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Sedlazeck lab: Overview

Algorithms Benchmarking
Sniffles2 (in review)
TRGT (in review)
Read2Tree (2023)
Truvari (2022)

Tandem Repeats (in work)

Medical genes (2022)

STIX (2022)
Parliament2 (2020)
Paragraph (2019)
NextGenMap-LR +Sniffles (2018)

SNV Benchmarks (2022)

SV diversity (2021)

SV Benchmark (2020)

Comprehensive Population
genomics

ADSP
LPA diversity (in review) CCDG

Topmed

Rapid ONT (2022)
Han Chinese

Human Genome (2022) AllOfUs
CARD

Forensic STR (2022) SMAHT

UAE



Early 2000s dogma: SNPs account for most human
genetic variation

a SNPs

Chromosome 1
Chromosome 2
Chromosome 3
Chromosome 4

b Haplotypes

https://hapmap.ncbi.nlm.nih.gov

SNP SNP SNP
v v ;

AACACGCCA.... TTCGGGGTC.... AGTCGACCG....
AACACGCCA.... TTCGAGGTC.... AGTCAACCG....
AACATGCCA....TTCGGGGTC.... AGTCAACCG....
AACACGCCA.... TTCGCEGGTC.... AGTCCACCG....

Haplotype1 CTCAAAGTACGGTTCAGGCA
Haplotype? TTGATTGCGCAACAGTAATA
Haplotype3 CCCGATCTGTGATACTGGTG

Haplotyped TCGATTCCGCGGTTCAGACA


https://hapmap.ncbi.nlm.nih.gov/

Segmental duplications (a.k.a. Low copy
repeats)
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~5% of the human genome is duplicated!

Bailey et al, 2002



Variation in genome structure. So-called
"structural variation" (SV)

Reference I\ B C
CNV Deletion —n—ﬂLH—
SV Insertion A B X C D
CNV  Duplication A B B C D
SV Inversion A B D C
SV Translocation A B Q R

SV is a superset of copy number variation (CNV). Not all structural changes affect

copy number (e.g., inversions)!



Our understanding of structural variation is driven
by technology
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High throughput
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Why are structural variations relevant / important?

 They are common and affect a large fraction of the
genome

 They are a major driver of genome evolution

Evolution

L

B

Genomic Disorders




Why are structural variations relevant / important?

 Genetic basis of traits

Impact on regulation
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Outline

1. CNV analysis ' } )! ‘AR

2. SVs analysis
1. Assembly based | ! £28¢
2. Short reads - " '-l 3ty i-‘
3. Longreads 9l bbb
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Humans differ by roughly 3,000 deletions
(>=500bp)

iiiii



Humans differ by a few hundred duplications
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Copy-number Profiles

Copy Number
2 4 . "




Gingko

http://gb.cshl.edu/ginkgo

Interactive Single Cell CNV analysis & clustering

* Easy-to-use, web interface, parameterized for binning,
segmentation, clustering, etc

* Per cell through project-wide analysis in any species

Compare MDA, DOP-PCR, and MALBAC

* DOP-PCR shows superior resolution and consistency

Avadilable for collaboration
* Analyzing CNVs with respect to different clinical outcomes
* Extending clustering methods, prototyping scRNA

Interactive analysis and assessment of single-cell copy-number variations.
Garvin T, Aboukhalil R, Kendall J, Baslan T, Atwal GS, Hicks ], Wigler M, Schatz MC

(2015) Nature Methods doi:10.1038/nmeth.3578




Data are noisy
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Potential for biases at every step
* WGA: Non-uniform amplification
* Library Preparation: Low complexity, read duplications, barcoding
* Sequencing: GC artifacts, short reads

. EOT utation: mappability, GC correction, segmentation, tree
ui

Coverage is too sparse and noisy for SNP analysis
-> Requires special processing



1. Binning
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CNV analysis
= Divide the genome into “bins” with ~50 — 100 reads / bin
= Map the reads and count reads per bin
Use uniquely mappable bases to establish bins
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CNV analysis
= Divide the genome into “bins” with ~50 — 100 reads / bin
= Map the reads and count reads per bin
Use uniquely mappable bases to establish bins



