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WHAT IS THE DIFFERENCE BETWEEN
CONSERVATION GENETICS AND GENOMICS?

WHAT IS THE FIRST INGREDIENT OF
CONSERVATION GENOMICS?

HOW CAN GENOMICS INFORM
CONSERVATION BIOLOGY?

IN WHICH APPLICATION GENOMICS IS
A GAME CHANGER?
with a close up on two topics:

Genetic load
ROHs
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GENOMICS IN CONSERVATION?
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WHOSE TAIL IS THIS?
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THE FLORIDA PANTHER

from genetics to genomics

Endangered since late ‘60 - early ‘70

Small relic population of 30 individuals in
Big Cypress Swamp and Everglades NP



THE FLORIDA PANTHER

from genetics to genomics

One mitochondrial haplotype, very low allozyme diversity,
remarkably low minisatellite DNA diversity (as low as the Asian lions
from the Gir Forest Sanctuary)



THE ASIATIC LION

Gir Forest Sanctuary

Year

Count

Male:Female:Cubs

1968

17

1974

180

1979

261

76:100:100

1984

252

88:100:64

1990

249

82:100:67

1995

265

94:100:71

2000

327

99:115:76

2005

359

2010

411

97:162:152

2015

523

109:201:213

2020

674

277:260:137




THE FLORIDA PANTHER

from genetics to genomics

Clear signs of inbreeding depression: kinked tails, cowlick, poor
seminal quality, cryptorchidism, cardiac defects



THE FLORIDA PANTHER

from genetics to genomics

RECOMMENDATION: immediate augmentation of the population
with Texas pumas! (Roelke et al 1993)



THE FLORIDA PANTHER

from genetics to genomics
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GENETIC RESCUE (m=0.2 females) will eliminate lowered fitness,
restore genetic diversity, retain adaptive alleles (Hendrick 1995)
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THE FLORIDA PANTHER Hybrid females did

. . better! 3X survival!
from genetics to genomics
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12 YEARS AFTER THE GENETIC RESCUE N, Ne and range increased due
to hybrids individuals (Johnson et al 2010)



THE FLORIDA PANTHER

From genetics to genomics
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12 YEARS AFTER THE GENETIC RESCUE N, Ne and range increased due
to hybrids individuals, and heterozygosity, of course! (Johnson et al 2010)



THE FLORIDA PANTHER

From genetics to genomics Heterozygosity
estimated using STR!

Counts by genotype
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12 YEARS AFTER THE GENETIC RESCUE N, Ne and range increased due
to hybrids individuals, and heterozygosity, of course! (Johnson et al 2010)



THE FLORIDA PANTHER

From genetics to genomics

BUT LET’S INVESTIGATE THIS SUCCESS STORY
THROUGH A GENOMIC LENS



THE FLORIDA PANTHER

From genetics to genomics
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GENOMICS SIMULATIONS indicate that larger populations have larger risk
of extinction in case of a sudden bottleneck (Kyriazis et al 2021)



THE FLORIDA PANTHER

From genetics to genomics
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AND THAT RESCUES FROM LARGE POPS are expected to be less
effective - if the receiving population stays small (Kyriazis et al 2021)



THE FLORIDA PANTHER

From genetics to genomics (b) 10 T T T 1
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AS IT IS THE CASE OF THE FLORIDA PANTHER which is accumulating
deleterious alleles from the large donor Texas pop! (Ochoa et al 2022)



WHAT IS THE DIFFERENCE BETWEEN
CONSERVATION GENETICS AND GENOMICS?

All in all, it is still using population genetics models to inform
conservation biology



WHAT IS THE DIFFERENCE BETWEEN
CONSERVATION GENETICS AND GENOMICS?

But employing the full breadth of genomic data (neutral and
non-neutral genetic variation) to get a more accurate picture of what
is going on in the population



WHAT IS THE DIFFERENCE BETWEEN
CONSERVATION GENETICS AND GENOMICS?

The first simplest advantage: using lots of loci (whole-genome)
improves the accuracy of our estimates



ESTIMATING EFFECTIVE POPULATION SIZE (Ne)

Are more individuals better than more loci?

How to estimate N_ (e.g., stationary size) from
one diploid individual?



ESTIMATING EFFECTIVE POPULATION SIZE (Ne)

Are more individuals better than more loci?

How to estimate N_ (e.g., stationary size) from
one diploid individual?

H:6:4Nep




Ne = 10000
ESTIMATING EFFECTIVE POPULATION SIZE (Ne) ° u=107°

Are more individuals better than more loci? H=4x105

Sample size: 1 diploid individual
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Ne = 10000
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Are more individuals better than more loci? H=4x105
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Are more individuals better than more loci? H=4x105

Sample size: 1 diploid individual
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Ne = 10000
ESTIMATING EFFECTIVE POPULATION SIZE (Ne) ° u=107°

Are more individuals better than more loci? H=4x105

How to estimate N_ (e.g., stationary size) from
multiple individuals?

H:6:4Nep



Ne = 10000
ESTIMATING EFFECTIVE POPULATION SIZE (Ne) ° u=107°

Are more individuals better than more loci? H=4x105

How to estimate N_ (e.g., stationary size) from
multiple individuals? S
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T total

Ne = 10000

ESTIMATING EFFECTIVE POPULATION SIZE (Ne) u=107°

Are more individuals better than more loci? H=4x105

How does precision of estimation of theta

increase with sample size?
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T total

Ne = 10000

ESTIMATING EFFECTIVE POPULATION SIZE (Ne) u=107°

Are more individuals better than more loci? H=4x105

How does precision of estimation of theta

increase with sample size?

