

HTS data formats and Quality Control petr.danecek@sanger.ac.uk

Data Formats

FASTQ

Unaligned read sequences with base qualities

SAM/BAM

- Unaligned or aligned reads
- ► Text and binary formats

CRAM

▶ Better compression than BAM

VCF/BCF

- ▶ Flexible variant call format
- ► Arbitrary types of sequence variation
- ► SNPs, indels, structural variations

Sequencing Instrument FASTO Sequence Alignment BAM Variant Calling VCF **Analysis**

Specifications maintained by the Global Alliance for Genomics and Health

FASTA - reference genome

2003	NCBI Build 34	hg16
2004	NCBI Build 35	hg17
2006	NCBI Build 36.1	hg18
2009	GRCh37	hg19
2013	GRCh38	hg38

FASTQ

- ► Simple format for raw unaligned sequencing reads
- Paired-end sequencing: two FASTQ files or one interleaved file
- Quality encoded in ASCII characters with decimal codes 33-126
 - ▶ ASCII code of "A" is 65, the corresponding quality is Q = 65 33 = 32

- ▶ Beware: multiple quality scores were in use!
 - ► Sanger, Solexa, Illumina 1.3+
 - ► See https://en.wikipedia.org/wiki/FASTQ_format for details
- ▶ perl -e 'printf "%d\n",ord("A")-33;'

Quality = Phred-scaled probability of an error

Quality	Probability of error	Accuracy	
10 (Q10)	1 in 10	90%	
20 (Q20)	1 in 100	99%	
30 (Q30)	1 in 1000	99.9%	
40 (Q40)	1 in 10000	99.99%	

$$Q = -10 \log_{10} P$$
 ... $P = 10^{-Q/10}$

Flag

Hex	Dec	Flag	Description
0×1	1	PAIRED	paired-end (or multiple-segment) sequencing technology
0×2	2	PROPER_PAIR	each segment properly aligned according to the aligner
0×4	4	UNMAP	segment unmapped
0×8	8	MUNMAP	next segment in the template unmapped
0×10	16	REVERSE	SEQ is reverse complemented
0×20	32	MREVERSE	SEQ of the next segment in the template is reversed
0×40	64	READ1	the first segment in the template
0×80	128	READ2	the last segment in the template
0×100	256	SECONDARY	secondary alignment
0×200	512	QCFAIL	not passing quality controls
0×400	1024	DUP	PCR or optical duplicate
0x800	2048	SUPPLEMENTARY	supplementary alignment

Bit operations made easy

samtools flags
 0xa3 163 PAIRED, PROPER PAIR, MREVERSE, READ2

- python

0x1 | 0x2 | 0x20 | 0x80 .. 163 bin(163) .. 10100011

CIGAR string

compact representation of sequence alignment:

M alignment match or mismatch

sequence match
 x sequence mismatch

sequence mismatch

insertion to the reference

D deletion from the reference

soft clipping (clipped sequences present in SEQ)

H hard clipping (clipped sequences NOT present in SEQ)

N skipped region from the reference

P padding (silent deletion from padded reference)

Ref: ACGTACGTACTGT Ref: ACGT---ACGTA Ref: CTCAGTG-GTCATCGTT
Read: ACGT---ACTGA Read: ACGTACGTACGTA Read: CGCA-TGAGTCTAGACG
Cigar: 4M 4D 5M Cigar: 4M 4I 5M Cigar: 4M 1D 2M 1I 3M 6S

Insert size

length of the DNA fragment sequenced from both ends by paired-end sequencing:

Optional tags

AS Alignment score by the aligner

NM Edit distance to the reference

MQ Mapping quality of the mate

RG Read group

Read Group ID SR PL Sec

ID SRR/ERR number

Sequencing platform

PU Run name

LB Library name

PI Insert fragment size

PI Insert fragment SM Individual

CN Sequencing center

BAM specification

 $http://samtools.github.io/hts-specs/SAMv1.pdf\\ http://samtools.github.io/hts-specs/SAMtags.pdf$

