A "little" tour of assembly methods

Antoine Limasset & Camille Marchet CRIStAL, Université de Lille, CNRS, France Evomics Workshop on Genomics 01-09-2025

antoine.limasset@gmail.com
camille.marchet@univ-lille.fr

@camillemrcht

A "little" tour of assembly methods

Antoine Limasset & Camille Marchet

Antoine Limasset

Computer Scientist Researcher @ CNRS Bonsai team DNA Lille

from the South tea morning person

Léonid & Zora video games

Camille Marchet

Bioinformatician RNA

sequence bioinformatics from the North coffee evening person gardening

Things you might want to discuss with us:

- methodological/scalability questions?
- young kids/work balance - impostor syndrome when doing CS stuff
- nice tenured positions in France

Content of this course

- How to reconstruct a genome with sequencing data?
- What are the main challenges?
- Which solutions have been proposed?

Bingo: find a book that we both love (French title).

genome size: \sim 40 gigabases

Accessing a genome

• Why do we need assembly?

Laura Landweber @LandweberLab · Jan 2

Our newest version of Oxytricha's somatic genome is out (rdcu.be/bZNfC) and has 18,617 distinct chromosomes. That's 2000 more than we previously published in doi.org/10.1371/journa... PacBio captured most chromosomes in single reads: Genome sequence, No assembly required

•Reads are subsequences from the genome

•Reads are **shuffled** subsequences from the genome

•Genome assembly task

reads

• Genome sequencing: depth & coverage

• Genome sequencing: depth & coverage

genome

depth ~1X coverage 80%

• Genome sequencing: depth & coverage

Poisson law

30X are often required for assembly projects

• First experiment: Long, perfect boy's genome

100kb region from the genome (only for the record, we actually don't have it)

Genome size
1 hillion bases

Reads 10 million mean size 10kb

Order according to overlaps

Overlaping reads are likely successive part of the genome

•How to compute the overlaps? Alignment?

• How to compute the overlaps? Quick exact match!

Check all reads for overlaps

For a given read, scan all others

Most cases

Small overlaps

Can happen "by chance"

Longest overlaps

We are more confident in longer overlaps

• Higher depth, longer overlaps

Something weird happened

All longest overlaps

• Take into account other overlaps?

Look, a graph!

Unsafe paths in an overlap graph

Safe paths in an overlap graph

Multiple repeats

First solution

```
GCTGATTT
ATTTGTAT
GTATTGTC
TGTCAAGT
AAGTATTT
ATTTTGTT
TGTTTTGT
TGTCTTTA Overlap graph:
```

Reads:

Possible assemblies: GCTG<mark>ATTTGTATTGTC</mark>AAGT<mark>ATTTTGTTTTGTC</mark>TTTA

Second solution

Parsimonious solution: do not assemble

Repeats lead to the fragmentation of the assembly
Genomes pieces that make consensus across the differents solution are
called Contigs

•Do we expect many repeats?

Probability to have NO repeated word of size 31 in a 5 megabases genome

Input interpretation:

$$\left(\frac{4^{31}-1}{4^{31}}\right)^{\!\!1/2\,\left(\!5\times10^6\left(\!5\times10^6-1\right)\!\right)}$$

Decimal approximation:

