## Evomics 2025 R & ggplot2

. . . .

O

## Outline

### Short introduction

- Why is R useful
- RStudio
- R Markdown
- Data structures
- Dataset for practical
- Practical
- Solution for practical

## What is R?

A free software environment (and language) for statistical computing and graphics

http://www.r-project.org



Natural language support but running in an English locale

R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications.

Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R.

[R.app GUI 1.79 (8095) x86\_64-apple-darwin17.0]







### Why is R useful?

### Open source

- Data management and manipulation
  - Importing data in various formats (like text files, excel files, etc.)
  - Manipulating data (subsetting and filtering tables, merging, transposing, etc.)
- Cutting-edge graphical data visualization
- Support for rich statistical simulation and modeling
- Well established system of packages and documentation
- Active development and dedicated community

## Why is R useful?

### Open source

### Data management and manipulation

- Importing data in various formats (like text files, excel files, etc.)
- Manipulating data (subsetting and filtering tables, merging, transposing, etc.)
- Cutting-edge graphical data visualization

### Support for rich statistical simulation and modeling

- Well established system of packages and documentation
- Active development and dedicated community



David Barnett (Wednesday)

Rachel Steward (Tuesday)











#### Scenario 1: Data changed





#### Scenario 1: Data changed





#### Scenario 1: Data changed



### Scenario 2: Analysis changed





# X

### Scenario 2: Analysis changed





#### Scenario 3: Many plots needed





#### Scenario 3: Many plots needed





| "genotyp | e"  | "ce  | 11 | .wi | idt   | :h" |     |      | Ī   |
|----------|-----|------|----|-----|-------|-----|-----|------|-----|
| "XA53"   | 28. | 9213 | 27 | 423 | 33(   | )43 |     | 9    | 1   |
| "XA53"   | 18. | 9921 | 70 | 090 | 65(   | 513 |     | 3    | \$. |
| "XA53"   | 40. | 9197 | 59 | 810 | 611   | 176 |     | - 7  | (ş  |
| "XA53"   | 33. | 1389 | 95 | 580 | 065   | 546 |     | N    | D   |
| "control |     | 72.  | 10 | 924 | 449   | 993 | 608 | 34   |     |
| "control |     | 35.  | 88 | 855 | 57    | 100 | 100 | 20   |     |
| "XA53"   | 39. | 8640 | 66 | 686 | 61(   | 087 |     | 5    | 1   |
| "XA53"   | 13. | 1415 | 25 | 79( | 05(   | 51  | 15. | . 11 |     |
| "XA53"   | 15. | 0448 | 76 | 101 | 124   | 105 |     | 2    | Ċ   |
| "XA53"   | 47. | 0790 | 47 | 772 | 294   | 102 |     | - 5  | ;   |
| "XA53"   | 81. | 9994 | 06 | 393 | 333   | 38  | 74. | . 05 | 5   |
| "VAC 2"  | 12  | 0400 | 20 | 470 | < 7 < |     |     |      |     |

#### ```{r} setwd("D:/!ecolgen/resources/orthofinder/ brassicaceae\_2/") old.par<-par(no.readonly = T) spec.overlap <- read.table(file =</pre>

spec.overlap <- read.table(Tile =
 "orthofinder\_results/Results\_brassicaceae
 \_2/crmparative\_Genomics\_statistics/orthog
 roop\_species0verlaps.tsv")</pre>

## heatmap with values
pdf ("R\_analysis/orthogroups\_SpeciesOverl
aps\_heatmap.pdf", width=14, height=7,
onefile = T)
par(mar = c(2, 12, 12, 2) + 0.1)
# input data
gdata <- spec.overlap</pre>



#### Scenario 1: Data changed

| "genoty      | me" | "ce  | 11. | .wi | dtl   | h"      |    |      | •   |
|--------------|-----|------|-----|-----|-------|---------|----|------|-----|
| "XA53"       | 28. | 9213 | 274 | 123 | 30    | 43      |    |      | 9   |
| "XA53"       | 18. | 9921 | 700 | 96  | 56    | 13      |    | - 3  | 3   |
| "XA53"       | 40. | 9197 | 598 | 316 | 11    | 76      |    | -    | 7 : |
| "XA53"       | 33. | 1389 | 955 | 580 | 65    | 46      |    | 1    | U.  |
| "contro      | 1"  | 72.  | 109 | 924 | 49    | 93      | 60 | 84   |     |
| "contro      | 1"  | 35.  | 888 | 355 | 70    | <u></u> | 10 | 00   |     |
| "XA53"       | 39. | 8640 | 666 | 586 | 10    | 87      |    | 5    | 51  |
| "XA53"       | 13. | 1415 | 25  | 790 | 56    | 1       | 15 | . 11 | L.  |
| "XA53"       | 15. | 0448 | 761 | 101 | 24    | 05      |    | 2    | 2   |
| "XA53"       | 47. | 0790 | 471 | 772 | 94    | 02      |    | 5    | 53  |
| "XA53"       | 81. | 9994 | 063 | 393 | 33    | 8       | 74 | . 05 | 5   |
| 11123 5 3 11 | 1.2 | 0400 | 201 | 170 | - 7.0 | 4.77    |    |      |     |

