FASTSIMCOAL2 INPUT FILES

Vitor C. Sousa cE3c, Department of Animal Biology, Faculty of Sciences of the University of Lisbon <u>vmsousa@fc.ul.pt</u>

Adapted and based on slides from Laurent Excoffier and fastsimcoal2 manual

https://github.com/vsousa/EG_cE3c

fastsimcoal2

fast sequential markov coalescent simulation of genomic data under complex evolutionary models

While preserving all the simulation flexibility of simcoal2, fastsimcoal is now implemented under a faster continous-time sequential Markovian coalescent approximation, allowing it to efficiently generate genetic diversity for different types of markers along large genomic regions, for both present or ancient samples. It includes a parameter sampler allowing its integration into Bayesian or likelihood parameter estimation procedure.

fastsimcoal can handle very complex evolutionary scenarios including an arbitrary migration matrix between samples, historical events allowing for population resize, population fusion and fission, admixture events, changes in migration matrix, or changes in population growth rates. The time of sampling can be specified independently for each sample, allowing for serial sampling in the same or in different populations.

Different markers, such as DNA sequences, SNPs, STRs (microsatellites) or multi-locus allelic data can be generated under a variety of mutation models (e.g. finite- and infinite-site models for DNA sequences, stepwise or generalized stepwise mutation model for STRs data, infinite-allele model for standard multi-allelic data).

fastsimcoal can simulate data in genomic regions with arbitrary recombination rates, thus allowing for recombination hotspots of different intensities at any position. fastsimcoal implements a new approximation to the ancestral recombination graph in the form of sequential Markov coalescent allowing it to very quickly generate genetic diversity for >100 Mb genomic segments.

fastsimcoal2 now allows one to estimate demographic parameters from the (joint) site frequency spectrum (SFS) using simulations to compute the expected SFS and a robust method for the maximization of the composite likelihood.

new version of fastsimcoal2 : fsc27 (June 2021)

http://cmpg.unibe.ch/software/fastsimcoal27/

Bioinformatics, 2021, 1–4 doi: 10.1093/bioinformatics/btab468 Advance Access Publication Date: 23 June 2021 Applications Note

OXFORD

Genetics and population analysis

fastsimcoal2: demographic inference under complex evolutionary scenarios

Laurent Excofffier (1,2,*, Nina Marchi^{1,2}, David Alexander Marques^{3,4,5}, Remi Matthey-Doret^{1,2}, Alexandre Gouy^{1,6} and Vitor C. Sousa^{1,7}

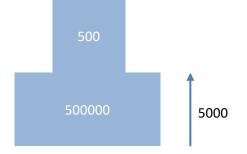
Examples of observed SFS

1PopExpIr	st20Mb_D	AFpop0.	obs							
1 observa	ations									
d0_0	d0_1	d0_2	d0_3	d0_4	d0_5	d0_6	d0_7	d0_8	d0_9	d0_10
19973842	24630	810	173	145	111	88	84	61	56	0

2PopDivM	ligr20Mb_jo	intDAF	pop1_0	.obs		
1 observ	vations					
	d0_0	d0_1	d0_2	d0_3	d0_4	d0_5
d1_0	19985747	8350	1628	360	62	8
d1_0 d1_1	9660	0	0	0	0	
d1_2	4790	0	0	0	0	
d1_3	3280	0	0	0	0	
d1_4	2490	0	0	0	0	
d1_5	1760	13	18	13	19	0

2PopDiv2	0Mb_jointD	AFpop1	_0.obs			
1 observ	ations					
	d0_0	d0_1	d0_2	d0_3	d0_4	d0_5
d1_0	19985547	8211	1415	316	55	10
d1_1	1266	101	37	16	5	1
d1_2	61142	20	8	2	0	
d1_3	48631	12	5	0	0	
d1_4	47915	9	2	3	1	
d1_5	1189	46	22	19	18	0

Parameter estimation settings files



1PopExpInst20Mb

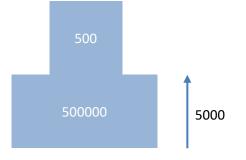
Additional files necessary to estimate parameters:

- Template file (TPL) defining the model
- Estimation file (EST) with search range for parameters

Parameter estimation settings files

Additional files necessary to estimate parameters:

- Template file (TPL) defining the model
- Estimation file (EST) with search range for parameters


Tags for parameter we want to estimate: \$NPOP\$, \$TEXP\$, \$RESIZE\$

1PopExpInst20Mb

Template file (filename.tpl)

```
1PopExpInst20Mb/1PopExpInst20Mb.tpl
//Parameters for the coalescence simulation program : fsimcoal2.exe
1 samples to simulate :
//Population effective sizes (number of genes)
$NPOP$
//Samples sizes and samples age
10
//Growth rates: negative growth implies population expansion
//Number of migration matrices : 0 implies no migration between demes
0
//historical event: time, source, sink, migrants, new deme size, new growth rate,
migration matrix index
1 historical event
$TEXP$ 0 0 0 $RESIZE$ 0 0
//Number of independent loci [chromosome]
1 0
//Per chromosome: Number of contiguous linkage Block: a block is a set of contiguous loci
//per Block:data type, number of loci, per generation recombination and mutation rates
and optional parameters
              2.5e-8 OUTEXP
FREO
          0
```