 $0.999997289498784302383172055421363836712023171938932024106\dots \\$

From en.wikipedia.org/wiki/Birthday_problem

Amount of repeats larger than a given size in E. coli genome

• 15: 44,994

Amount of repeats larger than a given size in E. coli genome

• 15: 44,994

21: 1,169

Amount of repeats larger than a given size in E. coli genome

• 15: 44,994

21: 1,169

• 31: 559

Amount of repeats larger than a given size in E. coli genome

15: 44,994

• 21: 1,169

• 31: 559

• 41: 323

• The burden of assembly: genomic repeats

Amount of repeats larger than a given size in E. coli genome

• 15: 44,994

• 21: 1,169

31: 559

41: 323

51: 225

• The burden of assembly: genomic repeats

Amount of repeats larger than a given size in E. coli genome

• 15: 44,994

21: 1,169

31: 559

• 41: 323

51: 225

• 61: 192

Genomic repeats are NOT random events

With longer reads

Reads longer than the repeat "solve" it

The graph becomes trivial to traverse

Overlap graph simplifications

•First (and most important) checkpoint

- Assembly orders reads using overlaps; longer overlaps are generally better.
- Multiple possible overlaps necessitate graphs for structuring information.
- Repeats longer than reads result in fragmented assembly (contigs).

Compute overlaps

Detecting overlaps means a lot of comparisons

Compute overlaps

Even considering only the long overlaps means a lot of comparisons

Overlap graph burden: number of reads

 $n(n-1)/2 = \mathcal{O}(n^2)$ possible overlaps for n reads

# Reads	# Overlaps
1000	499,500
10,000	50 million
100,000	5 billion
1 million	500 billion
10 million	50 trillion

We have to be efficient and focus on "relevant" overlaps

Overlap graph burden: number of overlaps

For each base of the genome:

Overlaps depth
100
400
2,500 10,000
10,000

The amount of overlaps is not linear

Linear: 2X data 2X time Quadratic: 2X data 4X time

Another idea

what we have done:

NEW SOLUTION!

Another idea

add the nucleotides one by one

Context

context to join the next base?

Context

Assembly

The de Bruijn graph

Read

AGATACAGCCA

De Bruijn graph

de Bruijn graph assembly

Overlapping reads
AGATACAGCCA
TACAGCCATGG

De Bruijn graph

Resulting sequence

AGATACAGCCATGG

•Why bother with k-mers?

in my graph, k-mer size = read size

•Why bother with k-mers?

in my graph, k-mer size = read size

• de Bruijn graphs limitation 1: Fixed overlaps

GGACT and ACTTA overlap is only of size 3!

• Exercise 1: de Bruijn graph time!

Reads

GCCATGGGTTT TACAGCCATGG AGCCATGGGTT GCCATGGGTTT AGCCATGGGTT ACAGCCATGGG GATACAGCCAT ATACAGCCATG CATGGGTTTAA CAGCCATGGGT **GATACAGCCAT**

Hint: Use 7-mers

Exercise 1: Solution

read overlaps

```
AGATACAGCCA
GATACAGCCAT
GATACAGCCATG
ATACAGCCATG
TACAGCCATGG
ACAGCCATGGG
ACAGCCATGGG
CAGCCATGGGT
ACCCATGGGTT
GCCATGGGTTT
CCATGGGTTTA
CATGGGTTTA
```

de Bruijn graph

resulting sequence

AGATACAGCCATGGGTTTAA

de Bruijn graphs abstract redundancy

read overlaps

```
AGATACAGCCA
GATACAGCCAT
GATACAGCCAT
ATACAGCCATG
ACAGCCATGG
ACAGCCATGGG
ACAGCCATGGG
CAGCCATGGGTT
AGCCATGGGTT
GCCATGGGTTT
GCCATGGGTTT
CCATGGGTTTA
CATGGGTTTAA
```

14 distinct 7-mers in the de Bruiin graph

• de Bruijn graphs only rely on k-1 overlaps

• Repeats in a de Bruijn graphs

...TAC<mark>AGGACT</mark>TA... ...TAT<mark>AGGACT</mark>GA...

each k-mer appears only once in a de Bruijn graph

• de Bruijn graphs limitation 2: Repeats

...TATAGGA

GACTGA...

genome pieces

AGGACT

...TACAGGA

GACTTA...

• On the representation of de Bruijn graphs

De Bruijn graph:

Compacted De Bruijn graph:

Graphical representation (.gfa plot using Bandage):

• The boy is diploid!

