Learning about evolution by
building coalescent trees

Simon Myers, Jasmin Rees, Leo Speidel
* This am: introductory lectures

* This pm: "Relate in the Prelate"

* Running Relate on a human dataset of 130 different
populations

* Population structure and how it changes through time
* |dentifying directional selection
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STATISTICS



deMenocal et al., 2016
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5 Genetic variation data
can tell us about:

—

Structure and migrations

Population bottlenecks

Admixture

. | Step 1: Let's model these
Mutation Step 2: Inference

Recombination

These might themselves evolve through time!

Selection

etc




The genetic tree(s) relating humans (or any other
species)
Reconstructing >100,000s years of evolution!

* 22 autosomal chromosomes |
| Different trees in different parts of the genome,

* 2 sex chromosomes ..
due to recombination

X chromosome
Y chromosome 1 tree each (maternal/paternal)

* Mitrochondrial genome Kivisild, 2015
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Key concept: Genealogies

We are genetically related through a

sequence of trees
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today ®
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DNA sequences of
modern-day people

Why do trees change along the genome?
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T-Pote_ntially 2M years!



millions of
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today

most-recent common arﬁestor
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DNA sequences of
modern-day people
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Demographic history
Genetic structure

)

Mutation, recombination,

etc.
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Fundamental forces impact data (only) through underlying genealogies



Many canonical approaches
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modern-day people

4

Demographic histor
erap y Invent informative statistics, simplify,

Genetic structure
Mutation. recombination - "integrate out all possible histories”
etc ' ' (machine learning methods typically

learn these statistics from the data)



Today’s approach
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modern-day people

l Build (simple) statistics directly based on

L trees, to answer questions in population
Demographic hlstory/ rees to: q Pop

Genetic structure
Mutation, recombination,
etc.

In principle, trees capture all the information available from the data about
these processes, allowing self-consistent inference

Challenges: computationally very challenging to sample trees from the data, and
modern datasets can contain >50,000 individuals and >100,000,000 mutations



Inferring genealogies

Old problem, lots of methods, but few can scale:

« ARGWeaver ]- Infers Ancestral Recombination Graphs

* Rent+
: ;Sglnafceer"'tSdate Published since 2019, scale to large
. ARG-Need|e sample sizes

We will talk about Relate today — Georgia will introduce
tsinfer tomorrow.....

but principles of tree-based inference apply more
generally!



Speidel, Forest, Shi, Myers. Nature Genetics 2019
Re | a e Speidel, Cassidy, Davies, Hellenthal, Skoglund, Myers, MBE, 2021

Software to estimate genome-wide genealogies for thousands of samples

Relate estimates genome-wide genealogies in the form of trees that adapt to changes in local ancestry caused by recombination. The method, which is scalable to thousands of samples, is described in the following paper. Please cite this paper if you
use our software in your study.
Citations:
« (original Relate paper) Leo Speidel, Marie Forest, Sinan Shi, Simon Myers.
A method for d for of samples. Nature Genetics 51: 1321-1329, 2019.

g
+ (update, v1.1.") Leo Speidel, Lara Cassidy, Robert W. Davies, Garrett Hellenthal, Pontus Skoglund, Simon R. Myers.
Inferring population histories for ancient genomes using genome-wide genealogies. Molecular Biology and Evolution 38: 3497-3511, 2021.

Contact: leo.speidel@outlook.com
Website: https://leospeidel.com

Download

Relate is available for academic use. To see rules for non-academic use, please
read the LICENCE file, which is included with each software download.

Pre-compiled binaries (last updated: 7/11/2021)
7 ) 1 agree with the terms and conditions
Linux (x86_64, dynamic) - v1.1.8

Linux (x86_64, static) - v1.1.8

Mac OSX (Intel) - v1.1.8

Mac OSX (M1) - v1.1.8

Github repository
Alternatively, you can compile your own version by downloading the source code
from this github repository.

In the downloaded directory, we have included a toy data set. You can try out
Relate using this toy data set by following the instructions on our getting started
page.

If you have any problems getting the program to work on your machine or would
like to request an executable for a platform not shown here, please send a message
to leo.speidel [at] outiook [dot] com.

https://myersgroup.github.io/relate/

Key features:

- Fast & accurate

- Robust to errors!