Parameter estimation settings files

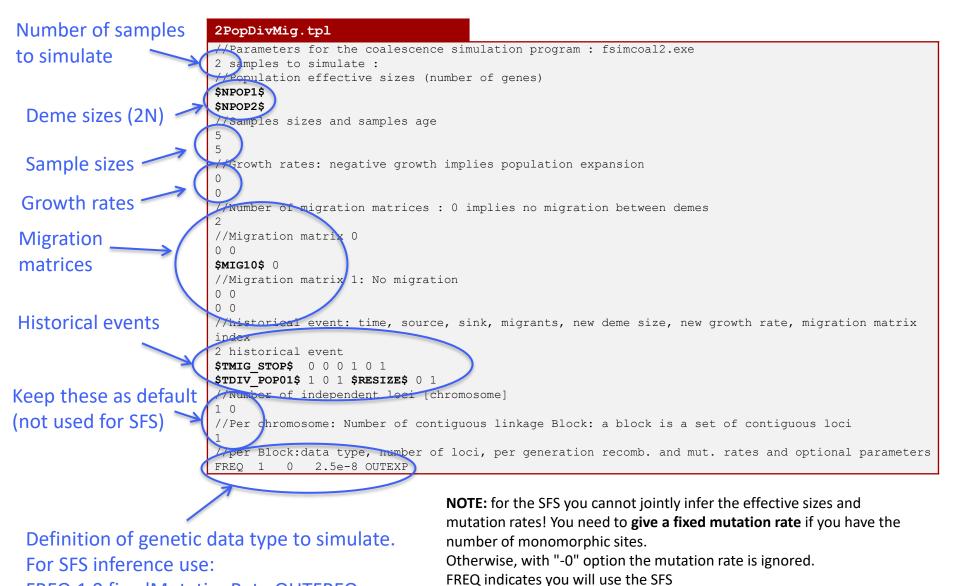
1PopExpInst20Mb

Additional files necessary to estimate parameters:

- Template file (TPL) defining the model
- Estimation file (EST) with search range for parameters

Tags for parameter we want to estimate: \$NPOP\$, \$TEXP\$, \$RESIZE\$

Estimation file (filename.est)

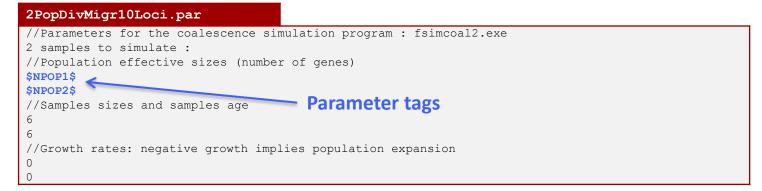

1PopExpInst20Mb/	1PopExpIn	st20Mb.e	est	
// Search range				
// *********	*******	******		
[PARAMETERS]				
//#isInt? #name	#searc	h #min	#max	
//all Ns are in	number o	f haplo	id ind	ividuals
1 \$ NPOP\$	logunif		1e7	output
1 \$ NANC\$	logunif	10	1e5	output
1 \$ TEXP\$	unif	10	1e5	output
[RULES]				
[COMPLEX PARAME	FERS]			
0 \$ RESIZE\$ =	NANC/NPO	P :	hide	

INPUT files for fastsimcoal2: Defining an evolutionary model with TPL file

```
2PopDivMig.tpl
```

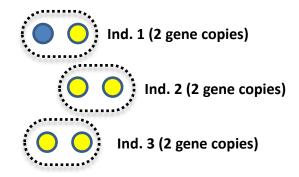
```
//Parameters for the coalescence simulation program : fsimcoal2.exe
3 samples to simulate :
//Population effective sizes (number of genes)
$NPOP1 PRESENT$ 0
$NPOP1 ANCIENT$ 1
$NPOP2$
                2
//Samples sizes and samples age
8 0
2 2000
4 0
//Growth rates: negative growth implies population expansion
0
0
//Number of migration matrices : 0 implies no migration between demes
2
//Migration matrix 0
0 0
$MIG10$ 0
//Migration matrix 1: No migration
0 0
0 0
//historical event: time, source, sink, migrants, new deme size, new growth rate, migration matrix
index
3 historical event
2001 1 0 1 0 0 0
$TMIG STOP$ 0 0 0 1 0 1
$TDIV POP01$ 1 0 1 $RESIZE$ 0 1
//Number of independent loci [chromosome]
1 0
//Per chromosome: Number of contiguous linkage Block: a block is a set of contiguous loci
//per Block:data type, number of loci, per generation recomb. and mut. rates and optional parameters
FREQ 1 0 2.5e-8 OUTEXP
```

INPUT files for fastsimcoal2: Defining an evolutionary model with TPL file


FREQ 1 0 fixedMutationRate OUTFREQ

OUTFREQ means the expected SFS will be output

TPL files


These files are very important! Check carefully all the definitions. Errors in the TPL file are difficult to detect and imply the model specification is incorrect! This means that all inferences will be wrong, and also that all parameter estimates will be incorrect!