5 diploid individual

n. of sites =10000 ; k=10

300
|

freq
200
\

4 6 8 10 12
| | |
0 100
\

2
|

0e+00 3e-04 6e-04 9e-04

T I T
0 50 100

sample size (k) (haploid)

150 200 S



T total

Ne = 10000
ESTIMATING EFFECTIVE POPULATION SIZE (Ne) ° u=107°

Are more individuals better than more loci? H=4x105

How does precision of estimation of theta
increase with sample size? n. of sites = 10000 ; k = 1000

500 diploid individual S
S _
N
Not much really!! s
g o
Y= S —
. o |
o o
@ o . &
© 7 T T T 1T 1T T

0e+00 3e-04 6e-04 9e-04

2
|

T I T I I

0 50 100 150 200 S

sample size (k) (haploid)



T total

Ne = 10000
ESTIMATING EFFECTIVE POPULATION SIZE (Ne) ° u=107°

Are more individuals better than more loci? H=4x105

How does precision of estimation of theta
increase with sample size? n. of sites = 1e+06
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WHAT IS THE DIFFERENCE BETWEEN
CONSERVATION GENETICS AND GENOMICS?

WHAT IS THE FIRST INGREDIENT OF
CONSERVATION GENOMICS?

HOW CAN GENOMICS INFORM
CONSERVATION BIOLOGY?

IN WHICH APPLICATION GENOMICS IS
A GAME CHANGER?

with a close up on two topics:

Genetic load

ROHs

WHAT AM | DOING TO MAKE USE OF
GENOMICS IN CONSERVATION?



FIRST, A WELL ANNOTATED REFERENCE GENOME

A blossoming of genome assembly initiatives



FIRST, A WELL ANNOTATED REFERENCE GENOME

A blossoming of genome assembly initiatives

YININY/,

[ Long-read genome sequencing

|

. . + Organelle genome
Aligned transcriptomes Annotated reference genome . )
(Mitochondrial or chloroplast)

| — | — |

Gene expression Reduced representation Target capture Whole-genome resequencing Taxonomy Metabarcoding
sequencing o Genes of interest « Genes of interest Species differentiation eDNA markers
« Population differentiation o Adaptive potential « Adaptive potential
* Heterozygosity ¢ Runs of homozygosity
e Genetic variants « Population differentiation
« Effective population size e Heterozygosity
and so forth e Genetic variants

» Effective population size
and so forth

A reference genome can lead to many downstream applications (Hogg 2023)



FIRST, A WELL ANNOTATED REFERENCE GENOME

A blossoming of genome assembly initiatives

"BIOGENOME
PROJECT

sequencing life for the future of life

g VERTEBRATE
& GENOMES
. PROJECT

A PROJECT OF THE GT10K CONSORTIUM

Earth BioGenome Project: Sequencing life for
the future of life

Harris A. Lewin &, Gene E. Robinson, W. John Kress, |+20, and Guojie Zhang Authors Info & Affiliations

Edited by John C. Avise, University of California, Irvine, CA, and approved March 15, 2018 (received for review January 6, 2018)

April 23,2018 ' 115(17) 4325-4333 | https://doi.org/10.1073/pnas.1720115115

Article | Open Access | Published: 28 April 2021
Towards complete and error-free genome assemblies of
all vertebrate species

Arang Rhie, Shane A. McCarthy, Olivier Fedrigo, Joana Damas, Giulio Formenti, Sergey Koren, Marcela




FIRST, A WELL ANNOTATED REFERENCE GENOME

A community effort to set the golden standard in EU

The era of reference genomes in conservation
genomics

Giulio Formenti 2? e Kathrin Theissinger 2° o Carlos Fernandes 2° e ... Erich D. Jarvis  Mikiés Bélint 2 = e
European Reference Genome Atlas (ERGA) Consortium 3% 31 e Show all authors  Show footnotes

* Published: January 24, 2022  DOI: https://doi.org/10.1016/j.tree.2021.11.008
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FIRST, A WELL ANNOTATED REFERENCE GENOME

From sample to high quality genome assemblies

1. Genome Team 2. Pre-Sampling 3. Sampling & Metadata 4. Sample Manifest 5. HMW DNA
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BEST PRACTICE in the ERGA pilot study (Mc Cartney et al 2024)



FIRST, A WELL ANNOTATED REFERENCE GENOME
Scaffold length (up to chrs!), QVs, and BUSCO requirements
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QUALITY THRESHOLDS in the ERGA pilot study (Mc Cartney et al 2024)



WHAT IS THE FIRST INGREDIENT OF
CONSERVATION GENOMICS?

The gold standard is a high-quality, highly-contiguous (e.g.,
chromosome level) reference genome assembly



WHAT IS THE FIRST INGREDIENT OF
CONSERVATION GENOMICS?

The gold standard is a high-quality, highly-contiguous (e.g.,
chromosome level) reference genome assembly

But pangenomes are going to be the next level soon!



WHAT IS THE FIRST INGREDIENT OF
CONSERVATION GENOMICS?

Well annotated genome features (e.g., genes, transposable
elements, long-non coding RNAs, promoters, etc)



WHAT IS THE FIRST INGREDIENT OF
CONSERVATION GENOMICS?

Well annotated genome features (e.g., genes, transposable
elements, long-non coding RNAs, promoters, etc)

There’s room for improvements: technological (e.g., PacBio Kinnex),
methodological (e.g., machine learning approaches)



GENOMIC FEATURES ANNOTATION

New Al powered approaches

(] Model architecture

- we’ll talk more
Output: Training: Variant effect / H
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nucleotide With probability g: replace | P(C)
probability REF with random nucleotide . score = log P(ALT)
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Transformer neural network

Training: Variant effect prediction:
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Genomic Pretrained Network /with multiple-sequence alignment
GPN/GPN-MSA (Benegas et al 2023 and 2025).