1. Binning
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CNV analysis
= Divide the genome into “bins” with ~50 — 100 reads / bin
= Map the reads and count reads per bin
Use uniquely mappable bases to establish bins



Read Counts

Normalized Read Counts

0 200 400 600

4.0

25

1.0

2. Normalization

Also correct for mappability, GC content, amplification biases



Normalized Read Counts

3. Segmentation




4. Estimating Copy Number

Read Counts Scaled by SoS Multipler (1.7)

Copy Number
5

39000




Using Nanopore MinlON: CNV karyotyping.




Nanopore sequencing for CNV detection




SKBR3 cell line CNV Analysis

{YNANOPORE




1es01

E=sl)

[_Tei]

Be=-01

SID97277 - partial chromosomal deletions

Integer Copy Number Profile for Sample "CNV_050316_SID97278_both®
Predicted Ploidy = 1.95

> D

Copy Number

N

CTE15301 AHNGHNHEGHX lane 1_1 ¢TE15381 TumorArray_AML_RL

1 2 3 4 5 :] 7

Chromosome

L]

B 1 i Fd i3

19_19128_HB_Ploidy corres

14

18 1% 0 31232 5

MinlON data

~60k reads

a—_—h—n_u-_

MiSeq Data

5q deletion indicates poor
prognosis

Chr11 abnormalities
indicate poor prognosis




SID97277 karyotype

Integer Copy Number Prefile for Sample "CNV_050316_SIDS7278_both”
Predicted Ploidy = 1.95
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CNV detection summary

* Advantages

* Less coverage is required
* -> Applications such as single cell sequencing

* Disadvantages

* Resolution of events
* usually in the multi kbp
* Only deletions and duplications

* Coverage biases in short reads




Assembly based

1. De novo assembly
2. Genomic alignment (WGA)
3. Detangle the genomic alignment to identify variants.



Expected Contig Length

100k

10k

1k

100

s ] /
dog N50

Ingredients for a good assembly

Coverage

dog me:
panda N50 +

panda mean +

= 1000 bp
@ 710 bp
= 250 bp
O 100 bp
W 52bp
B 30bp

T T T T T T T T T
o) 5 10 15 20 25 30 35 40

Read Coverage

High coverage is required

Oversample the genome to ensure
every base is sequenced with long
overlaps between reads

Biased coverage will also fragment
assembly

Read Length

Reads & mates must be longer
than the repeats

—  Short reads will have false overlaps

forming hairball assembly graphs

—  With long enough reads, assemble
entire chromosomes into contigs

Quality

Errors obscure overlaps

Reads are assembled by finding
kmers shared in pair of reads

High error rate requires very short
seeds, increasing complexity and
forming assembly hairballs

Current challenges in de novo plant genome sequencing and assembly
Schatz MC, Witkowski, McCombie, WR (2012) Genome Biology. 12:243



Goal of WGA

* For two genomes, Aand B find a mapping from each position in Ato
its corresponding position in B

CCGGTAGGCTATTAAACGGGGTGAGGAGCGTTGGCATAGCA

CCGGTAGGCTATTAAACGGGGTGAGGAGCGTTGGCATAGCA



Not so fast...

* Genome Amay have insertions, deletions, translocations, inversions,
duplications or SNPs with respect to B (sometimes all of the above)

CCGGTAGGATATTAAACGGGGTGAGGAGCGTTGGCATAGCA

CCGCTAGGCTATTAAAACCCCGGAGGAG. . . .GGCTGAGCA



WGA visualization

* How can we visualize whole genome alignments!?