Defining population sizes and sample sizes

Population effective sizes are given in number of gene copies. For a diploid species with N=500 individuals, this corresponds to a 2N=1000 gene copies, as each individual carries two gene copies at any given site.

The sample size is also given in gene copies. The value of 6 means that we sampled 3 diploid individuals.

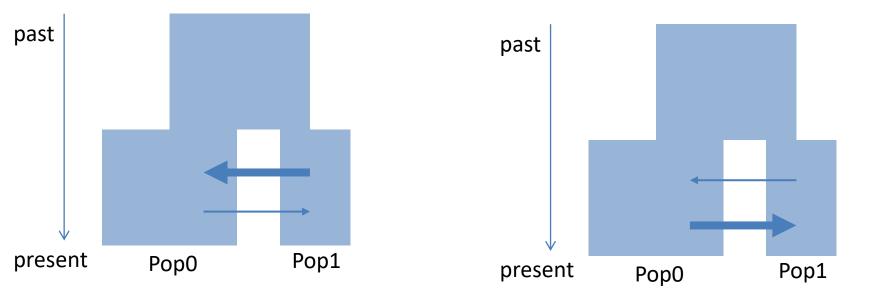
TPL files

MIGRATION

```
//Number of migration matrices : 0 implies no migration between demes
1
//migration matrix
0.000 $MIG_01$
Parameter tags
$MIG_10$ 0.000
```

The migration matrix can be asymmetric, and in the case the entry m_{ij} list the **migration rates backward in time** from population in row *i* to population in column *j*. The above-mentioned matrix states that, for each generation (backward in time), any gene from population 0 has probability MIG_01 to be sent to population 1, and that a gene from population 1 has a probability MIG_10 to move to population 0.

If no migration matrix is defined, no migration is assumed between populations.


1PopStationary10Loci.par

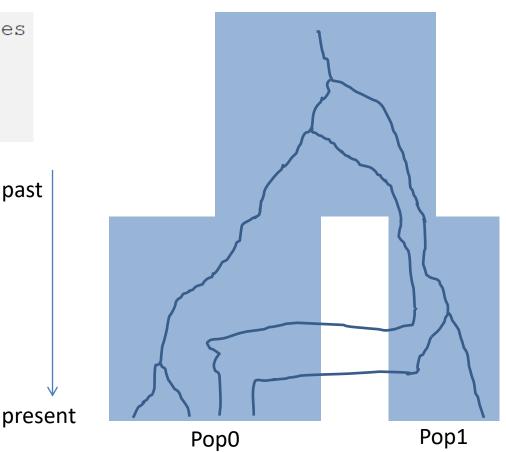
//Number of migration matrices : 0 implies no migration between demes 0 $\,$

A note on looking backward in time

Assuming that we look **forward in time** and that the size of the arrows are proportional to the migration rate, to what model does the following migration matrix corresponds to?

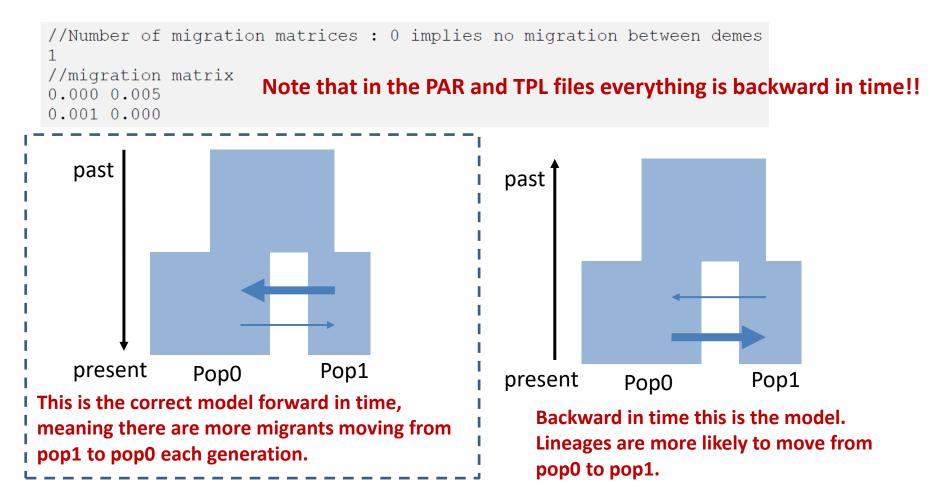
```
//Number of migration matrices : 0 implies no migration between demes
1
//migration matrix
0.000 0.005
0.001 0.000
```