GENOMIC FEATURES ANNOTATION

New Al powered approaches

It can learn gene
structure ...

A

UMAP2

Region
N Intergenic
mm CDS

B Intron
B 3'UTR
B 5'UTR
N ncRNA
[ Repeat

UMAP1

Genomic Pretrained Network /with multiple-sequence alignment

GPN/GPN-MSA (Benegas et al 2023 and 2025).



GENOMIC FEATURES ANNOTATION

New Al powered approaches
B GPN motif extracted by TF-MoDISco  Reported match in PlantTFDB

Motif 18 (780 occurrences) AT4G24470
- CI ‘ I LY
el el
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Motif 2 (3386 occurrences) AT1 G72740
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without supervision =X28LZ¥X¥ T x
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Genomic Pretrained Network /with multiple-sequence alignment
GPN/GPN-MSA (Benegas et al 2023 and 2025).

(no match)



GENOMIC FEATURES ANNOTATION

New Al powered approaches
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Borzoi derives TF motifs and a genome-wide map of nucleotide influence
on gene structure and expression (Linder et al 2025).



GENOMIC FEATURES ANNOTATION

Technological improvements
Both ONT and PacBio can
now provide accurate

methylation data

SMRTbell® library ~ PacBio® long-read systems 5-base HiFi sequencing with A, C, G, T, +5mC
=
C a a
Alc]|TIG[A[c|G[GlA|c[TIG|A[T[C|GIA[C|TI|G
5mC encoded with standard BAM tags®
MM:Z:.C+m,4,12,16,4,16,19,44,10

ML:B:C,249,4,247,177,210,228,245,244

Light Intensity

The PacBio long-read systems directly output long, highly accurate HiFi
reads with annotation of 5mC methylation at all CpG sites.
No special library preparation like bisulfite treatment is required.

Time

Nucleotide incorporation kinetics are measured in real time

EPIGENETIC PROFILING from long-range sequencing data is much more
affordable with falling costs of LRS
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with a close up on two topics:
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PROGRESS IN ADOPTION OF GENOMICS IN CONSERVATION
Broadly used Bl Getting better BBl To be improved Il (Hogg 2023)

Increase accuracy estimating parameters that require neutral markers



PROGRESS IN ADOPTION OF GENOMICS IN CONSERVATION
Broadly used Bl Getting better BBl To be improved Il (Hogg 2023)

Increase accuracy estimating parameters that require neutral markers

I Effective population size

I Migration rates (gene flow)

I Inferring haplotypes from linked loci to determine directionality of migration
I Accuracy of kin estimates

Il Pedigree reconstruction of wild populations

I Proportion of admixture to assess population delineations

Il Landscape genetics
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Broadly used Bl Getting better BBl To be improved Il (Hogg 2023)

Estimate inbreeding depression (ID)



PROGRESS IN ADOPTION OF GENOMICS IN CONSERVATION
Broadly used Bl Getting better BBl To be improved Il (Hogg 2023)

Estimate inbreeding depression (ID)

B Selection coefficients (interactions between drift, selection and migration)
Il Molecular basis and genetic architecture of ID

Il |dentifying loci contributing to ID by sequencing parents and offspring
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Detect local adaptation



PROGRESS IN ADOPTION OF GENOMICS IN CONSERVATION
Broadly used Bl Getting better BBl To be improved Il (Hogg 2023)

Detect local adaptation

Il Genome-wide variation vs. specific genomic regions responding to selection
I Signatures of selection to assess local adaptations

I Mapping associations btw. adaptive genome regions - environmental gradients
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Broadly used Bl Getting better BBl To be improved Il (Hogg 2023)

Units of conservation and hybridization



PROGRESS IN ADOPTION OF GENOMICS IN CONSERVATION
Broadly used Bl Getting better BBl To be improved Il (Hogg 2023)

Units of conservation and hybridization

I Rates of introgression across different genomic regions following hybridization
I Detection of hybridization

Il Predicting probability of outbreeding depression if populations mixed
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Broadly used Bl Getting better BBl To be improved Il (Hogg 2023)

Captive breeding and assisted migration



PROGRESS IN ADOPTION OF GENOMICS IN CONSERVATION
Broadly used Bl Getting better BBl To be improved Il (Hogg 2023)

Captive breeding and assisted migration
Il Founder relationships in captive breeding programmes

I Genome-wide heterozygosity to manage inbreeding depression
I Genetic rescue

Il Minimizing adaptation to captivity



IN WHICH APPLICATION GENOMICS IS
A GAME CHANGER?
with a close up on two topics:

Genetic load
ROHs



GETTING BEYOND NEUTRAL VARIATION

Investigating adaptive and maladaptive processes

1 Emperor penguin
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ESTIMATE FUNCTIONAL DIVERSITY: nonsynonymous, exonic, in transcription
factor binding sites, etc. (Trucchi et al 2024)



GETTING BEYOND NEUTRAL VARIATION

Investigating adaptive and maladaptive processes
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ESTIMATE FUNCTIONAL DIVERSITY: nonsynonymous, exonic, in transcription
factor binding sites, etc. (Trucchi et al 2024)



GETTING BEYOND NEUTRAL VARIATION

Investigating adaptive and maladaptive processes

Cum. genetic distance

Present relationship between
genetic distance and environment
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Rellstab et al 2012

DETECT LOCAL ADAPTATION: from selective differentiation and sweeps to
genotype to environment association (GEA), to genomic offset or vulnerability.