- Jointly infers branch lengths and demographic history
- Moderns and ancients

- Lots of add-on tools for various types of analyses



https://myersgroup.github.io/relate/

One locus can already tell us a lot about
our history

Article

The major geneticrisk factorfor severe
COVID-19isinherited from Neanderthals

7 50 00 O https://doi.org/10.1038/s41586-020-2818-3  Hugo Zeberg'?= & Svante Piibo™™
I Received: 3 July 2020
Accepted: 22 September 2020 Arecent genetic association study' identified agene cluster on chromosome 3 as a risk
Published online: 30 September 2020 locus for respiratory failure after infection with severe acute respiratory syndrome

coronavirus 2 (SARS-CoV-2). A separate study (COVID-19 Host Genetics Initiative)’

comprising 3,199 hospitalized patients with coronavirus disease 2019 (COVID-19) and
control individuals showed that this cluster is the major genetic risk factor for severe
/ symptoms after SARS-CoV-2infection and hospitalization. Here we show that the risk

" Check for updates

is conferred by agenomic segment of around 50 kilobases in size that is inherited from
Neanderthals and is carried by around 50% of people in south Asia and around 16% of
peoplein Europe.
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....combining across loci tells us much more (e.g. ancient
introgression in non-Africans mainly from Neanderthal/
Denisovan

. 1500000
relatives) L

Genotype in Neanderthals
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NB: Africa shows little Neanderthal or Denisovan introgression, but actually has a huge
excess of long (unexplained) branches shared only within Africa



Example: Positive selection, rapidly spreading
lineage
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Example: clusters of mutations in time can
capture changes in mutation rate

Mutation rate
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To actually do inference, we need to (re)visit the
coalescent model to help:

1) Create a method to build trees under a coalescent model,
with varying population size, and allowing for
recombination

2) Construct statistics to capture information from trees and
either

(i) Interpret parameters in the coalescent, e.g.
coalescence rates

(ii) Reject a null model, e.g. testing for selection



Revision of coalescent

The Wright-Fisher model is able to approximate more realistic models of populations,
but is itself the “simplest possible model incorporating inheritance”

N individuals; each member of the current generation randomly chooses one of 2N
parent chromosomes and inherits their DNA

Some population members have 0 children, others more than 1 child:

I K x I I Each haplotype chooses

parent in previous
generation totally at
random

If haplotypes share a
parent back in time, this
is called a coalescence
event



Revision of coalescent

Over many generations, the population evolves
Our DNA comes from our ancestors so we look back in time

In a single generation, chance two haplotypes choose the same parent

is1/2N
I Each haplotype chooses
parent in previous

generation totally at
random

If haplotypes share a
parent back in time, this
is called a coalescence
event



Revision of coalescent

Over many generations, the population evolves
Our DNA comes from our ancestors so we look back in time

In a single generation, chance two haplotypes choose the same parent

is1/2N
I Each haplotype chooses
parent in previous

generation totally at
random

If haplotypes share a
parent back in time, this
is called a coalescence
event



Revision of coalescent

Over many generations, the population evolves
Our DNA comes from our ancestors so we look back in time

In a single generation, chance two haplotypes choose the same parent

is1/2N
I Each haplotype chooses
parent in previous

generation totally at
random

If haplotypes share a
parent back in time, this
is called a coalescence
event



If we take a sample from the population, we can trace their ancestry: a random tree
In this tree, the number of ancestors decreases back in time fromnto 1

Each pair of lineages has 1/2N coalescences per generation, so 1 coalescence per 2N
generations

Sample of size n=6



N ~10-50,000 for all human

populations, highest in Africa

So a typical pair of human chromosomes share an ancestor on
average around 2x20,000x28=1 million years ago

N varies dramatically across species
(Charlesworth, Nature Reviews Genetics 2009):

25,000,000 for E.coli
2,000,000 for fruit fly

D. Melanogaster

<100 for Salamanders
(Funk et al. 1999)

Let’s not even talk about plankton!



Typically, as N is large we just model time as continuous

Any pair of lineages coalesces at rate 1/2N

Then while there are j lineages, there are (é) pairs that can coalesce - so the rate at
which a coalescence happens is just (é)/ZN

[this leads to an exponential distribution of time until coalescence, with rate (é) /2N]

S . . - . —
. —— . —
. —— = — —
— — — — — — Jj=2, 1 pair
— — . — =
. — — — =
— — —— — =
— — e Jj=4, 6 pairs
= . —
= = =
= =

Sample of size n=6



We have come to a model — the Coalescent

T,~exp(l) E(Ty)=1

| T,~exp(3) E(T})=1/3

T, ~exp(6) E(T,)=1/6

\ | T, ~ exp(10) E(T})=1/10
] | 7, ~ exp(15) E(T,)=1/15
n=6
(after scaling time by M generations)
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Varying population size