A note on looking backward in time


Assuming that we look **forward in time** and that the size of the arrows are proportional to the migration rate, to what model does the following migration matrix corresponds to?

past

```
//Number of migration matrices
//migration matrix
0.000 0.005
0.001 0.000
```

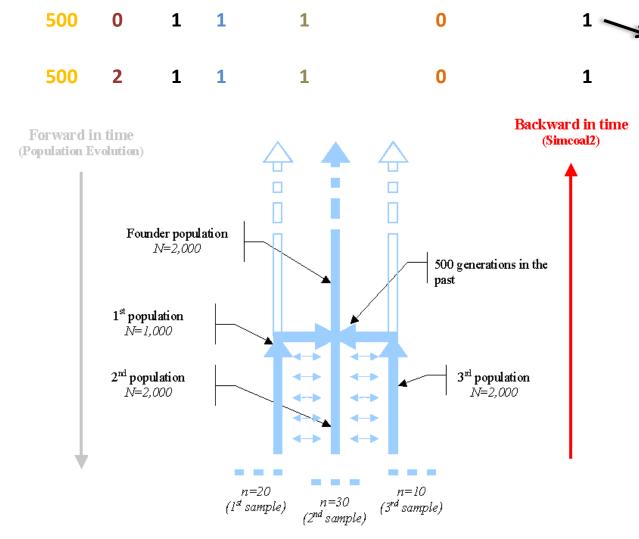

This means that there are more lineages migrating ("jumping") from pop0 to pop1 backward in time.

Thus, in PopO there are many individuals whose ancestors where migrants from Pop1 into Pop0.

A note on looking backward in time

Assuming that we look forward in time and that the size of the arrows are proportional to the migration rate, to what model does the following migration matrix corresponds to?

Historical events can be used to:

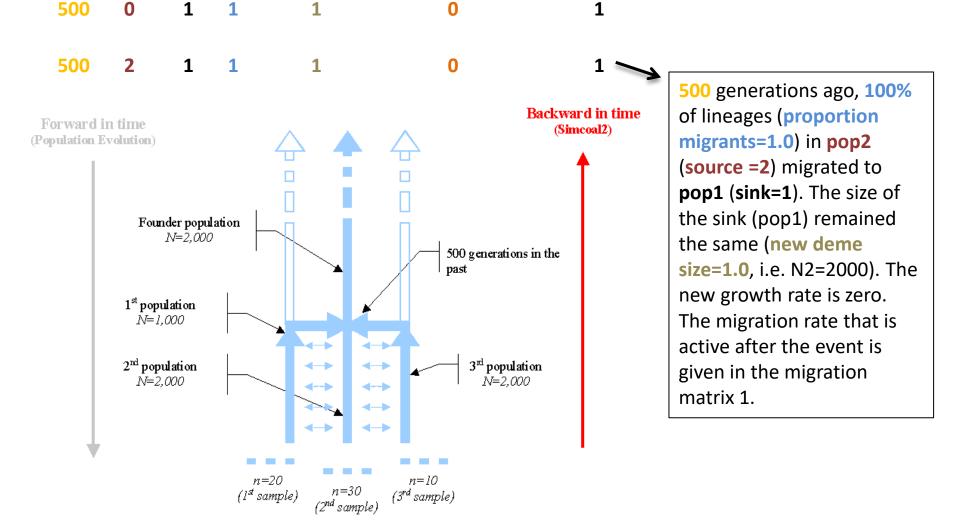

- Change the size of a given population
- Change the growth rate of a given population
- Change the migration matrix to be used between populations
- Move a fraction of the genes of a given population to another population. This amounts to implementing a (stochastic) admixture or introgression event.
- Move all genes from a population to another population. This amounts to fusing two populations into one looking backward in time.
- One or more of these events at the same time

Defining the historical events is crucial to have a correct model!

Historical events (backward in time)

Each historical event is coded with a line with the following arguments

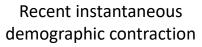
time, source, sink, prop. migrants, new deme size, new growth rate, migration matrix index

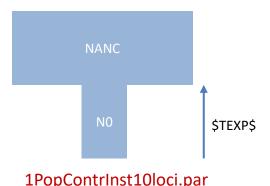


500 generations ago, 100% (proportion migrants=1.0) of lineages in pop0 (source =0) migrated to pop1 (sink=1). The size of the sink (pop1) remained the same (new deme size=1.0, i.e. N2=2000). The new growth rate is zero. The migration rate that is active after the event is given in the migration matrix 1.