SAM / BAM tools

Samtools - Wellcome Sanger Institute (http://www.htslib.org)

- convert between SAM, BAM, CRAM
- sort, index
- If lagstat summary of the mapping flags
- merge multiple BAM files
- rmdup remove PCR duplicates from the library preparation

Picard tools - Broad Institute (https://www.broadinstitute.org/gatk/)

 MarkDuplicates, CollectAlignmentSummaryMetrics, CreateSequenceDictionary, SamToFastq, MeanQualityByCycle, FixMateInformation etc.

Others

- ▶ Bio-SamTool Perl (http://search.cpan.org/~lds/Bio-SamTools/)
- Pysam Python (https://github.com/pysam-developers/pysam)
- ► R Bioconductor/Rsamtools

BAM Visualisation

- ► IGV: http://www.broadinstitute.org/igv/
- ▶ BamView, LookSeq, Gap5, Tablet, Ensembl, UCSC, Bambino, Biodalliance...

CRAM: Reference based Compression

BAM files are too large

► ~1.5-2 bytes per base pair

Increases in disk capacity are being far outstripped by sequencing technologies

Zachary D. Stephens, et al, Big Data: Astronomical or Genomical? DOI: 10.1371/journal.pbio.1002195

CRAM: Reference based Compression

BAM files are too large

► ~1.5-2 bytes per base pair

Increases in disk capacity are being far outstripped by sequencing technologies

BAM stores all of the data

- ▶ Every read base
- Every base quality
- Using a single conventional compression technique for all types of data

CRAM: in lossless mode 60% of BAM size

- ► Reference based compression
- Controlled loss of quality information
- ▶ Different compression methods for different type of data

Support for CRAM

- ▶ added to Samtools/HTSlib in 2014, to GATK in 2015
- ► CRAM is now mature and used in production pipelines
 - ▶ all sequencing data by default in CRAM format
 - ▶ 40% disk space saving immediately

VCF: Variant Call Format

File format for storing variation data

- ► tab-delimited text, parsable by standard UNIX commands
- ▶ flexible and user-extensible
- ► compressed with BGZF (bgzip), indexed with TBI or CSI (tabix)

```
. . .
##INFO=<ID=DP.Number=1.Type=Integer.Description="Raw read depth">
##INFO=<ID=AF, Number=A, Type=Float, Description="Allele frequency in population">
##FORMAT=<ID=GT, Number=1, Type=String, Description="Genotype">
##FORMAT=<ID=AD.Number=R.Type=Integer.Description="Allelic depths (ref.alt...)">
. . .
#CHROM POS ID REF ALT
                         OUAL FILTER
                                      INFO
                                                      FORMAT
                                                             SAMPLE1
                                                                        SAMPLE2
                                                                                  SAMPLE3
11
    24535 .
               G A
                         243
                               PASS
                                      DP=221; AF=0.5 GT: AD
                                                             0/1:73,15 0/0:48,0
                                                                                  0/1:71,14
```

Row-oriented, tab-delimited file with eight mandatory columns (CHROM-INFO)

```
. . .
##INFO=<ID=DP.Number=1.Type=Integer.Description="Raw read depth">
##INFO=<ID=AF, Number=A, Type=Float, Description="Allele frequency in population">
##FORMAT=<ID=GT, Number=1, Type=String, Description="Genotype">
##FORMAT=<ID=AD.Number=R.Type=Integer.Description="Allelic depths (ref.alt...)">
#CHROM POS
           ID REF ALT OUAL FILTER INFO
                                                     FORMAT
                                                             SAMPLE1
                                                                        SAMPLE2
                                                                                  SAMPLE3
    24535
                         243 PASS
11
               G
                                      DP=221; AF=0.5 GT: AD
                                                             0/1:73,15 0/0:48,0
                                                                                  0/1:71,14
```