GETTING BEYOND NEUTRAL VARIATION

Investigating adaptive and maladaptive processes

Cum. genetic distance

Present relationship between
genetic distance and environment
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for more details and more
complex approaches see
Hoffman et al 2021

or Lachmuth et al 2023

DETECT LOCAL ADAPTATION: from selective differentiation and sweeps to
genotype to environment association (GEA), to genomic offset or vulnerability.



GETTING BEYOND NEUTRAL VARIATION

Investigating adaptive and maladaptive processes

A Highly deleterious Moderately deleterious
(362 SNPs) (33,687 SNPs)
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Genotype's expected fitness impact

ESTIMATE GENETIC LOAD in relation to individual fithess (Fernandes et al in prep)
or to compare different populations (Gabrielli et al in review)



Genetic load



Frequency/density

| Strongly deleterious/lethal

Beneficial Bank et al. (2014) Trends Genet

Effectively neutral
Deleterious

Selection coefficient
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GENETIC LOAD?
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COST OF NATURAL SELECTION: the price paid by a population for its
capacity for further evolution
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GENETIC LOAD =

Wo

FITNESS AND
GENETIC LOAD

WO Optimal fitness

w

Average reduced
fitness caused by
mutation(s)



FITNESS AND

REDUCTION OF FITNESS DUE TO: GENETIC LOAD

New deleterious mutations appearing -> MUTATION LOAD
Increase in frequency of deleterious mutations -> DRIFT LOAD
A more beneficial allele appearing -> EVOLUTION LOAD

Deleterious recessive mutations unmasked by inbreeding -> INBREEDING LOAD
(masked load or potential load)

Deleterious mutations introgressed from a different population -> MIGRATION LOAD
(hybrid load)

The break up of favourable combinations of alleles at different loci due to
recombination -> RECOMBINATION LOAD
See Bertorelle et al 2022
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FITNESS AND
SELECTION COEFFICIENTS
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w=1-—sq*—2q(1 —q)hs



GENETIC LOAD AND

EEENVYSIEVTEEETE  SELECTION COEFFICIENTS
1o 20q)
Fitness (w) _[IEERRNEEY S

w=1-sq*—2q(1 —q)hs

1—w
REALIZED GENETIC LOAD = T = qu + Zq(]_ — q)hs



GENETIC LOAD AND
SELECTION COEFFICIENTS

n

n
REALIZED GENETIC LOAD = z s;iqF + 2 z qi[1 — q;]h;s;
i=1

(n loci) ey

See Bertorelle et al 2022



INDIVIDUAL GENETIC LOAD
PARTITION

TOTAL LOAD — REALIZED LOAD 4+ MASKED LOAD

See Bertorelle et al 2022



INDIVIDUAL GENETIC LOAD

PARTITION
TOTAL LOAD —_ REALIZED LOAD 4+ MASKED LOAD
L(hom) L(het)
Z S; + Z 05s; =
i=1 i=1

See Bertorelle et al 2022



INDIVIDUAL GENETIC LOAD

PARTITION
TOTAL LOAD = REALIZED LOAD 4+ MASKED LOAD
L(hom) L(het) L(hom) L(het)
z S; + Z 05s; = z S; + Z h;s;
i=1 =1 =1 i=1

See Bertorelle et al 2022



INDIVIDUAL GENETIC LOAD
PARTITION

TOTAL LOAD — REALIZED LOAD 4+ MASKED LOAD

L(hom) L(het) L(hom) L(het) L(het)

Z S; + Z 0.5 s; Z S; + Z his; + Z (O.S—hj)Sj
i=1 =

i=1 i=1 i=1

See Bertorelle et al 2022
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Masked load

INDIVIDUAL GENETIC LOAD
AND POPULATION SIZE
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Realized load

Lethal equivalents
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See Bertorelle et al 2022



Realized load

Lethal equivalents
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Genetic load
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Genetic load
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Masked load
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Bottleneck stage



Realized load
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A INDIVIDUAL GENETIC LOAD AND
I POPULATION SIZE CHANGES
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ONE “LITTLE” PROBLEM:
HOW TO GET THE SELECTION COEFFICIENTS?



ONE “LITTLE” PROBLEM:
HOW TO GET THE SELECTION COEFFICIENTS?

PREDICTIONS BASED ON:

1) CONSERVATION SCORES through long evolutionary times
(GERP, PhyloP, GPN-MSA*)

Relies on alignments of genomes (e.g., Cactus)

Davydov 2010, Pollard et al 2010, Armstrong et al 2020



CONSERVATION
SCORES

Phylogenetic Tree Multiple Sequence Alignment
human human AATACGG|A| ACTTCATTCATT
chimp chimp AATATGG|A| ACTTCATTCATT
colobus monkey colobus monkey AGTATGG|A| ACTTCATTCATT
baboon baboon AGTATGG|A| ACTTCATTCATT
macaque macaque AGTATGG|A| ACTTCATTCATT

——e dusky titi dusky titi AGTATGG|A| ACTTCATTCATT
’_Eowl monkey owl monkey AGTATGG|A| ACTTCATTCATT
marmoset marmoset AGTATGG|A|ACTTCATTCATT

mouse lemur mouse lemur AGTACGG|A| ACTTCATTCATT

galago galago AGTACGG|A| ACTTCATTCATT
_Erat rat AGTATGG|A| ACATCGTTCATT

_ mouse mouse AGTATGG|A| ACATCTTTCATT
rabbit rabbit AGTATGG|A| ACATCATTCATT

cow cow AGTATGG|A| ACATCATTCATT
_Edog dog  AGTACGG|A|ACATCATTCATT
rfbat rfbat AGTATGG|A| ACATCGTTCATT
hedgehog hedgehog AGTATGG| A| ACATCATTCATT
_Eshrew shrew AGTATGG| G| ACATCCTTCATT
armadillo armadillo =—=——=—-—- - ————————————

— elephant elephant AGTATGG|A| ACATCGTTCATT

L— tenrec tenrec AGTATGG|A| ACATCGTTCATT
monodelphis monodelphis AGTATGG| G| ACATCTTTCATT
platypus platypus AGTATGG|A| ACGTCATTCATT

Davydov 2010



ONE “LITTLE” PROBLEM:
HOW TO GET THE SELECTION COEFFICIENTS?