Historical events (backward in time)

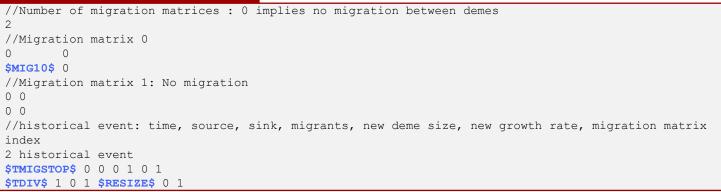
Each historical event is coded with a line with the following arguments

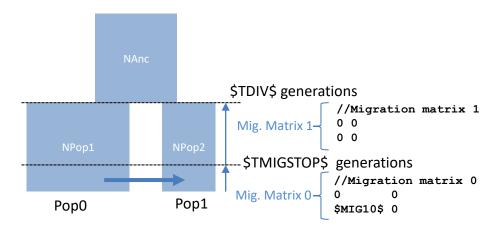

time, source, sink, prop. migrants, new deme size, new growth rate, migration matrix index



Change the size of a given population

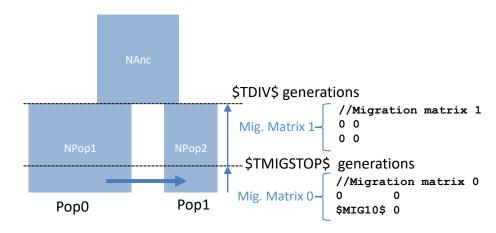
IPopContrInst10Loci.par //Parameters for the coalescence simulation program : fsimcoal2.exe 1 samples to simulate : //Population effective sizes (number of genes) 1000 //Samples sizes and samples age 10 //Growth rates: negative growth implies population expansion 0 //Growth rates: negative growth implies no migration between demes 0 //Number of migration matrices : 0 implies no migration between demes 0 //historical event: time, source, sink, migrants, new deme size, new growth rate, migration matrix index 1 historical event \$TEXP\$ 0 0 0 \$RESIZE\$ 0 0

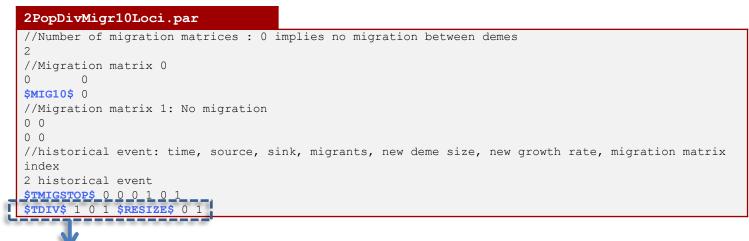

- **\$TEXP\$** generations ago, 0% (migrants=0) of lineages in pop0 (source) migrated to pop1 (sink). This means that 100% of lineages remained in pop0.
- The sink population (pop0) has a size \$RESIZE\$ times larger after the event (\$RESIZE\$=\$NANC\$/\$N0\$). Given N0 diploids at time zero, it implies that NANC=N0*RESIZE diploids.
- The migration matrix valid after the event is the migration rate 0. Since it is not defined it imples no migration.



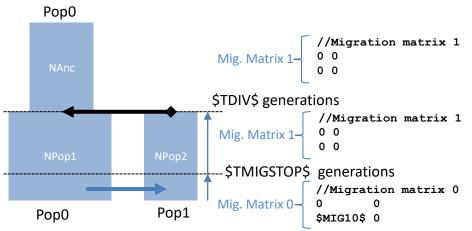
Models with changes in the migration matrix to be used between populations

2PopDivMigr10Loci.par




Migration matrix can change through time

```
2PopDivMigr10Loci.par
//Number of migration matrices : 0 implies no migration between demes
2
//Migration matrix 0
0 0
$MIG10$ 0
//Migration matrix 1: No migration
0 0
0 0
//Migration matrix 1: No migration
0 0
//historical event: time, source, sink, migrants, new deme size, new growth rate, migration matrix
index
2 bistorical event
$TMIGSTOP$ 0 0 0 1 0 1
$TDIV$ 1 0 1 $RESIZE$ 0 1
```


- At generation \$TMIGSTOP\$ in the past, 0% (migrants=0) of lineages migrated from pop0 (source=0) to pop1 (sink=0).
- After the historical event, the deme size of the sink population (pop1) remained the same (new deme size=1).
- After the historical event the growth rate was set to zero.
- After the historical event the migration rate matrix was set to matrix 1, i.e. no migration between populations.

Population split (merge populations going backwards in time)

- At generation \$TDIV\$ in the past, 100% (migrants=1) of lineages migrated from pop1 (source=1) to pop0 (sink=0).
- After the population split, the deme size of the sink population (pop0) is \$NANC\$, and hence \$RESIZE\$=\$NANC\$/\$NPOP0\$).
- After the historical event the growth rate of the sink population pop0 is zero.
- After the historical event the migration rate matrix was set to matrix 1, i.e. no migration between populations.