Genomic coordinates

```
. . .
##INFO=<ID=DP.Number=1.Type=Integer.Description="Raw read depth">
##INFO=<ID=AF, Number=A, Type=Float, Description="Allele frequency in population">
##FORMAT=<ID=GT, Number=1, Type=String, Description="Genotype">
##FORMAT=<ID=AD.Number=R.Type=Integer.Description="Allelic depths (ref.alt...)">
. . .
               REF ALT
#CHROM POS
                          OUAL FILTER INFO
                                                       FORMAT
                                                              SAMPLE1
                                                                          SAMPLE2
                                                                                    SAMPLE3
     24535
                                PASS
11
                G
                          243
                                       DP=221; AF=0.5 GT: AD
                                                              0/1:73,15 0/0:48,0
                                                                                    0/1:71,14
```

Arbitrary string, typically a dbSNP RefSNP id. Dot for missing value.

```
. . .
##INFO=<ID=DP.Number=1.Type=Integer.Description="Raw read depth">
##INFO=<ID=AF, Number=A, Type=Float, Description="Allele frequency in population">
##FORMAT=<ID=GT, Number=1, Type=String, Description="Genotype">
##FORMAT=<ID=AD, Number=R, Type=Integer, Description="Allelic depths (ref,alt,..)">
. . .
#CHROM POS
            ID
                REF ALT
                          OUAL FILTER
                                        INFO
                                                        FORMAT
                                                                SAMPLE1
                                                                           SAMPLE2
                                                                                     SAMPLE3
     24535
                           243
                                PASS
11
                                        DP=221;AF=0.5
                                                       GT:AD
                                                                0/1:73,15 0/0:48,0
                                                                                     0/1:71,14
```



```
. . .
##INFO=<ID=DP.Number=1.Type=Integer.Description="Raw read depth">
##INFO=<ID=AF, Number=A, Type=Float, Description="Allele frequency in population">
##FORMAT=<ID=GT, Number=1, Type=String, Description="Genotype">
##FORMAT=<ID=AD.Number=R.Type=Integer.Description="Allelic depths (ref.alt...)">
. . .
#CHROM POS ID REF ALT
                          OUAL FILTER
                                      INFO
                                                      FORMAT
                                                              SAMPLE1
                                                                         SAMPLE2
                                                                                   SAMPLE3
     24535 .
                                PASS
                                       DP=221;AF=0.5 GT:AD
11
               G
                          243
                                                              0/1:73,15 0/0:48,0
                                                                                   0/1:71,14
```

Although in theory phred-scaled probability, don't expect truly probabilistic interpretation in practice.

```
. . .
##INFO=<ID=DP.Number=1.Type=Integer.Description="Raw read depth">
##INFO=<ID=AF, Number=A, Type=Float, Description="Allele frequency in population">
##FORMAT=<ID=GT, Number=1, Type=String, Description="Genotype">
##FORMAT=<ID=AD, Number=R, Type=Integer, Description="Allelic depths (ref,alt,..)">
. . .
#CHROM POS ID REF ALT
                          OUAL FILTER
                                       INFO
                                                      FORMAT SAMPLE1
                                                                         SAMPLE2
                                                                                   SAMPLE3
                                PASS
                                       DP=221;AF=0.5 GT:AD
11
    24535 . G
                          243
                                                              0/1:73,15 0/0:48,0
                                                                                   0/1:71,14
```

Soft-filter variants with e.g. low quality, low depth, etc.

```
. . .
##INFO=<ID=DP.Number=1.Type=Integer.Description="Raw read depth">
##INFO=<ID=AF, Number=A, Type=Float, Description="Allele frequency in population">
##FORMAT=<ID=GT, Number=1, Type=String, Description="Genotype">
##FORMAT=<ID=AD.Number=R.Type=Integer.Description="Allelic depths (ref.alt...)">
. . .
#CHROM POS ID REF ALT
                          OUAL FILTER
                                       INF0
                                                      FORMAT
                                                              SAMPLE1
                                                                          SAMPLE2
                                                                                    SAMPLE3
                                PASS
                                       DP=221; AF=0.5 GT: AD
11
    24535 .
               G
                          243
                                                              0/1:73,15 0/0:48,0
                                                                                    0/1:71,14
```