If N changes, so does the chance of coalescing

While there are j lineages, the rate at which a
coalescence happens is just (g)/ZN(t) atimet

ago

Shapes of trees can tell us about N(t)

| |
| |
Coalescence happens faster
| |
when M is small
|
| | | | | |
| | | | |
| | | | .
j=4
| | | |
| | |
| |

Sample of size n=6



Adding mutation to the| miX

Distinct mutation
events

® /‘

e Mutations are dropped randomly on the edges of the tree (e.g. in many simulation

software packages)
* They are seen in descendants of this edge, so this totally specifies diversity

patterns
* We will talk about some theory results about spread of mutations in the coalescent

later



What about recombination?
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* Unlike mutation, recombination events actually change the trees

Father Mother

Child I_’ F— J

* One piece of DNA can be inherited from two different parental
chromosomes, as a mosaic



Principles of adding recombination
to the coalescent

In the Wright-Fisher model, if recombination occurs
then a chromosomal segment has two parents

=




Principles of adding recombination
to the coalescent

In the Wright-Fisher model, if recombination occurs
then a chromosomal segment has two parents

i




The ancestral recombination graph




The tree at the left-most position in the region

A small piece of DNA is not impacted by
recombination, so the coalescent model still
applies — with the same rates as usual

A



The tree at the right-most position in the region

A small piece of DNA is not impacted by
recombination, so the coalescent model still
applies

The bases of the trees have less recombination so
are more similar than the tops

i



Building trees under this model —
approximately — with Relate

https://mvyersgroup.github.io/relate/

Reré_{e

Software to estimate genome-wide genealogies for thousands of samples
Relate estimates genome-wide genealogies in the form of trees that adapt to changes in local ancestry caused by recombination. The method, which is scalable to thousands of samples, is described in the following paper.

Please cite this paper if you use our software in your study.
Citation: Leo Speidel, Marie Forest, Sinan Shi, Simon Myers. A method for estimating genome-wide genealogies for thousands of samples. Nature Genetics 51: 1321-1329, 2019

Contact: leo.speidel@outiock.com
Website: hitps://lecspeidel. wordpress.com

Download

Relate is available for academic use. To see rules for non-academic use,
please read the LICENCE file, which is included with each software
download.

Pre-compiled binaries (last updated: 02/09/2019)

| agree with the terms and conditions

In the downloaded directory, we have included a toy data set. You can try
out Relate using this toy data set by following the instructions on our
getting started page.

If you have any problems getting the program to work on your machine or
would like to request an executable for a platform not shown here, please
send a message to leo.speidel [at] outlook [dot] com.

We document changes to previous versions in a change-log.

L. Speidel, M. Forest, S. Shi, S. Myers. Nature Genetics 2019


https://myersgroup.github.io/relate/

Data, and the underlying tree structure
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This is a simulation without (for now) recombination
Every mutation occurs only once on the tree....so

I

Every mutation shows the existence of a branch, suggesting

we can build the tree given enough mutations
Given the tree, we can uniquely map each mutation to its
branch




A basic tree-builder: UPGMA

e We are confronted with variation

data — how do we build a tree? True tree
 UPGMA coalesces lineages with +

smallest number of (averaged)

pairwise differences
* (2,3) and (5,6) are coalesced first ¢ °
* (5,6) and 4 are coalesced ®
* Now, pairwise difference of ® o ®

1and (2,3)is 5

1 and (5,6) is 4 ®

land4 is5

1 ||® ]

—> 1 and (4,5,6) are coalesced next!




UPGMA tree cannot be correct, given the data

UPGMA tree True tree

|

: +

O o

O O
O o
o O ® ® O P
O o
B . — — @ T 1
2 3 1 4 5 6 1 2 3 4 5 6

The UPGMA tree cannot be correct, because it does not include any branch whose
descendants are sequences 1,2,3. How can we fix this?



Towards Relate: counting derived mutations to
build the correct tree

True tree
relative to +
1 (2,3)  (4,5,6)
= [
P o (@] -
S @
s 23 (4)| o | s
= ®
e ? ?
2 (4,5,6) 2 2 0
= O
Avoids adding information of two branches!
1 [|® T 1




How does Relate work?