Estimation file ("NoMigSan_Maya.est")

NoMigSan Maya.est // Search ranges and rules file // ********************** [PARAMETERS] //#isInt? #name #search.#min #max //all Ns are in number of haploid individuals unif 10 1e5 \$NPOP1\$ output 1 unif 10 1e5 \$NPOP2\$ output 1 unif 10 1e5 \$NANC\$ output 1 \$NBOTP1\$ unif 1 1e3 output bounded 1 1 \$TDIV\$ unif 100 1e4 output \$RELTBOT\$ unif 1e-5 1 hide bounded 0 [RULES] [COMPLEX PARAMETERS] \$RES BOT START\$ = \$NBOTP1\$/\$NPOP1\$ hide 0 hide \$RES BOT END\$ = \$NPOP1\$/\$NBOTP1\$ 0 \$TBOT START\$ = \$TDIV\$ * \$RELTBOT\$ output 1 \$TBOT END\$ = \$TBOT START\$ + 10 1 hide 0 \$RESIZE0\$ = \$NANC\$/\$NPOP1\$ hide

Each line of [PARAMETERS] section must contain the following: **#isInt?** 0 for continuous, 1 for integers **#name** Parameter tag name **#search** "unif" for uniform scale "logunif" for log10 scale #min minimum search range (lower bound) #max maximum search range. If the keyword bounded is not used, then if likelihood is higher near maximum value, fastsimcoal2 will keep increasing the maximum value. The **bounded** keyword prevents this.

Complex parameters depend on the values of other parameters. Only one operatation per line can be done. Thus, you cannot have something with many operations in a single line: \$BLA\$=(\$BL\$ * \$A\$)+(\$BLA\$/\$LA\$) - WRONG!

Estimation file ("NoMigSan_Maya.est")

NoMigSan_Maya.est

```
// Search ranges and rules file
// **********************
[PARAMETERS]
//#isInt? #name #search.#min #max
//all Ns are in number of haploid individuals
              unif 10 1e5
 $NPOP1$
                               output
1
 $NPOP2$ unif 10 1e5
                               output
1
 $NANC$ unif 10 1e5
                               output
1
 $NBOTP1$ unif 1 1e3
                               output
                                     bounded
1
        unif 100 1e4
1
 $TDIV$
                               output
  $RELTBOT$ unif 1e-5 1
                               hide
                                      bounded
0
[RULES]
[COMPLEX PARAMETERS]
  $RES BOT START$ = $NBOTP1$/$NPOP1$
                                       hide
0
                                       hide
  $RES BOT END$
                 = $NPOP1$/$NBOTP1$
0
  $TBOT START$ = $TDIV$ * $RELTBOT$
1
                                   output
  $TBOT END$ = $TBOT START$ + 10
1
                                   hide
                                   hide
0
  $RESIZE0$
              = $NANC$/$NPOP1$
```

Note that complex parameters can be used to define the order of events.

By using a \$RELTBOT\$ between 1e-5 and 1, and then specifying that \$TBOT_START\$ = \$TDIV\$ * \$RELTBOT\$

we define that the TBOT_START is always more recent than the time of divergence.

If this is not well specified you can get errors, because events need to happen in a specific order.

Estimation file ("NoMigSan_Maya.est")

NoMigSan_Maya.est

```
// Search ranges and rules file
// **********************
[PARAMETERS]
//#isInt? #name #search.#min #max
//all Ns are in number of haploid individuals
1 $NPOP1$ unif 10 1e5
                               output
 $NPOP2$ unif 10 1e5
                               output
1
 $NANC$ unif 10 le5
                               output
1
 $NBOTP1$ unif 1 1e3
                               output bounded
1
1
 $TBOT END$ unif 100 1e4
                                 output
  $TDIV TBOT INT$ unif 10 1e3
0
                                 hide
[RULES]
[COMPLEX PARAMETERS]
  $RES BOT START$ = $NBOTP1$/$NPOP1$
                                       hide
0
  $RES BOT END$
                                       hide
                 = $NPOP1$/$NBOTP1$
0
  $TBOT START$ = $TBOT END$ - 10
1
                                     output
  $TDIV$ = $TBOT END$ + $TDIV TBOT INT$ output
1
  $RESIZE0$
              = $NANC$/$NPOP1$
                                   hide
0
```

Another solution is to actually estimate the time between time events, as shown on the left.