* With an alignment dot plot
* Nx M matrix
* Let /= position in genome A
* Let j= position in genome B
* Fill cell () if Ashows similarity to B

* A perfect alignment between Aand Bwould completely fill the positive
diagonal
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Insertion into Reference

Insertion into Query

Collapse Query

R: ARRB
Q: ARB

Collapse Reference

R: ARB
Q: ARRB

AR RB

Collapse Query
wi | rtion

R: ARIEB
Q: ARB

Exact tandem
alignment if I=R

Collapse Reference
wilnsertion

R: ARB
Q: ARIRB

Exact tandem
alignment if I=R

AR 1 RB.

Collapse Query

Collapse Reference

m
R: ARRRB @ R: ARRB o
Q: ARRB | Q: ARRRB o
x| x
<| /' <
A
Inversion Rearrangement w
w/ Disagreement
1]
R: ABC R: ABCDE
Q: ABC Q: AFCBE Q
L
< e dld

 Different structural
variation types /
misassemblies will be
apparent by their
pattern of breakpoints

* Most breakpoints will
be at or near repeats

* Things quickly get
complicated in real
genomes

http://mummer.sf.net/manual/
AlignmentTypes.pdf




Question: 1

Can an assembly detect all SVs in a diploid genome?

nerator.net



Assembly based detection summary

* Advantages
* Enables the detection of every event
e Good quality for insertions

* Disadvantages
* Genomic alignment is challenging.
* Heterozygous events are likely missed.




Exercise Partl: Fun with assembly

* Cryptosporidium parvum: Interesting

parasite infect ~7.6%.
e 8 chromosomes
e ~9.2 Mbp genome size

* Sequenced with lllumina & ONT

e Goto Part 1:
https://github.com/fritzsedlazeck/teach

ing material

GigaScience, 2022, 11, 1-8
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Fully resolved assembly of Cryptosporidium parvum

Vipin K. Menon “'*, Pablo C. Okhuysen 2, Cynthia L. Chappell?, Medhat Mahmoud !, Medhat Mahmoud !, Qingchang Meng?,

Harsha Doddapaneni !, Vanesa Vee!, Yi Han', Sejal Salvi', Sravya Bhamidipati', Kavya Kottapalli*, George Weissenberger?,
Hua Shen’, Matthew C. Ross®, Kristi L. Hoffman * *, Sara Javornik Cregeen*, Donna M. Muzny !, Ginger A. Metcalf ~?, Richard
A. Gibbs ', Joseph F. Petrosino 4 and Fritz J. Sedlazeck = '**
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Library Preparation
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lllumina NovaSeq 6000

Short-read Sequencing
(2x150 bp)
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Canu assembly

Shotgun library

PromethlON Sequencing
Long-read Sequencing

Flye assembly

! !

: de novo assembl
Error Correction y
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Polished Assembly


https://github.com/fritzsedlazeck/teaching_material
https://github.com/fritzsedlazeck/teaching_material

Aa

Sample genome

Reference genome

b

Sample genome

Reference genome

Sample genome R R T T

Reference genome
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Reference genome

How to detect Structural Variations

Inversion

Normal read pair
Read depth
Splitread

Abnormal distance
(intrachromosomal)

~\\\/-

Unmapped read in a pair B

Abnormalread +« = .
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Looking for "discordant” paired-end fragments

- — . .
- --- - — Paired-end sequencing
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Insert Size
Slide in collaboration with Ira Hall



Sequence alignment “signals™ for structural
variation

1. Align DNA sequences from sample to human reference genome

|

2. Look for evidence of structural differences

Ret — -= \ / \, _— l l
-_ -—_ \ / \ / S
] : \7 —_ j -
. . . =g
(a) Depth of (b) Paired-end (c) Split-read (d) de novo
coverage mapping mapping assembly