* In the no-recombination case, it first counts numbers of
derived mutations for each pair:

* Performs coalescences between mutually most similar
lineages

* Guaranteed to produce a tree matching the data!

e First builds a tree structure/topology (times are deferred
for now)



Accounting for recombination
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 Recombination means pairs of sequences are most similar for only stretches of DNA

 Use a HMM to (intuitively) identify these stretches, count derived mutations only within
them, then proceed as for no-recombination case

 More formally, we use a modified version of Li+Stephens (Genetics, 2003) where we
count differences



Summary of Relate pipeline

Hidden Markov model (HMM)
Li and Stephens, Genetics, 2003; Lawson et al., PLOS Genetics, 2012

focal SNP

Reconstruct one chromosome as a mosaic of other samples
e

‘ Distance matrix for focal SNP

%mmm:

m—)

Hierarchical clustering — e

. ——

MCMC for branch lengths

—
o

haplotype data sorted using constructed tree



Coffee break!

After the break:
branch lengths,
variable population
sizes, and
applications of
Relate



Branch lengths and population size are
estimated jointly in an EM algorithm

* Expected branch lengths depend on population size N(t) f \

(or coalescence rates 1/2N(t))
* While there are j lineages, the rate at which a coalescence happens
is (é)/ZN(t) a time t ago
* Demography is shared genome-wide, so we average across trees

e So within a time interval, scaled fraction of trees where
coalescence occurs is inversely proportional to N(t)

Li-and Stephens copying model
Build Relate trees EM algorithm
Infer branch lengths
. g Infer N(t) from tree Infe.r branf:h lengths
using constant N(t) using variable N(t)
Using the coalescent Using the coalescent | Using the coalescent

N



Simulation: population size changes through time

- Effective population size = inverse coalescence rate
- N: number of diploid samples

— true trees, N =100 —— Relate trees, N =3
Relate trees, N = 100 Relate trees, const Ne, N =100
20000 : :

o stdpopsim Zigzag_1S14
N
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c 15000+ _
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Speed and accuracy of Relate

About 14,000 times faster than previous method, ARGWEAVER
(1 min. vs. 200 hours), slower than tsinfer + tsdate

Builds “correct” tree if no recombination

Accurate, robust to data errors

Can sample posterior branch lengths

Estimated Time

No Error

Empirical Error

Empirical Error + 1% Ancestral State Error
7

351659 mugations

Pearson sr:0.86
Spearman S p 0.86
Bias:-!

L,

" KCDist. (A=0):3.95E+02

~

KC Dist. (A=1):5.40E+06

346025 mgtations
Pearson sr:0.82

Spearman's p: 0.83
BFas -1072.4 p

,
-
7

/" KCDist. (A=0):4.47E+02
KC Dist. (A=1):6.44E+06

358430 mutations
0.85

Pearson sr.0.83
Spearman’s p: 0.84_
Bias:-1018.1

z
7

" KCDist. (A=0):4.61E+02
KC Dist. (A=1):6.75E+06

351659 mutations
MSLE: 0.7

Pearson s 0 88
Spearman'’s p: 0.88
Bias:474.27

346025 mutations
MSLE: 0.7

Pearson s 0 87
pearman 's p: 0.87
Blas:244.87

358430 mutations
MSLE: 0.7

Pearson sr 0 88
pearman 's p: 0.88
Bias:291.58

/" KCDist. (=0):4.88E+02
KC Dist. (A=1):2.20E+06

/" KCDist. (A=0):5.19E+02
KC Dist. (A=1):2.16E+06

/" KCDist. (A=0):5.31E+02
KC Dist. (A=1):2.20E+06

7

346025 mutations
RMSLE: 1.01
Pearson's r: 0.78
Spearman’ Sfr 0.7
Bias:1921.0

7

358430 mutations
MSLE: 1. 01

True Time

Wohns et al. Science 2022

Relate mismatch tsinfer + tsdate

GEVA

(iteration)
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Example |: 1000 Genomes Project data:

e 4956 haplotypes from 26 populations
e ~71,000,000 biallelic SNPs

e ~93% of SNPs map uniquely to a tree (80% for CpG mutations due
to repeat mutations)

Run time: ~4 days on 300 cores



Genealogy-based inference of
human evolutionary history

One reconstruction of history, many applications that are self
consistent



Latitude

Inferring fine-scale population structure and

how it changed through time

trix

past

present
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Fan, Mancuso, Chiang, bioRxiv, 2021
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Relate applied to 50 wild mice sampled in

India, Taiwan, and France
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Runtime: 17 CPU hours for 19 chromosomes, Memory usage < 2.5 Gb



Population structure through time in
French mice
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Population structure through time in
Talwanese mice
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inverse coalescence rate

104

PC2

-10

Colate: Inferring coalescence rates for

low-coverage, unphased (ancient) genomes
Speldel et al. MBE, 2021
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Reminder: Clusters of mutations in time can
capture changes in mutation rate

Mutation rate
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TCC/TTC mutation rates experienced
a strong increase in the Upper Paleolithic

* First reported by Kelley Harris (PNAS 2015, elLife 2017)
* Unknown cause (genetic?, environmental?)
* Previously mainly studied in modern groups
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Speidel, Nature Genetics, 2019
How did this spread to all West Eurasians today?