PREDICTIONS BASED ON:

2) Impact of changes on coding sequence

Relies on reference genome annotation (SNPEff)

Cingolani et al 2012



CODING SEQUENCE
Sanﬂ_- CHANGES

Genetic variant annotation and effect prediction toolbox.

Cingolani et al 2012



CODING SEQUENCE
Sanﬂ_- CHANGES

Genetic variant annotation and effect prediction toolbox.

putative impact Impact
description of consequence estimation of level of impact
exon_loss_variant, stop_lost, HIGH, LOW, MODERATE

frameshift_variant

Cingolani et al 2012



CODING SEQUENCE
Sanﬂ_- CHANGES

Genetic variant annotation and effect prediction toolbox.

putative impact Impact
description of consequence estimation of level of impact
exon_loss_variant, stop_lost, HIGH, LOW, MODERATE

frameshift_variant

#CHROM  POS ID REF ALT  QUAL FILTER _INFO C
chrl 123456 . C A . . ANN=A| ...
chrl 234567 . A G,T . 5 ARG oo 5 Tlaos

ANN = Annotation aka effect or consequence

Cingolani et al 2012



CODING SEQUENCE
Sanﬂ_- CHANGES

Genetic variant annotation and effect prediction toolbox.

putative impact Impact
description of consequence estimation of level of impact
exon_loss_variant, stop_lost, HIGH, LOW, MODERATE

frameshift_variant

#CHROM  POS ID REF ALT  QUAL FILTER _INFO C
chrl 123456 . C A . . ANN=A| ...
chrl 234567 . A G,T . 5 ARG oo 5 Tlaos

ANN = Annotation aka effect or consequence

Type (alphabetical order) Count Percent
HIGH

LowW
MODERATE
Cingolani et al 2012 MODIFIER




IN WHICH APPLICATION GENOMICS IS
A GAME CHANGER?



USING EXTENDED HAPLOTYPE INFORMATION

Which is getting more affordable with long-range sequencing

Sharing Identity-By-Descent (IBD) blocks to infer to infer recent migration

(Al-Asadi 2019).

recombination breakpoints

long Pairwise Shared A coe
Coalescent (IPSC) B vee
segment “-..,
(>2cm)

position along genome

iv) lattice construction
and sample
assignment

v) coalescent-based
model

ANR
i
N.M = (M, 3)

\tavavs

vi) compute
posterior mean

%lﬁ ?ﬁﬁlﬁ

(but see Al non IBD block based alternative by Andy Kern (Smith et al 2024))




USING EXTENDED HAPLOTYPE INFORMATION

Which is getting more affordable with long-range sequencing

Using Runs-Of-Homozygosity (ROH) distribution length to infer recent inbreeding
and population size changes

/{/ K l/])ll L I\ IIkL/)IV | H/
Iy

Larger Admixed Smaller Consanguineous Bottlen: k d and Bottlenecked
nnnnnnnnnnnnn

> dTD dIIID (]]]]]ID CITID

L WK I

SROH Ceballos et al 2018
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Tim
i
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WHAT IS THE DIFFERENCE BETWEEN
CONSERVATION GENETICS AND GENOMICS?

WHAT IS THE FIRST INGREDIENT OF
CONSERVATION GENOMICS?

HOW CAN GENETICS INFORM
CONSERVATION BIOLOGY?

IN WHICH APPLICATION GENOMICS IS
A GAME CHAN

WHAT AM | DOING TO MA
GENOMICS IN CON



S

0

WHAT IS A
RUN OF HOMOZYGOSITY?



S

%
/

//Ilt\\

~—~
-~
\

0

WHAT IS A
RUN OF HOMOZYGOSITY?



S
S

WHAT IS A
RUN OF HOMOZYGOSITY?



S
S

S
S

WHAT IS A
RUN OF HOMOZYGOSITY?



©n
SS,
Cn

S
S

5

WHAT IS A
RUN OF HOMOZYGOSITY?



©n

S
S

S TS
S WS

©n

WHAT IS A
RUN OF HOMOZYGOSITY?



©n

S
S

n ' En
SHS!

\\\\\\\\\

©n

WHAT IS A
RUN OF HOMOZYGOSITY?



©n

S
S

WHAT IS A
RUN OF HOMOZYGOSITY?

©n

©nICn

\

©r

Inbreeding!



LS,

S

©r

H O
@/ Inbreeding!

S



©n

S
S

Enion

WHAT IS A
RUN OF HOMOZYGOSITY?

©n

F‘?‘

©n ICn

\

Inbreeding!

| W
Ei ™ Ide t Ibyd ent (IBD)
- b — /b



A WHAT’S THE FATE OF A
u RUN OF HOMOZYGOSITY?

]

inbreeding



Mating with someone WHAT’S THE FATE OF A
! , not closely related RUN OF HOMOZYGOSITY?
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O X N
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inbreeding 1



Mating with someone WHAT’S THE FATE OF A
! ) not closely related RUN OF HOMOZYGOSITY?
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Mating with someone
not closely related
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inbreeding
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WHAT’S THE FATE OF A
RUN OF HOMOZYGOSITY?