Ploidy and very long reads

Homozygous vs heterozygous regions

Assembly concession: assembly can be fragmented due to ploidy

Method checkpoint: de Bruijn graph versus overlap graph

• Data checkpoint: results for the *long*, *perfect boy*

- Contigs can reach the chromosome's order of magnitude in length (megabases)
- Breaks due to large repeats
- Haplotypes can be partially reconstructed

•Second experiment: noisy, super long boy's genome

100kb region from the genome (only for the record, we actually don't have it)

ATTGATTGATG

Genome size
1 billion bases

Reads

1 million mean size 100kb sequencing errors: 5-10% • de Bruijn graph or overlap graph?

• Sequencing errors and k-mers

Issue with large k-mers

- large k-mers won't connect
- many spurious k-mers

• Sequencing errors and k-mers

Let's try small k-mers

• Sequencing errors and *k*-mers

Let's try small k-mers

read 1 GAGTAGAAATGAG
read 2 AATAGAAATTAGT

- the graph becomes too complicated: everything is a "repeat"
- we lose the advantage of having long reads
- \rightarrow de Bruijn graph out!

• Overlap graph: inexact matches

match = 1			mismatch = -1			gap = -1		
		G	С	A	Т	G	С	G
	0	-1	-2	-3	-4	-5	-6	-7
G	-1	1 •	0	1 -	2	-3 <	-4 <	-5
Α	-2	0	0	1:	0 -	-1 -	2 <	3
т	-3	-1	-1	Ô	2	- 1 -	- 0	1
Т	-4	-2	-2	-1	1	1 :	0	1
A	-5	-3	-3	-1	0	Ô	0 -	1
С	-6	-4	-2	-2	-1	-1	1 -	- 0
A	-7	-5	-3	-1	2	-2	0	0

Quadratic alignment for each pair of reads Quadratic number of comparisons to perform . . . Overlap graph: drop alignment

1. find common seeds

2. find if long chains of common seeds are in same order

Procedure called anchor chaining.

• How to get accurate contigs from noisy reads?

Using coverage to remove noise: consensus

Genome:

TAAGAAAGCTCTGAATCAACGGACTGCGACAATAAGTGGTGGTATCCAGAATTTGTCACTT

```
Reads:
<mark>A</mark>AAGAAAGC<mark>A</mark>CTGAATCA<mark>T</mark>GGGACT<mark>T</mark>CGAG
     GAAAGCTCT<mark>C</mark>AA<mark>C</mark>CAACGGACTGCGAC<mark>TT</mark>T
           ACCTCTCAAGCAACGGACTGCGACAAAAAG
                 TCTGAATCA<mark>C</mark>CGGACTGCG<mark>T</mark>CAA<mark>A</mark>AAGTG<mark>C</mark>
                       GAATCACCGGACTGCGACAGTTTTGTGGTGG
                             TCAACG<mark>C</mark>ACTGCGACAATAAGT<mark>CC</mark>TGGTAT
                                  ACGGACTGCGACAA<mark>A</mark>AAGTG<mark>TG</mark>GGTATCCA
                                        GACTICCACAAAAAGTGGTGGTATCCAG
                                              TIGCGACAA<mark>A</mark>AAGTGG<mark>G</mark>GGTATCCAGAAT
                                                    GACAATAAG<mark>G</mark>GG<mark>G</mark>GGTATCCA<mark>A</mark>AATTTG
                                                         AA<mark>A</mark>AAG<mark>G</mark>GGTGGTATCCAGAATTT<mark>T</mark>TCA
                                                              TAAGTGG<mark>G</mark>GGTATCCA<mark>A</mark>AATTT<mark>T</mark>TCA<mark>G</mark>TT
  Consensus:
<mark>A</mark>AAGATAGCTCTGAATCAACGGACTIGCGACAA<mark>A</mark>AAGTGGTGGTATCCAGAATTT<mark>T</mark>TCA<mark>G</mark>TT
1/1
                                 4/7
                                              9/10
                                                           6/11
                                                                                                      3/4
```