Per-site annotations. Here **DP** is the cumulative read depth across all samples and **AF** allele frequency of the allele in general population.

```
. . .
##INFO=<ID=DP.Number=1.Type=Integer.Description="Raw read depth">
##INFO=<ID=AF, Number=A, Type=Float, Description="Allele frequency in population">
##FORMAT=<ID=GT, Number=1, Type=String, Description="Genotype">
##FORMAT=<ID=AD.Number=R.Type=Integer.Description="Allelic depths (ref.alt...)">
. . .
#CHROM POS
               REF ALT
                          OUAL FILTER
                                       INFO
                                                       FORMAT
                                                               SAMPLE1
                                                                          SAMPLE2
                                                                                     SAMPLE3
                                PASS
                                       DP=221;AF=0.5
                                                               0/1:73,15 0/0:48,0
11
     24535
                G
                          243
                                                       GT:AD
                                                                                    0/1:71,14
```

Per-sample annotations. Here **GT** (genotype) and **AD** (allelic depth) will be present for each sample.

```
. . .
##INFO=<ID=DP.Number=1.Type=Integer.Description="Raw read depth">
##INFO=<ID=AF, Number=A, Type=Float, Description="Allele frequency in population">
##FORMAT=<ID=GT, Number=1, Type=String, Description="Genotype">
##FORMAT=<ID=AD.Number=R.Type=Integer.Description="Allelic depths (ref.alt...)">
. . .
#CHROM POS ID REF ALT
                         OUAL FILTER
                                      INFO
                                                     FORMAT
                                                             SAMPLE1
                                                                        SAMPLE2
                                                                                  SAMPLE3
                                                                                  0/1:71,14
11
    24535 .
               G A
                         243 PASS
                                      DP=221;AF=0.5
                                                     GT:AD
                                                             0/1:73,15 0/0:48,0
```

Per-sample values listed in the same order as specified in the FORMAT column, separated by a colon.

```
. . .
##INFO=<ID=DP.Number=1.Type=Integer.Description="Raw read depth">
##INFO=<ID=AF, Number=A, Type=Float, Description="Allele frequency in population">
##FORMAT=<ID=GT, Number=1, Type=String, Description="Genotype">
##FORMAT=<ID=AD.Number=R.Type=Integer.Description="Allelic depths (ref.alt...)">
. . .
#CHROM POS
          ID REF ALT
                         OUAL FILTER
                                      INFO
                                                      FORMAT
                                                              SAMPLE1
                                                                         SAMPLE2
                                                                                   SAMPLE3
11
    24535 .
               G
                         243
                               PASS
                                       DP=221;AF=0.5
                                                     GT:AD
                                                              0/1:73,15 0/0:48,0
                                                                                  0/1:71,14
12 153927
                   CA.T
                           15
                               Low0
                                      AF=0.0.1
                                                      GT
                                                              2/2
                                                                        1/2
                                                                                   0/1
```

Multiple alternate alleles can be present in one row.

```
. . .
##INFO=<ID=DP.Number=1.Type=Integer.Description="Raw read depth">
##INFO=<ID=AF, Number=A, Type=Float, Description="Allele frequency in population">
##FORMAT=<ID=GT, Number=1, Type=String, Description="Genotype">
##FORMAT=<ID=AD.Number=R.Type=Integer.Description="Allelic depths (ref.alt...)">
. . .
#CHROM POS ID REF ALT
                         OUAL FILTER
                                      INFO
                                                      FORMAT
                                                             SAMPLE1
                                                                         SAMPLE2
                                                                                   SAMPLE3
    24535 .
11
               G
                         243
                               PASS
                                      DP=221; AF=0.5 GT: AD
                                                             0/1:73,15 0/0:48,0
                                                                                  0/1:71,14
12 153927 .
                   CA.T
                           15
                               Low0
                                      AF=0.0.1
                                                      GT
                                                             2/2
                                                                        1/2
                                                                                   0/1
```