Getting shorter and
shorter
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WHAT’S THE FATE OF A
RUN OF HOMOZYGOSITY?

Recombination rate (p)

Chromosome length (L)

Time (f)

Expected number of breaks

pLt

Expected unbroken fragment length

L/(1+pLt)



length of unbroken fragments
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WHAT’S THE FATE OF A
RUN OF HOMOZYGOSITY?

Recombination rate (p): 1x10°® gen™' bp™
Chromosome length (L):

5 x 107 bp (solid) or 1 x 107 bp (dashed)
Time (t): 10000 generations

Expected number of breaks:

pLot

Expected unbroken fragment length

L= L/(1+pL,b)
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WHAT’S THE FATE OF A
RUN OF HOMOZYGOSITY?

Recombination rate (p): 1x10°® gen™' bp™
Chromosome length (L):

5 x 107 bp (solid) or 1 x 107 bp (dashed)
Time (t): 10000 generations

Expected number of breaks:

pLot

Expected unbroken fragment length

L= L/(1+pL,b)
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WHAT’S THE FATE OF A
RUN OF HOMOZYGOSITY?

For two lineages (ROH), the expected
length of an Identity by descent (IBD)
block is simply

L, = L/(1+2pL 1)



length of unbroken fragments
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WHAT’S THE FATE OF A
RUN OF HOMOZYGOSITY?

For two lineages (ROH), the expected
length of an Identity by descent (IBD)
block is simply

L, = L/(1+2pL 1)

From this we can get an expectation on
the time of the inbreeding loop (and on
the population size at that time®)

t=1/(2pL)



ROHS CAN INFORM ABOUT
100-500kb  500-2000kb  >2000kb PAST INBREEDING EVENTS

5 10 15 20

0

Ml

——

ﬁiiiiiiﬂﬂﬂﬂﬂﬂﬂ

Infer when most recent
inbreeding event happened by
ROHs of maximum length*

8K
OK
3K

|

Wra4.3K |
Wra5.2K [ I | ]
Wra5.5K [ e | ——
Wrab5.7K

Wra6.2K

Wra7.1Ka

Wra7.1Kb

Wra4.9Ka
Wra4.9Kb

Dehasque et al 2024
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PAST DEMOGRAPHY
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Sum total length of ROH Ceballos et al 2018



WHAT IS THE DIFFERENCE BETWEEN
CONSERVATION GENETICS AND GENOMICS?

WHAT IS THE FIRST INGREDIENT OF
CONSERVATION GENOMICS?

HOW CAN GENETICS INFORM
CONSERVATION BIOLOGY?

IN WHICH APPLICATION GENOMICS IS
A GAME CHANGER?
with a close up on two topics:

Genetic load
ROHs

WHAT AM | DOING TO MAKE USE OF
GENOMICS IN CONSERVATION?



GENOMIC SUSCEPTIBILITY TO EXTINCTION

A whole-genome approach to study and protect endangered Italian endemics

WQ’M
ENDEMIX

Pl: Giorgio Bertorelle, University of Ferrara

https://endemixit.com/
https://youtu.be/mL_JzgOqgk7c


https://endemixit.com/

GENOMICS OF FIVE ENDEMIC SPECIES

Very to very small population size

Marsican bear
(2.2Gb)
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(0.4Mb)
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Very to very small population size

Marsican bear
(2.2Gb)

Ponza grayling Aeolian lizard
(0.4Mb) (1.4Gb)



GENOMICS OF FIVE ENDEMIC SPECIES

Very to very small population size

Marsican bear
(2.2Gb)

Ponza grayling Aeolian lizard Apennine yellow-
(0.4Mb) (1.4Gb) bellied toad (10Gb)



GENOMICS OF FIVE ENDEMIC SPECIES

Very to very small population size

Marsican bear Adriatic sturgeon
(2.2Gb) (1.4Gb, tetraploid)

Ponza grayling Aeolian lizard Apennine yellow-
(0.4Mb) (1.4Gb) bellied toad (10Gb)



BEFORE ENDEMIXIT THERE WAS JUST THE APENNINE BEAR!

Survival and divergence in a small group: The
extraordinary genomic history of the endangered
Apennine brown bear stragglers

Andrea Benazzo®', Emiliano Trucchi®®", James A. Cahill, Pierpaolo Maisano Delser®*", Stefano Mona®*,

Matteo Fumagalli¢, Lynsey Bunnefeld™, Luca Cornetti/, Silvia Ghirotto?, Matteo Girardi¥, Lino Ometto"™,

Alex Panziera®, Omar Rota-Stabelli', Enrico Zanetti®, Alexandros Karamanlidis", Claudio Groff°, Ladislav Paule®,
Leonardo Gentile9, Carles Vila", Saverio Vicario®, Luigi Boitanit, Ludovic Orlando", Silvia Fuselli?, Cristiano Vernesi,
Beth Shapiro®, Paolo Ciucdi', and Giorgio Bertorelle®?

® KORALCIE, 2007 <



MOVE TO THE OLD PRESENTATION ON THE BEAR!
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Brown bear distribution
A small and isolated population in Central Italy

Less than 100 individuals

Globally Threatened
— e
v\

Critically Endangered

Lazio e Molise




Whole-genome data

A few other samples from other European populations
g J

Genome sequences from
previously published studies
POL1® JSWE1? gtﬁ%
QS ez \w‘“‘
POL42 HEBLK1°
Ste "y
T %
dd
e APN1-s7
APN3
Q
I R
APNE’ CC{ [

a: Liu et al 2014, b: Miller et al 2012
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Structure of genomic diversity

Whole-genome and mitochondrion contrasting histories

m

J

1,842,042,551 nuclear bp

0.004

ANGSD, ngsDist, nj from ape R package

16,485 mitochondrial bp

0.0045

Geneious, MAFFT, genetic distance (HKY), NJ
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Structure of genomic diversity m
?