• Consensus before assembly: correction

Consensus during assembly (hence the OLC)

• Consensus during assembly. Yes but:

Consensus after assembly: polishing

Correction/Consensus during assembly/Polishing

- Correction ×
 - ightharpoonup Redundancy: 100X depth ightarrow 100X more bases to correct
- Consensus during assembly ≈
 - ▶ Do not use all reads
- Polishing
 - Correct each base of the genome once
 - ▶ Use all reads

Consensus destroys heterozygosity

AATTGATCCGATACCC-GTAA-A

AATTGGGCCGATACCC-GTAA-AG
-ATTGATCCGA-ACCCCGTAA-A

AATTGATCCGATACCC-GTAA-A

GCTCCGAGACCA-GTCA-ATTG

GCTCC-AGACCA-GTCA-ATTT

CCGAGACCA-GTCG-ATTGCAAA
CCGAGACCA-GT-A-ATTGCGAAC

CCGACACCA-GTGAAATTGCAAAC

consensus

reads

AATTGATCCGAGACCA-GTCA-ATTGCAAAC

 \rightarrow a mix between the two alleles

Consensus destroys heterozygosity

Method checkpoint: de Bruijn graph vs overlap graph

• Data checkpoint: results for the *noisy super long boy*

- Contigs can reach the chromosome's order of magnitude in length (megabases)
- Breaks due to very large repeats
- Contigs are chimeras of haplotypes

• Third experiment: short boy's genome

100kb region from the genome (only for the record, we actually don't have it)

Genome size 1 billion bases

1 billion size 100 bases <1% error

de Bruijn graph or overlap graph?

Scalability issue for the overlap graph

At equal coverage we got:

 $1000 \times \text{more reads} \to 1 \text{ million} \times \text{more overlaps to check!}$ Overlap graph hardly scales to such a large number of reads/overlaps

→ Overlap graph out!

• de Bruijn graph on a real dataset

• de Bruijn graph on a real dataset ZOOMED IN

de Bruijn graph on a real dataset ZOOMED IN

• Erroneous *k*-mers vs genomic *k*-mers

Genome:

TAAGAAAGCTCTGAATCAACGGACTGCGACA

```
Reads:
TAAGAAAGCTCTGAATCA
AAGAAAGCTCTAAATCAC
AGAAAGCTCTGAATCAACG
GAAAGCTCTGAATCAACG
GAAAGCTCTGAATCAACGGAC
AAGCTCTGAATCAACGGACT
AGCTCTGAATCAACGGACT
AGCTCTGAATCAACGGACTG
GCTCTGAATCAACGGACTGCCTCTGAATCAACGGACTGCG
```

```
9 times TCTGAAT
1 time TCT<mark>A</mark>AAT
```

6 times CAACGGA 1 time CAACGG<mark>T</mark>

Erroneous k-mers are seen less than genomic ones

K-mer histogram

• Removing unique *k*-mers

• Removing *k*-mers seen less than 3 times

• Removing *k*-mers seen less than 4 times

GC bias

Low GC region can be way less sequenced

• Errors in de Bruijn graphs

• Errors in de Bruijn graphs

Errors in de Bruijn graphs

bubble

• de Bruijn graph on my diploid genome

- Ploidy and de Bruijn graph
 - \mathbf{Q} GGATGAAAC \mathbf{T} GCCGGTCAGG \mathbf{T} CACCCCTCTGAGCCG \mathbf{CC} AAAATGTGCTG \mathbf{C} CCGGAC
 - ♂ GGATGAAACAGCCGGTCAGGACACCCCTCTGAGCCGGGAAAATGTGCTGACCGGAC

Bubble crushing

- **♀** GGATGAAAC<mark>T</mark>GCCGGTCAGG<mark>T</mark>CACCCCTCTGAGCCG<mark>CC</mark>AAAATGTGCTG<mark>G</mark>CCGGAC
- ♂ GGATGAAACAGCCGGTCAGGACACCCCTCTGAGCCGGCAAAAATGTGCTGACCGGAC