All variation types can be represented:

	POS:	12345678	POS	REF	ALT
MNP	REF:	ACGTACGT	3	GT	TA
	ALT:	ACTAACGT			
Deletion		ACGTACGT ACACGT	2	CGT	С
Insertion		ACACGT ACGTACGT	2	С	CGT
Structural			2	С	
variation			2	С	<dup></dup>

```
. . .
##INFO=<ID=DP.Number=1.Type=Integer.Description="Raw read depth">
##INFO=<ID=AF, Number=A, Type=Float, Description="Allele frequency in population">
##FORMAT=<ID=GT, Number=1, Type=String, Description="Genotype">
##FORMAT=<ID=AD.Number=R.Type=Integer.Description="Allelic depths (ref.alt...)">
. . .
#CHROM POS ID REF ALT
                        OUAL FILTER
                                     INFO
                                                    FORMAT
                                                           SAMPLE1
                                                                      SAMPLE2
                                                                               SAMPLE3
11
    24535 . G A
                        243 PASS
                                     DP=221; AF=0.5 GT: AD
                                                           0/1:73,15 0/0:48,0
                                                                               0/1:71,14
12 153927 . C CA.T 15 LowO AF=0.0.1
                                                   GT
                                                           2/2
                                                                   1/2
                                                                               0/1
                                                                               C/CA
                                                           T/T
                                                                     CA/T
```

Genotype (GT) is represented as a 0-based index into the array of REF and ALT alleles

One file can contain zero, one or many samples

Genome VCF (gVCF)

Often it is not sufficient to keep only variant sites:

- ▶ is there **no alternate allele** or is there **no coverage**???
- need evidence for both variant and non-variant positions in the genome

VCF vs BCF

VCFs can be very big

- compressed VCF with 3781 samples, human data:
 - ▶ 54 GB for chromosome 1
 - ▶ 680 GB whole genome

VCFs can be slow to parse

- text conversion is slow
- main bottleneck: FORMAT fields

```
##fileformat=VCFv4.0
##fileDate=20100707
##source=VCFtools
##ALT=<ID=DEL.Description="Deletion">
##INFO=<ID=END, Number=1, Type=Integer, Description="End position of the variant">
#CHROM POS ID REF ALT QUAL FILTER INFO FORMAT SAMPLE1 SAMPLE2
     . A G . PASS AC=67;AN=5400;DP=2809 GT:PL:DP:GQ 1/1:0,9,73:26:22
                                                                             0/0:0,9,73:13:31
                                                                                                 0/0:0,9,73:48:99 1/0:255,0,75:32:15
                                                                                                                                     1/0:255,0,75:32:15
        A T . PASS AC=15; AN=6800; DP=6056 GT: PL: DP: GQ
                                                         0/0:0.9.73:13:31
                                                                             1/0:255.0.75:32:15 0/0:0.2.80:14:90 1/1:0.9.73:26:22
                                                                                                                                      0/0:0.9.73:13:31
     . C T . PASS AC=20:AN=6701:DP=5234 GT:PL:DP:G0 1/0:255.0.75:32:15
                                                                             0/0:0.2.170:14:90
                                                                                                1/1:0.9.73:13:31 0/0:0.6.50:13:80
                                                                                                                                      0/0:0.2.80:14:90
     A G . PASS AC=67:AN=5400:DP=2809 GT:PL:DP:G0 1/1:0.9.73:26:22
                                                                             0/0:0.9.73:13:31
                                                                                                 0/0:0.9.73:48:99 1/0:255.0.75:32:15 1/0:255.0.75:32:15
     . A T . PASS AC=15:AN=6800:DP=6056 GT:PL:DP:G0 0/0:0.9.73:13:31
                                                                             1/0:255.0.75:32:15  0/0:0.2.80:14:90  1/1:0.9.73:26:22
                                                                                                                                     0/0:0.9.73:13:31
```