Y-chr agrees with the genome: sex-biased introgression
U J

1,842,042,551 nuclear bp 5.3 Kb Y-chromosome

BR3

BR1.2

BR1.5

BL1®

PO3 PO1.2

0.004

BL2@®

BL3®
ANGSD, ngsDist, nj from ape R package MAFFT, TCS
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Genomic diversity - average
Low but the polar bear is worse

Bw (bp™)
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Genomic diversity - distribution
Low but the polar bear is worse...maybe not!

m
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0.0010 —
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vcftools, SNP density in 50kb windows
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Genomic diversity - distribution

™
Long stretches with no diversity in the Apennine bear m
.
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Inbreeding estimates
Much higher than any other European bear

m
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Inbreeding estimates

Much higher than any other European bear

m

Inbreeding
0 01 02 03 0.4 05 06 07 08 09 1

APN2 I——
APN3 I
APN4 I——
APN5 I
APNG I
SPAl | ’

APL1 N

SLK1

SLK2
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SWE1 I

SWE2 I

POL1 s
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POL3

Density weighted by length

APN2

20~
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1.0-

0.745

O.SJ\
0.0 AN
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mean of log(8,)

POL4 Based on the proportion of the genome

POLS
POL6
BLK I

segments that are mostly homozygous

(Prifer et al 2014)
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Past demography
Apennine population declined more than other Eu pops
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Past demography

Fragmentation of a large European population
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Past demography
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Fragmentation of a large European population
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Past demography
Apennine bears have been isolated since then

m

G J
APN2 vs. SLK1 APN2 vs. ALP1
351 5
Ve observed F (%)
34} .
w 33f
@
©
w .
+—
(O
S 32} 7
k= - ;
n ®
; o
31t @
&
N, =2500
50l N.=3000
N, = 3500
N, = 4000
2000 4000 6000 8000

time since population divergence (years)

F statistic (Green et al 2010), simulation with ms
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Past demography
Expansion of Neolithic farming in Europe burning forests
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Why is this population still there?

Given its likely high extinction probability

o I, Credits: Fabrizio Caputi
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Selective processes: balancing
Retention of high diversity regions (HDR)
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Selective processes: balancing

HDR are enriched in immune and olfactory genes

m
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Selective processes: balancing m
MHC genes are as diverse as in the rest of Europe
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Genetic load
Accumulation of deleterious effects

Predicted deleterious substitution
fixed in the Apennine bear genomes
(by Panther + Polyphen):

40 + 4 stop codon

None in the other European bears!




Genetic load

Accumulation of deleterious effects
\_ _J

ATP synthase particles

Predicted deleterious substitution e membranesoace
fixed in the Apennine bear genomes Matrix
(by Panther + Polyphen):

40 + 4 stop codon Ribosome

Granules

cristae

None in the other European bears!

Inner membrane
Outer membrane

Five subs in the mt ND5 of which the
most deleterious one is not found
elsewhere

Gene Position HABNS HiBnAEN= Score

(out of 6) (out of 45)

ND5 G526E 6 0 -4.28 NDI

ND5 P447S 6 5 -3.59
ND5 T555A 6 3 «2.52



Genetic load in specific group of genes
Are Apennine bears less aggressive?

Mazreo Vancine Photos
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Fixed differences in 22 “tameness” genes
Not all deleterious fixations come to harm

p =0.037
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Proportion of fixed differences

Pattern confirmed with additional
individuals in three of these genes:
PLAXNB1, DCC, DLL3



FURTHER EVIDENCE OF DIVERGENCE AT BEHAVIORAL GENES WITH
MORE RECENT DATA AND ANALYSES
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Future conservation strategies

»
Trade-off between increasing fithess without losing ancestry
G J

Genetic rescue vs. doubling population size
Realistic forward simulation using Slim

ancestral 2
population '

european bear

: >
Time

How many individuals? How to choose
them? -> 5 with the lowest genetic load
as proportion of deleterious alleles
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Future conservation strategies
Trade-off between increasing fithess without losing ancestry
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Future conservation strategies
Trade-off between increasing fithess without losing ancestry

m

J

GR NO GR
1 x PopSize 2 X PopSize

Fithess
Ancestry

‘Qoo..,

Years after GR and/or 2 x PopSize
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Future conservation strategies
Trade-off between increasing fithess without losing ancestry
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1 x PopSize 2 X PopSize
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Years after GR and/or 2 x PopSize



GENOMICS OF FIVE ENDEMIC SPECIES

Very to very small population size

Marsican bear
(2.2Gb)

Adriatic sturgeon
(1.4Gb, tetraploid)

Ponza grayling Aeolian lizard Apennine yellow-
(0.4Mb) (1.4Gb) bellied toad (10Gb)



SAMPLING FOR GENOME ASSEMBLY AND RESEQUENCING

Small and large populations to compare




KARYOTYPE AND CHROMOSOME SORTING

The toad has few but huge chromosomes
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LIVING ON A ROCK AS A WILD INBRED STRAIN

Setting the limit for genomic variation and genetic load
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LIVING ON A ROCK AS A WILD INBRED STRAIN

Setting the limit for genomic variation and genetic load
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LIVING ON A ROCK AS A WILD INBRED STRAIN