Assembly:

GGATGAAAC<mark>T</mark>GCCGGTCAGG<mark>A</mark>CACCCCTCTGAGCCG<mark>GG</mark>AAAATGTGCTG<mark>G</mark>CCGGAC

- Variants are not "lost"
 - **♀** GGATGAAAC<mark>T</mark>GCCGGTCAGG<mark>T</mark>CACCCCTCTGAGCCG<mark>CC</mark>AAAATGTGCTG<mark>G</mark>CCGGAC
 - **♂** GGATGAAAC<mark>A</mark>GCCGGTCAGG<mark>A</mark>CACCCCTCTGAGCCG<mark>GG</mark>AAAATGTGCTG<mark>A</mark>CCGGAC Assembly:

GGATGAAAC<mark>T</mark>GCCGGTCAGG<mark>A</mark>CACCCCTCTGAGCCG<mark>GG</mark>AAAATGTGCTG<mark>G</mark>CCGGAC

Reads:

```
GATGAAAC<mark>T</mark>G
ATGAAAC<mark>A</mark>GC
TGAAAC<mark>A</mark>GCCG
GAAAC<mark>T</mark>GCCGG
AAAC<mark>T</mark>GCCGGT
AAC<mark>A</mark>GCCGGTC
ACAGCCGGTCA
```

We can align the reads to the assembly and do variant calling

Haploid assembly

Assembly concession: haplotypes are collapsed when using short reads

Paralog genes/repeats

Paralog genes/repeats

Paralog genes/repeats in graphs

Treating erroneous bubbles is simple, all the others are complex

Method checkpoint: de Bruijn graph versus overlap graph

• Data checkpoint: short boy results

- Very fragmented assembly of short contigs (mostly below 100kb)
- Very high base accuracy
- Contigs are chimeras of haplotypes
- Can miss low GC content

• Fourth experiment: golden boy's genome

Billion $project \rightarrow cancelled$

•(Time accurate) recap

Sanger

No longer used for assembly (too expensive)

Illumina

De Bruijn graph assembly Fragmented haploid assembly

Long reads: Oxford Nanopore or PacBio

Overlap graph assembly (+ polishing)

Contiguous haploid assembly

HiFi

Overlap graph or de Bruijn graph assembly Contiguous diploid assembly

• Back to the present

Challenge 1: Scalability

- Human Genome project (2001)
- 1000 Genomes project (2015)
- 10k Genomes project (2016)
- 100k Genomes project (2018)
- 500K UK genomes (2023)

Many ambitious sequencing projects beyond human: Earth biogenome project, Vertebrate genome project . . .

History

How long to assemble a human genome?

- Sanger: MANY CPU years
- Illumina (Overlap graph): 2 CPU months
- Illumina (De Bruijn graph): A CPU day
- Long reads (Alignment): 2 CPU years
- Long reads (Anchors chaining): 20 CPU days
- HiFi (Anchors chaining): 2 CPU days
- HiFi (De Bruijn graph): A CPU hour

Algorithms and data structures matter!

Also long and precise reads are easier to assemble

Very fast genome assembly with HiFi

Human genome assembled within 2 hours (Peregrine assembler) and 10 minutes (RMBG assembler)

Telomere to telomere assembly?

• Challenge 2: Telomere to telomere chromosomes

Main problems:

- Very large exact repeats
- Very similar sequences accross the genome
- Low complexity regions
- Mosaic repeats

Need long distance information AND high base accuracy

Scaffolding

Use long range information to order contigs into "scaffolds"

Reference-based Scaffolding/assembly

Pros

Do not need high coverage/ long distance information to get contigous assemblies

Cons

Need a related good quality reference Bias toward reference sequence, for local and structural variants

- Map the reads on a reference and compute a consensus (Medaka)
- Use a reference assembly as existing contigs (SPAdes)
- Use one (or several) related references genomes to order contigs (Ragout2)

Telomere-to-Telomere consortium

Has produced in 2022 a complete human genome with one contig per chromosome !