In this case, we would estimate the parameter \$TDIV_TBOT_INT\$

And then in complex parameters: \$TDIV\$ = \$TBOT_END\$ + \$TDIV_TBOT_INT\$

Estimation file ("NoMigSan_Maya.est")

NoMigSan_Maya.est
// Search ranges and rules file // *************************
[PARAMETERS]
//#isInt? #name #search.#min #max
<pre>//all Ns are in number of haploid individuals 1 \$NPOP1\$ unif 10 1e5 output</pre>
1 \$NPOP2\$ unif 10 1e5 output
1 \$NANC\$ unif 10 1e5 output
1 \$NBOTP1\$ unif 1 1e3 output bounded
1 \$TBOT_END\$ unif 100 1e4 output 0 \$TDIV TBOT INT\$ unif 10 1e3 hide
o vibiv_iboi_iniv unit io ies nite
[RULES]
[COMPLEX PARAMETERS]
0 \$RES BOT START\$ = \$NBOTP1\$/\$NPOP1\$ hide
0 \$RES_BOT_END\$ = \$NPOP1\$/\$NBOTP1\$ hide
1 \$TBOT_START\$ = \$TBOT_END\$ - 10 output 1 \$TDIV\$ = \$TBOT_END\$ + \$TDIV_TBOT_INT\$ output
T AIDIAA - AIDOI FUDA - AIDIA IBOI INIA OUCDUC
0 \$RESIZEO\$ = \$NANC\$/\$NPOP1\$ hide

Finally, a note about inferring bottlenecks associated with founder events.

It is difficult to jointly infer the duration and Effective population size of a bottleneck.

Instead, we can infer the bottleneck intensity, which is given by

 $I_B = \frac{\text{Time Duration Bottlenek (generations)}}{(2*Effective size during bottleneck)}$

Thus, we usually fix the duration of the bottleneck and infer the effective size.

In this case, we fix the duration of the bottleneck to be 10 generations.

If \$NBOTP1\$ is larger than 500, then actually we would infer no bottleneck, as $I_B < 0.01$ (10/(2*500)).

Balick et al (2015) PLoS Genet. 11(8): e1005436.

EST file simplifications implemented in fastsimcoal2.7 keywords paraminRange and bounded

- ParamInRange: used when you have parameters that depend on others (e.g. a time of bottleneck younger than divergence time)
- Bounded: used when parameter values cannot be outside the defined limits
- No need to use complex parameters

NoMigSan_Maya.est	
<pre>// Search ranges and range</pre>	
// **************	****
[PARAMETERS]	
//#isInt? #name #sea	arch.#min #max
//all Ns are in number	c of haploid individuals
1 \$NPOP1\$ unif	10 le5 output
1 \$NPOP2\$ unif	10 1e5 output
1 \$NANC\$ unif	10 1e5 output
1 \$NBOTP1\$ unif	1 1e3 output bounded
1 \$TDIV\$ unif	100 le4 output
1 \$TBOT END\$ unif	11 \$TDIV\$ output bounded paramInRange
—	
[COMPLEX PARAMETERS]	
1 \$TBOT START\$ = \$TBO'	DT END\$ - 10 hide
	_

TPL file simplifications implemented in fastsimcoal2.7 absoluteResize

Avoid one of the most common errors: In historical events add absoluteResize when using the new sink effective size in absolute rather than relative

With absoluteResize:

NoMigSan_Maya.tpl	N	NoMigSan_Maya.est				
//historical event:						
3 historical event	1	\$NPOP1\$	unif	10	1e5	output
\$TBOT_START\$ 0 0 0 \$NBOTP1\$ 0 0 ab:	soluteResize 1	\$NPOP2\$	unif	10	1e5	output
\$TBOT_END\$ 0 0 0 \$NPOP1\$ 0 0 ab:	soluteResize 1	\$NANC\$	unif	10	1e5	output
\$TDIV\$ 1 0 1 \$NANC\$ 0 0 ab:	soluteResize 1	\$NBOTP1\$	unif	1	1e3	output
						-

Previous to fsc2.7 without absoluteResize:

NoMigSan_Maya.tpl						
//historical	е	ver	nt:	:		
3 historical	e	ver	nt			
\$TBOT_START\$	0	0	0	\$RELBOT1\$	0	0
\$TBOT END\$	0	0	0	\$RELBOT2\$	0	0
\$TDIV\$	1	0	1	\$RELANC\$	0	0

N	oMigSan_Maya.e	st			
1	\$NPOP1\$	unif	10	1e5	output
1	\$NPOP2\$	unif	10	1e5	output
1	\$NANC\$	unif	10	1e5	output
1	\$NBOTP1\$	unif	1	1e3	output
E	COMPLEX PARA	METERS]			
0	\$RELBOT1\$	= \$NBOTP	L\$/\$N	POP1\$	hide
0	\$RELBOT2\$	= \$NPOP1\$	\$/\$NB	OTP1\$	hide
0	\$RELANC\$	= \$NANC\$,	\$NPO	P1\$	hide

EST file functions that you can use %min%, %max%, if else (condition ? ifTRUE : ifFALSE)

For complex models, you might want to limit some parameters depending on the minimum and/or maximum of other values.

