning : active area of research 

Just a taste of some NN 
algo hyper-parameters
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Outline

Machine Learning: basic concepts and terminology

ML, application to popgen ; neural networks

I. From ABC to deep learning for population genetics

II. Learning directly from SNP data with neural networks

III. Dissecting two published networks for effective population size 
inference

IV. Opening on applications of unsupervized deep learning to 
popgen

V. Tonight’s hands-on: building/training/re-using DNNs for population 
genetics (demography/selection) inference with dnadna 
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Unsupervised / Supervised Tasks
● Learning something from data 
● Either unsupervised (no labels) or supervised (discrete or continuous labels)
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Unsupervised learning

● Learning something from data without labels
● Unsupervised = discovering patterns in data without prior knowledge  

You do NOT have labels, or you do NOT use them

Exercice: Give examples of unsupervised tasks in population genetics 
- 
- 
- 
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Unsupervised learning

● Unsupervised = discovering patterns in data without prior knowledge  
You do NOT have labels, or you do NOT use them

- Dimension reduction methods, e.g. PCA, Matrix factorization 
- Clustering algorithms, e.g. K-means, hierarchical clustering, ...
- Outlier detection (can be then used for filtering, ..)
- ...
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Unsupervised learning examples (not only deep neural nets here)

- Dimension reduction methods, e.g. PCA, Matrix factorization 
- Clustering algorithms, e.g. K-means, hierarchical clustering, SNMF …
- Outlier detection (can be then used for filtering, ..)

PCA to reduce high dimensional genotype data for human populations

The 1st axis (ie the linear combination of markers) explains the largest part of the variance among 
samples. The 2nd  axis explains the largest part of the remaining variance, and so on..

Novembre et al 2008



  

Neural networks for unsupervized tasks

Convolutional Autoencoder (AE)
Ausmees et al 2021

Variational Autoencoder (VAE)
Battey et al 2021

(i) reconstructing oneself after a strong reduction in dimension



  

Non-linear dimension reduction based on neural networks 
for visualizing genetic data

Battey et al. 2021 -  variational autoencoders (VAE)

GCAE PCA
RBM

Yelmen et al. 2021 
restricted Boltzman machine

Meisner & Albrechtsen (preprint) VAE

Ausmees & Nettelblad 2022  convolutional autoencoders



Generative models (unsupervised learning)
Data with no label 
Goal Generate samples having the same distribution as the data  

Training data ~ pdata(x)
(distribution unknown)

Generated samples ~ pmodel(x)



  

Neural networks for unsupervized tasks

Restricted Boltzman Machine (RBM)
Yelmen et al 2021

Generative Adversarial 
Networks (GAN)
Yelmen et al 2021

Hidden layer h

Visible layer v

bj
hidden

ci
visible

Weights W

Z: partition function

Probabilistic model of the joint distribution of v and h

/ Z

DiscriminatorGenerator
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(ii)  generating realistic genomes that do not belong to a real individual
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Unsupervised learning for generating realistic genomes

- Generative models (can also be used for dimension reduction and 
exploring latent space) Yelmen et al 2021 (GAN and RBM neural networks) ; Battey et al 2021 
(VAE) ; Ausmees et al 2021

Trained generator

...

...... ...
... Ar
tif

ic
ia

l g
en

om
es

.. .

R
ea

l g
en

om
es

Yelmen et al 2021 



Quality checks
 PCA, tSNE, UMAP
 Allele frequencies (1-point 

correlation)
 Linkage disequilibrium patterns 

(2-point correlation)
 Haplotype structure (and 3-point 

correlation)
 Local ancestry block patterns
 Pairwise distance distributions, 

… 

Allele 
frequency

LD 
blocks

LD 
decay

Local 
ancestry

Lawson et al 
2012

~2.5Mbp

..

.

3-SNPs 
correlation

Haplotype 
structure

Marnetto and Huerta-Sánchez 
2017

→ Are characteristics  preserved in generated genomic 
sequences ?
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Outline

Machine Learning: basic concepts and terminology

ML, application to popgen ; neural networks

I. From ABC to deep learning for population genetics

II. Learning directly from SNP data with neural networks

III. Dissecting two published networks for effective population size 
inference

IV. Opening on applications of unsupervized deep learning to popgen

V. Tonight’s hands-on: building/training/re-using DNNs for 
population genetics (demography/selection) inference with 
dnadna 



Task of the tutorial



Théophile Sanchez*, EM Bray*, Pierre Jobic, Jérémy Guez, Guillaume Charpiat, Jean Cury*, Flora Jay*

DNADNA: Deep neural architectures for DNA, 
a toolbox for population genetics inference

Aim: 
 Reproductibility + sharing more easily networks within/ouside your  lab
 Designing networks or training an already designed network on your training 

set/task
 Predicting evolutionary history for your data using a pretrained network

 
 Being flexible with proper test, continuous integration, documentation
Beta version → feedback welcome!

https://hal.archives-ouvertes.fr/hal-03352910v1

https://hal.archives-ouvertes.fr/hal-03352910v1
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