- 30x PacBio HiFi
- 120x coverage of Oxford Nanopore (ultra long reads)
- 70x PacBio CLR
- Arima Genomics HiC
- BioNano DLS
- 100 authors from 50 labs

Diploid assembly

• Telomere-to-Telomere diploid human reference

T2T-YAO released in 2023 a complete human genome with one contig per chromosome!

- 92x PacBio HiFi
- 336x coverage of Oxford Nanopore (ultra long reads)
- 70x PacBio CLR
- 584x Arima Genomics HiC
- BioNano DLS
- Illumina HiSeq 150bp for the son and parents (with 278x and 116x coverage, respectively).

Hall of fame of largest assembled genomes of their time:

• Pine (20Gb)

Hall of fame of largest assembled genomes of their time:

- Pine (20Gb)
- Axolotl (32Gb)

Hall of fame of largest assembled genomes of their time:

- Pine (20Gb)
- Axolotl (32Gb)
- Lungfish (43Gb)

Hall of fame of largest assembled genomes of their time:

- Pine (20Gb)
- Axolotl (32Gb)
- Lungfish (43Gb)
- Mistletoe (90Gb)
- Metagenomes . . .

A "little" tour of assembly methods

•The human genome seems small

•The human genome seems really small

•Challenge 3: Base level accuracy

• Homopolymers are hard to read

Systematic errors

Polishing with Illumina data can improve the final error rate

A. Single-tool short-read polishing

• Basecalling progress: Dorado years

Replication outside nanopore HQ

Post from Ryan Wick's bioinformatics blog (rrwick.github.io/) reports Q20 reads accuracy and Q60 assemblies on 9 bacterial assemblies

Average	Read accuracy	Assembly accuracy
mean	97.7%, Q16.4	4 errors, Q60.43
median	99.1%, Q20.5	2 errors, Q60.43
mode	99.4%, Q22.2	NA

HiFi-like Nanopore data ?

(Near) error-less very long reads we have several promising improvements ahead:

- Very fast assembly
- T2T chromosomes with less data
- Higher consensus accuracy
- Poplyploid assemblies

• Challenge 4: Assembly as a software

From Hybracter: Enabling Scalable, Automated, Complete and Accurate Bacterial Genome Assemblies

Assemblers behave differently

From github.com/rrwick/Long-read-assembler-comparison

Software robustness

From github.com/rrwick/Long-read-assembler-comparison

An assembly is a model

- Assemblies contain errors
- Different tools can produce very similar assemblies
- A single tool can produce very different assemblies with small changes of parameters(!)

The (first) end

Advanced points

If we have time, we'll review everything (while doing this course, I doubt it \dots) Else, pick one:

- Multiple k assembly in de Bruijn graphs
- HiFi de Bruijn Assembly
- An overlap graph limitation with noisy long reads (and current fixes)
- The repeat graph

Coming back to a de Bruijn graph limitation: fixed overlaps

GGACT and ACTTA overlap is only of size 3!

- A too small k is not a solution
- We would like larger k's but miss connections

Multiple k assembly

Most de Bruijn graph assemblers can now perform several assemblies with different k-mer sizes to produce an improved super assembly

Exercise

Build DBG with k=5 and k=7 from those reads

AAAATCGATCTC

TCTCATCGAATT

• Multiple *k* assembly

We are missing GATCTCA and ATCTCAT in the second graph. But they are present in the first graph!

Multiple k assembly

HiFi de Bruijn graph Assembly

Using very large K (K=500 to K=5000) de Bruijn graphs to assemble

Coming back to the overlap graph simplifications

• An overlap graph limitation when using noisy reads

• An overlap graph limitation when using noisy reads

• An overlap graph limitation when using noisy reads

Read threading alternative

Fragmented read alternative

The RAFT tool fragments the reads that does not cover repeats to avoid read inclusion problems.