BCF

- binary representation of VCF
- ▶ fields rearranged for fast access

Quality Control

The commands I run:

```
samtools stats file.bam > file.bam.stats
plot-bamstats -p plots/ file.bam.stats
```

The questions I want to answer:

- ▶ Do I have enough read coverage with my mapped reads?
- ▶ Was the library creation process efficient and problem-free?
- ► Did the sequencing process create artefacts?

Read coverage

Read coverage / depth

- ▶ is every genomic position "covered" to a sufficient depth?
- ▶ average depth: number-of-reads / target-size
 - ▶ the whole human genome .. target-size = 3Gb
 - ▶ the exomes .. target-size = 50Mb

Exomes

▶ be careful to distinguish between the total sequencing yield and on-target bases

Useful coverage

- ▶ 15x ok for common germline variants
- ▶ 30x ok for most things
- ▶ 100-200x for low VAF variants in tumors

Base calling errors

Base quality

Sequencing by synthesis: dephasing

- ▶ growing sequences in a cluster gradually desynchronize
- error rate increases with read length

Calculate the average quality at each position across all reads

Base quality

Library prep biases: PCR duplicates

Experiments start with small amounts of DNA

 a PCR amplification step is necessary for Illumina sequencing: one molecule => many identical molecules

Problem:

additional PCR-copy molecules are not informative

Solution:

- ▶ infer and mark PCR-dupliates, discount in later analysis
 - mark if reads and their mates start at the same position
- lacktriangle use picard MarkDuplicates or samtools markdup
- ightharpoonup typical dup rates: Exomes \sim 15-20%, Genomes < 5%

GC bias

GC- and AT-rich regions are more difficult to amplify

• compare the GC content against the expected distribution (reference sequence)

GC content vs depth

GC content by cycle

Was the adapter sequence trimmed?

Fragment size

Paired-end sequencing: the size of DNA fragments matters

This is 100bp paired-end sequencing. Can you spot any problems??

Mismatches per cycle

Mismatches in aligned reads (requires reference sequence)

- ► detect cycle-specific errors
- ▶ base qualities are informative!

Insertions / Deletions per cycle

False indels

▶ air bubbles in the flow cell can manifest as false indels

Auto QC tests

A suggestion for human data:

Minimum number of mapped bases	
Maximum error rate	0.02%
Maximum number of duplicate reads	5%
Minimum number of mapped reads which are properly paired	80%
Maximum number of duplicated bases due to overlapping read pairs	4%
Maximum in/del ratio	0.82
Minimum in/del ratio	0.68
Maximimum indels per cycle, factor above median	8
Minimum number of reads within 25% of the main peak	

Detecting contamination and sample swaps

Detect sample mixture from population allele frequency https://genome.sph.umich.edu/wiki/VerifyBamID

Check sample identity against a known set of variants

Cheat Sheet

```
File formats specifications
    http://samtools.github.io/hts-specs
Index FASTA file
    samtools faidx ref.fa
View a SAM/BAM/CRAM or a slice of it
    samtools view file.bam | less
    samtools view file.bam chr1:300000-310000 | less
Generate and plot stats
    samtools stats file.bam > file.txt
    plot-bamstats -p plots/ file.txt
Index VCF/BCF
    bcftools index file.vcf
View VCF/BCF or a slice of it
    bcftools view file.vcf | less
    bcftools view -r chr1:300000-310000 file.vcf | less
Generate and plot stats
    bcftools stats -s - file.vcf > file.txt
    plot-vcfstats -p plots/ file.txt
```