A propabilistic Tramework tor SV
discovery

1|

A B

Source Files { Sample Known Variants Source Files { Sample 1 Sample 2 Sample 3
Paired-End Split-Read CNV Paired-End Paired-End Paired-End
Aligner Aligner Predictor Aligner Aligner Aligner
oo oo
¥ Py E__ Sacsi S st o e *e, g‘“:.é - ” E . ~ AN : e ,.'I E._ ‘.,
T e —— : —TT s —s
inpul{ ._’..J.‘_ - ‘ - _‘T’_ ‘ lnpul{ ._§.¢.Q_ _’.l‘_ ._...‘.Q_
Breakpoint Read-Pair Split-Read Generic Generic Breakpoint Read-Pair Read-Pair Read-Pair
Evidence Module Module Module Module Evidence Module Module Module

: : : | : : |

Breakpoints { x_/- AJL [—\ /_\ n " Breakpoints{ l x_/- ‘x_/_ , \j

Cluster Cluster
Predicted * Predicted
Breakpoint LG | & Breakpoint S
Regions Regions

Figure 1 The LUMPY framework for integrating multiple structural variation signals. (A) A scenario in which LUMPY integrates three
different sequence alignment signals (read-pair, split-read and read-depth) from a genome single sample. Additionally, sites of known variants are
provided to LUMPY as prior knowledge in order to improve sensitivity. (B) A single signal type (in this case, read-pair) that is integrated from three
different genome samples. We present these as example scenarios and emphasize that multi-signal and multi-sample workflows are not mutually
exclusive. CNV, copy number variation.

Lumpy integrates paired-end mapping, split-read mapping, and
depth of coverage for better SV discovery accuracy

Ryan Layer

Layer et al, 2014



Problem #1: Often many false positives

— Short reads + heuristic alighment + rep. genome =
systematic alignment artifacts (false calls)

- Chimeras and duplicate molecules
- Ref. genome errors (e.g., gaps, mis-assemblies)

- ALL SV mapping studies use strict filters for above



Problem #2: The false negative rate is also
typically high

- Most current datasets have low to moderate physical coverage due to
small insert size (~10-20X)

— Breakpoints are enriched in repetitive genomic regions that pose
problems for sensitive read alignment

- FILTERING!

- The false negative rate is usually hard to measure, but is thought to be
extremely high for most paired-end mapping studies (>30%)

- When searching for spontaneous mutations in a family or a
tumor/normal comparison, a false negative call in one sample can be
a false positive somatic or de novo call in another.



How to filter / choose the SV caller?

* Each method applies its own heuristics.

Method # Sim. SV avg FDR | avg Sensitivity
DELLY 33-198 0.13 0.75
LUMPY 33-198 0.06 0.62
Pindel 33-198 0.04 0.55
SURVIVOR 33-198 0.01 0.70




Question: 2

What is the difference between a CNV and SV duplication?

b | LOVEIQUESTIONS




Exercise Part 2: Short read based

 Utilize short read mapping to call SV
* We will use Manta

e Go to: Part 2
https://github.com/fritzsedlazeck/teaching material

 Remember files are also available locally


https://github.com/fritzsedlazeck/teaching_material

PacBio / ONT sequencer

Advantage:

* Long reads,
Disadvantage:

* Throughput/yield
* Costs

* High error rates




Long Read Technologies

* (+) SVs in repetitive regions

* (+) Span SVs

* (+) Uniform coverage

* (+) Can identify more complex SVs

* (-) Higher seq. error rate
* (-) Hard to align o g



Mapping challenges

BWA-MEM: NGMLR:




Mapping challenges

BWA-MEM:
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3.2 NA128738

* Healthy female
* Gold standard in genomics

* Sequenced with many technologies independently:
* |llumina, PacBio, Oxford Nanopore



3.2 NA12878: Deletion calling

Tech. Cov. Avg len SVs DEL DUP INV INS TRA
PacBio 55x 4,334 22,877 9,933 162 611 12,052 119
Oxford 28X 6,432 32,409 27,147 87 323 4,809 43