Fragmented reads

Flye

a genome

highlighted repeated regions

repeats extremities: graph's nodes

Slides for the practical session

Evaluate assembly

Two cases:

Reference-based

Align contigs to the reference and compare them considering the reference as the ground truth (QUAST).

De novo

- Reads analysis (QUAST)
- Kmer analysis (Merqury)
- Assembly graph analysis (Bandage)

QUAST statistics

QUAST Statistics				
Alignment-based statistics	■ ABySS	■ MEGAHIT	■ SPAdes	■ Velvet
Genome fraction (%)	98.661	98.424	98.113	97.997
Duplication ratio	1.043	1	1	1
# genomic features	4525 + 75 part	4511 + 64 part	4489 + 50 part	4486 + 56 part
Largest alignment	248 481	235 933	285 096	264 944
Total aligned length	4 776 214	4 568 317	4 553 809	4 550 150
NGA50	69 801	122 647	133 309	112 446
LGA50	21	14	12	14
Misassemblies				
# misassemblies	4	0	0	4
Misassembled contigs length	231 767	0	0	435 515
Per base quality				
# mismatches per 100 kbp	2.09	2.69	1.03	3.19
# indels per 100 kbp	0.57	1.31	0.29	1.98
# N's per 100 kbp	24.59	0	17.55	94.19
Statistics without reference				
# contigs	176	95	92	90
Largest contig	248 481	235 933	285 196	264 944
Total length	4 777 853	4 571 292	4 557 363	4 552 266
Total length (>= 1000 bp)	4 757 929	4 562 458	4 548 710	4 544 453
Total length (>= 10000 bp)	4 562 801	4 478 614	4 466 223	4 475 223
Total length (>= 50000 bp)	3 248 113	3 833 793	3 812 315	3817904
BUSCO completeness				
Complete BUSCO (%)	98.65	98.65	98.65	98.65
Partial BUSCO (%)	0	0	0	0
Predicted genes				
# predicted genes (unique)	3717	3595	3587	3576

Assembly continuity

N50

N50 can be described as a weighted median statistic such that 50% of the entire assembly is contained in contigs or scaffolds equal to or larger than this value.

The catsembler

genome
ACGGATGATAGATTTGATACGA

reads ACGGATGATA
TTTGATACGA

concatenate the reads: super N50!

GATTTGATACACGGATGATATTTGATACGA

Assembly continuity

N50

N50 can be described as a weighted median statistic such that 50% of the entire assembly is contained in contigs or scaffolds equal to or larger than this value.

N75

N75 is the same statistic for 75% of the assembly

NGA50

Similar to the N50 but only takes into account contigs/scaffolds that can be **aligned** on the reference genome and consider 50% of the **genome size** instead of the assembly size

Misassemblies

Visualize assembly

Bandage tool can visualize assembly graphs (GFA)

Visualize assembly

Bandage tool can visualize assembly graphs (GFA)

• K-mer spectrum visualization with merqury

Trio K-mer spectrum visualization with KAT

SPAdes assembler

- Designed to assemble megabase-sized genomes
- Multiple k de Bruijn graph assembly from short reads
- Can use long reads to solve repeats

Mandatory

Short reads

Optional

Long reads

Hifiasm assembler

- Build an overlap graph from HiFi reads
- Generate both haploid and diploid assemblies
- Can use (very) long reads to solve repeats

Mandatory

HiFi reads

Optional

Long reads

Flye assembler

- Build a repeat graph from long reads
- Can use any kind of long reads
- Can also assemble metagenomes

Mandatory

HiFi/Long reads

Optional

HiFi/Long reads

Unicycler (long read mode)

- Build a overlap graph from long reads
- Polish the assembly
- Also has a short-reads-first similar to SPAdes

Mandatory

Long reads

Optional

Short reads