Also, you might want the parameters to take different values conditional on whether a given condition is true or false.

For conditions you can use > (larger than),< (smaller than), == (equal to),!= (not equal to), <= (smaller or equal), >= (larger or equal)

Subsection of an EST file
•••
[COMPLEX PARAMETERS]
1 \$maxTsplit2\$ = \$TSplitAsi\$ %max% \$TSplitKo\$ hide
<pre>0 \$ResCont\$ = \$N_Cont\$/\$N_aKar\$ hide 0 \$ResSplitAs\$ = \$TSplitAsi\$!= \$maxTsplit2\$? 1.0 : \$ResCont\$ hide 0 \$ResSplitKo\$ = \$TSplitKo\$!= \$maxTsplit2\$? 1.0 : \$ResCont\$ hide</pre>

TPL file simplifications implemented in fastsimcoal2.7 keywords keep and nomig

When you have changes in migration rates that depend on the order of events, it can become complex to decide what migration matrix to use.

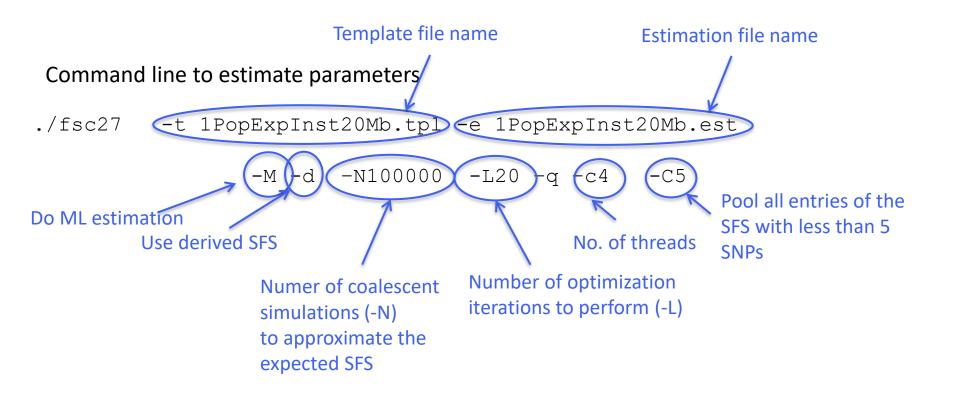
nomig: if this keyword is added at the end of a historical event definition, migrations between demes are suppressed until the end of the current coalescent simulation. If next in line historical events were to specify the use of some new migration matrix, this would be ignored by fastsimcoal.

keep: if instead of a given value for a growth rate or a migration matrix one uses the keyword keep, then the former values of these parameters will be used

Example of TPL with nomig		
//historical event:		
2 historical event		
1000 0 0 0 1 0 0 nomig // suppresses migrations between demes for older than	1000 gen	
10000 1 0 1 10 0 1 // no migration, even if migration in matrix 1	-	

Example of TPL with keep	
//historical event:	
3 historical event	
200 0 0 0 1 -0.001	0
1000 0 0 0 1 keep	1 //Keep current growth rate (-0.001) (and change migration matrix
10000 1 0 1 1 0	keep //Keep migration matrix

Launching parameter estimations


Command line to estimate parameters

./fsc27 -t 1PopExpInst20Mb.tpl -e 1PopExpInst20Mb.est

-M -d -N100000 -L20 -q -c4 -C5

Observed SFS file must have the same name as template file and extension _DAFpop0.obs. e.g. 1PopExpInst20Mb_DAFpop0.obs

Launching parameter estimations

Observed SFS file must have the same name as template file and extension _DAFpop0.obs. e.g. 1PopExpInst20Mb_DAFpop0.obs

EST file simplifications implemented since fastsimcoal2.6 keyword reference and parameter rescaling

Reference keyword will be used in conjunction of the **–I xx** command line option, which specifies that during xx initial ECM cycles, both monomorphic and polymorphic sites will be used to compute the likelihood. After these xx initial cycles, the likelihood will only be computed (and maximized) based on the polymorphic sites, using the currently estimated reference parameter as fixed, to scale all other parameters. The choice of this (unique) reference parameter is thus important and should be one that affects the total number of polymorphic sites, like the size of an ancestral population, or a divergence time.

Example of est file with reference						
// Search ranges and rules file						
// ***************						
[PARAMETERS]						
//#isInt? #name #search.#min #max						
//a	all Ns are in	number	of	haploid	indivio	luals
1	\$NANC\$	unif	10	1e5	output	reference
1	\$NPOP1\$	unif	10	1e5	output	
1	\$NPOP2\$	unif	10	1e5	output	
1	\$NBOTP1\$	unif	1	1e3	output	bounded