Nanopore
T —— 4982\ 1r506 | 7,102 169 113 | 5,166 46

Nanopore

@Baylor
Illumina 50x 2x101 7,275 3,744 731 553 0 2,247




3.2 NA12878: check 2,247 vs 119 TRA

Overlap lllumina TRA(%)
Translocations 7.74 — . 1 3 W
Insertions 53.05 [llumina data
Deletions 12.06 i |
Duplications 0.57
Nested 0.31 - — p——
High coverage 1.87 Translocation: E=_ —
Low complexity 9.79 -
Explained 85.40

Insertion

In rep. regior




NA12878: check 2,247 TRA

=
, =
Inversion: a
— —
- =
—3
S— — = ¢
=
1 - — o
Insertion. o
' : =
J _Inrep.regioh &
w ¥ r -l
mﬂ 14
[}
m-ml:l:
—mi'

Illumina data

Truncated reads:

Translocation:| e
- T
PacBio data L 1
Insertion wl
— Inrep. regior] | 1 |« '
- ONT data i

|l



Question: 3

What are the problems of long reads?

REGARDLESS OF YOUR QUESTION,
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Exercise Part 3: Long read based

 Utilize Oxford Nanopore Technology to identify SV
* We will use Sniffles v2

* Go to: part 3&4
https://github.com/fritzsedlazeck/teaching material

* Files are also available locally. If you don’t find a file | have
included download links.


https://github.com/fritzsedlazeck/teaching_material

Sniffles2: Genome in a Bottle (GIAB) Benchmark

GIAB (Oxford Nanopore)
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Sniffles2 outperforms current
methods in accuracy & speed

Coverage-adaptive: Stable
performance across sequencing
coverages



Sniffles2: GIAB benchmar;: o
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Towards a Comprehensive Variation Benchmark for Challenging Medically-
Relevant Autosomal Genes

Justin Wagner, Nathan D Olson, Lindsay Harris, Jennifer McDaniel, Haoyu Cheng, Arkarachai Fungtammasan,

[ ] [ ]
‘ h a | | e n g I n g M e d I C a | G e l Yih-Chii Hwang, Richa Gupta, Aaron M Wenger, William | Rowell, Ziad M Khan, Jesse Farek, Yiming Zhu,
1 '
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For the CMRG benchmark, Sniffles2 was the most accurate and fastest caller. In

comparison:
... to the 2nd most accurate (cuteSV), Sniffles2 was ~10x as fast (CPU time)

.. to the 2nd fastest (svim), Sniffles2 was >15% more accurate (genotype F1)
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New Applications in SV detection

Fig. 1: Overview of population-scale studies using long-read sequencing.
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New Applications in SV dete

Review

Neurobiology of Disease
Volume 144, October 2020, 105021

i

|

Germline SV
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Somatic mutations in neurodegeneration: An
update
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Somatic SVs in Multiple System Atrophy (MSA)

[ ) @ IGV - Session: [Users/moritz/Main/Sniffles2NoCloud/Paper/MSA_Analysis/Selections/selec
Human (hg38) B B chra:21,225,828-21,226,670 Go| 1

e MSA: Rare neurodegenerative disorder
(Synuncleinopathy) — progressive
Autonomic dysfunction, Parkinsonism-like
symptoms Sl -

21,225,900 bp 21,226,000 bp 21,226,100 bp 21,226,200 bp 21,226,300 bp 21,226,400 bp 21,226,500 bp 21,226,600 bp 21
| | | | | | | | | | | | | | | |

o Data: Deep long-read sequencing (>55x) of LA |
regional brain sample .

e Sniffles2 Non-germline mode — capture rare

optical mappng/Bionand oo smalh, || I

KKKKKK

l4 tracks loaded | fehr:21,225,977 | |[1,720M of 2 529M

. . . . . Sniffles2 recovered mosaic deletion in KCNIP4
in collaboration with Christos Proukakis (UCL) (Interactor of neuronal voltage gated potassium channels)
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Thank you

* SV calling is SNP calling of 2009/10

* Reads are typically shorter than the allele
* Lot of noise in the data

e Contact me if you are interested:
Fritz.Sedlazeck@bcm.edu



mailto:Fritz.Sedlazeck@bcm.edu
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