Colour shows strength of elevation
in TCC/TTC mutation rates
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TCC/TTC mutation rate increase happened >15k years
ago, and spread among hunter-gatherers before farming

Speidel et al, MBE, 2021
Ice Age Europe

>20,000 years ago

£3 ICE §8

e.g., Sunghir3 (30k year old), Russia
e.g., Sidelkino (11k year old), ]
S Russia

Eastern HGL

e.g., Bichon (14k year old),
Switzerland | Western HG

Caucasus HG
e.g., KK1 (9k year old)

Anatolia
e.g., Bon002 (10k year old)

Colour shows strength of elevation in TCC/TTC mutation rates [N
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Detecting signals of positive selection

* First, consider a single mutation
* Genetic adaptations to changing environment, diet, lifestyles,...
e Use trees incorporating demographic history:
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How quickly does a mutation spread
in the neutral case?

il

Z,=5 =2
n=7
The coalescent is simple so it is possible to analytically write down the probability a

mutation arising while k lineages are in the tree has at least some number of
descendants: yields a p-value, testing a null hypothesis of no selection

Example: if k=2, this is just a uniform distribution

P(5 descendants)=1/6; P=P(5 or more descendants)=1/3
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P-values: very well calibrated under
null simulations of no selection

N=1000, 250Mb
Bottleneck population size

a 8 8t
GBR - constant population size . Ps GBR - inferred population size
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Improved power to see weak selection than
existing approaches
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Genome-wide selection p-values

Given most traits are highly polygenic, expect mainly weak, polygenic selection

GBR

is hard to detect,
compared to shifts in distributions

» EDAR

'Nominal significance
1(p=0.05) Selection coefficient
: |:| 0.00 (no selection)
: |:| 0.001 (weak selection)
%‘ : |:| 0.01 (strong selection
® 054 :
How does weak selection :
evidence vary by trait? 00 :

0 2 4 6
-log10 p-value



GWAS hits are most enriched, among
selection sighals we observe
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Evidence of selection on a trait: hair colour

Use effect direction of “genome-wide significant” associations

1.
Compare selection p-values to frequency matched random SNPs

2.

(Wilcoxon rank-sum test)

Relate p-values iHS scores
B Darker hair colour

B Darker hair colour
Lighter hair colour Lighter hair colour

East Asians Europeans  South Asians

South Asians Africans

N
o
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Many key events in our evolutionary
history are only implicated as subtle

Selection p-values: only a handful of “genome-wide significant” loci
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Evidence for selection increasing risk of T2D in
African-ancestry people

Nature Genetics (2022), with Anubha Mahajan (Oxford), Mark McCarthy (Genentech)
e 171,262 cases and 1,075,072 controls from diverse ancestries

* 337 independent loci with T2D risk associations

e 209 (MSL) — 297 (FIN) segregating hits per population

a T2D risk decrease
B T2D risk increase
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. BEWARE -

shutterstock.com = 320419889

Correlated phenotypes

Pleiotropy (in T2D, risk increase is fully explained by
mutations associated with changes in body fat
composition)

Biased effect sizes (e.g., due to genetic structure)
Unbalanced power for different ancestries



CLUES: Importance-sampling based method for

inferring selection coefficients
Aaron J. Stern, Peter R. Wilton, Rasmus Nielsen. PLOS Genetics, 2019. Ve
Aaron J. Stern, Leo Speidel, Noah A. Zaitlen, Rasmus Nielsen. AJHG 2021 '

Simulations:
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Summary & outlookg o g

* |tis now possible to build genealogical trees for huge datasets, in humans
and other species (currently 10,000 individuals or more)
* Humans (ancient and present)
* Dogs and wolves

* Mice

 Bacteria OXTORD
* Atlantic cod, Cichlids EPARTMENT OF
* Waterhemp, Arabidopsis STATISTICS

* These trees capture information about many processes including
* Migrations and ancient introgression
* Mutation rate evolution
* Trait evolution
* (and many more things)

* Lots of scope for more methods using

inferred genealogies (under development)

....creative approaches to leverage trees to answer biological questions!



P-value for evidence of positive selection

* How much has a mutation out-competed other mutations?
* Robust to population size history

| | k lineages when mutation had frequency 2
/
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fn derived allele carriers
N—k+2
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