Setting the limit for genomic variation and genetic load
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LIVING ON A ROCK AS A WILD INBRED STRAIN

Setting the limit for genomic variation and genetic load
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LIVING ON A ROCK AS A WILD INBRED STRAIN

Setting the limit for genomic variation and genetic load
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LIVING ON A ROCK AS A WILD INBRED STRAIN

Setting the limit for genomic variation and genetic load
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LIVING ON A ROCK AS A WILD INBRED STRAIN

Setting the limit for genomic variation and genetic load
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LIVING ON A ROCK AS A WILD INBRED STRAIN

Setting the limit for genomic variation and genetic load
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LIVING ON A ROCK AS A WILD INBRED STRAIN

Setting the limit for genomic variation and genetic load




LIVING ON A ROCK AS A WILD INBRED STRAIN

Setting the limit for genomic variation and genetic load
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LIVING ON A ROCK AS A WILD INBRED STRAIN

Setting the limit for genomic variation and genetic load
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LIVING ON A ROCK AS A WILD INBRED STRAIN

Setting the limit for genomic variation and genetic load
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LIVING ON A ROCK AS A WILD INBRED STRAIN

Setting the limit for genomic variation and genetic load
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LIVING ON A ROCK AS A WILD INBRED STRAIN

Setting the limit for genomic variation and genetic load
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LIVING ON A ROCK AS A WILD INBRED STRAIN

Setting the limit for genomic variation and genetic load

Homozygous derived count
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LIVING ON A ROCK AS A WILD INBRED STRAIN

Setting the limit for genomic variation and genetic load
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TESTING PREDICTIONS OF DELETERIOUSNESS

Impaired bioenergetics in the Apennine brown bear

Slovakian

Apennine



TESTING PREDICTIONS OF DELETERIOUSNESS

Impaired bioenergetics in the Apennine brown bear
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TESTING PREDICTIONS OF DELETERIOUSNESS

Impaired bioenergetics in the Apennine brown bear

a) b) c)
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TESTING PREDICTIONS OF DELETERIOUSNESS

Impaired bioenergetics in the Apennine brown bear

Ca. 40 predicted deleterious substitution in the Apennine bears



TESTING PREDICTIONS OF DELETERIOUSNESS

Impaired bioenergetics in the Apennine brown bear

3 in the mitochondrial ND5 -> RESPIRATORY COMPLEX |
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TESTING PREDICTIONS OF DELETERIOUSNESS

Impaired bioenergetics in the Apennine brown bear

APOGEE
CADD
CAROL
Condel
COVEC WMV
EFIN HD

EFIN SP |

FatHmm
Meta-SNP
Mitoclass.1
MtoolBox
MutAssessor
MutTaster
PANTHER
PhD-SNP
PolyPhen2
PROVEAN
SIFT

SNAP

P4485 GS527E T556A

180°




TESTING PREDICTIONS OF DELETERIOUSNESS

Impaired bioenergetics in the Apennine brown bear

ND5 positions Experiments
448 527 556 MDCK cells Fibroblasts MD simulations
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TESTING PREDICTIONS OF DELETERIOUSNESS

Impaired bioenergetics in the Apennine brown bear

ND5 positions Experiments
448 527 556 MDCK cells Fibroblasts MD simulations
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TESTING PREDICTIONS OF DELETERIOUSNESS

Impaired bioenergetics in the Apennine brown bear

ND5 positions Experiments
448 527 556 MDCK cells Fibroblasts MD simulations
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EXPERIMENT IN VITRO - MDCK CELLS

Impaired bioenergetics in the Apennine brown bear




EXPERIMENT IN VITRO - MDCK CELLS

Impaired bioenergetics in the Apennine brown bear
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EXPERIMENT IN VITRO - MDCK CELLS

Impaired bioenergetics in the Apennine brown bear
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EXPERIMENT EX VIVO - FIBROBLASTS

Impaired bioenergetics in the Apennine brown bear

ROS
are higher
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EXPERIMENT EX VIVO - FIBROBLASTS

Impaired bioenergetics in the Apennine brown bear
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EXPERIMENT EX VIVO - FIBROBLASTS

Impaired bioenergetics in the Apennine brown bear
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EXPERIMENT IN SILICO - MOLECULAR DYNAMICS

Impaired bioenergetics in the Apennine brown bear




EXPERIMENT IN SILICO - MOLECULAR DYNAMICS

Impaired bioenergetics in the Apennine brown bear
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EXPERIMENT IN SILICO - MOLECULAR DYNAMICS

Impaired bioenergetics in the Apennine brown bear
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EXPERIMENT IN SILICO - MOLECULAR DYNAMICS

Impaired bioenergetics in the Apennine brown bear




EXPERIMENT IN SILICO - MOLECULAR DYNAMICS

Impaired bioenergetics in the Apennine brown bear
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INTEGRATE ADVANCED MOLECULAR BIOLOGY METHODS UP TO
GENETIC EDITING TO CORRECT FIXED DELETERIOUS MUTATIONS
IN ENDANGERED SPECIES AND SYNTHETIC BIOLOGY UP TO
DE-EXTINCTION
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REVIVING MAMMOTHS.
SAVING ELEPHANTS.
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IMPROVE ADAPTIVE AND MALADAPTIVE (GENETIC LOAD)
ESTIMATES MAKING THEM COMPARABLE ACROSS POPULATIONS
AND SPECIES
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LEVERAGE NEW COST-EFFECTIVE LONG-RANGE SEQUENCING TO
ANALYZE ALSO SVS, METHYLATION DATA, ETC
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IMPROVE PREDICTION OF GENOMIC FEATURES WITH Al
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