| "genoty | pe"  | "ce  | 11.w | idth |      | "   |
|---------|------|------|------|------|------|-----|
| "XA53"  | 28.  | 9213 | 2742 | 3304 | 3    | 93  |
| "XA53"  | 18.  | 9921 | 7009 | 6561 | 3    | з.  |
| "XA53"  | 40.  | 9197 | 5981 | 6117 | 6    | 2   |
| "XA53"  | 33.  | 1389 | 9558 | 0654 | 6    | JA7 |
| "contro | 1"   | 72.  | 1092 | 4496 | .08  | 4   |
| "contro | 1"   | 35.  | 8885 | 5 0  | 9189 | в   |
| "XA53"  | 39.1 | 8640 | 6668 | 6108 | 7    | 58  |
| "XA53"  | 13.  | 1415 | 2579 | 0561 | 15.  | 111 |
| "XA53"  | 15.0 | 0448 | 7610 | 1240 | 5    | 27  |
| "XA53"  | 47.  | 0790 | 4777 | 2940 | 2    | 53  |
| "XA53"  | 81.  | 9994 | 0639 | 3338 | 74.  | 051 |

| "genoty | pe" | "ce  | 11. | wi   | lth |     |     | "  |
|---------|-----|------|-----|------|-----|-----|-----|----|
| "XA53"  | 28. | 9213 | 274 | 23   | 304 | 3   |     |    |
| "XA53"  | 18. | 9921 | 700 | 96   | 561 | 3   |     | 3  |
| "XA53"  | 40. | 9197 | 598 | 16:  | 117 | 6   |     | 7  |
| "XA53"  | 33. | 1389 | 955 | 80   | 654 |     |     | N  |
| "contro | 1"  | 72.  | 109 | 24   | 41  | 360 | 084 |    |
| "contro | 1"  | 35.  | 888 | 55   |     | 918 | 898 |    |
| "XA53"  | 39. | 8640 | 666 | 86:  | 108 | 7   |     | 51 |
| "XA53"  | 13. | 1415 | 257 | 90   | 561 | 15  | 5.1 | 1: |
| "XA53"  | 15. | 0448 | 761 | .013 | 240 | 5   |     | 21 |
| "XA53"  | 47. | 0790 | 477 | 72   | 940 | 2   |     | 53 |
| "XA53"  | 81. | 9994 | 063 | 93:  | 338 | 74  | 1.0 | 5: |
|         |     |      |     |      | _   |     |     | _  |

provide a map with values prov("R\_analysis/orthogroups\_specieso prl aps\_heatmap.pdf", width=14, height=7, onefile = T) par(mar = c(2, 12, 12, 2) + 0.1) in nput data uata <- spec.overlap</pre>









#### Scenario 2: Analysis changed

| "genotyp | e" |      | 'ce | 11 | . W | i  | dt | h" |    |    | "  |
|----------|----|------|-----|----|-----|----|----|----|----|----|----|
| "XA53"   | 28 | . 92 | 213 | 27 | 42  | 3  | 30 | 43 |    |    | 93 |
| "XA53"   | 18 | . 99 | 921 | 70 | 09  | 6  | 56 | 13 |    |    | 3  |
| "XA53"   | 40 | .91  | 97  | 59 | 81  | 6: | 11 | 76 |    |    | 7  |
| "XA53"   | 33 | .13  | 889 | 95 | 58  | 0  | 65 | 46 |    |    | N  |
| "control |    | 7    | 12. | 10 | 92  | 4  | 49 | 93 | 60 | 84 |    |
| "control |    | 3    | 85. | 88 | 85  | 51 | 70 | 60 | 10 | 00 |    |
| "XA53"   | 39 | .86  | 540 | 66 | 68  | 6  | 10 | 87 |    |    | 51 |
| "XA53"   | 13 | .14  | 15  | 25 | 79  | 0  | 56 | 1  | 15 | .1 | 1: |
| "XA53"   | 15 | .04  | 48  | 76 | 10  | 1: | 24 | 05 |    |    | 2  |
| "XA53"   | 47 | .07  | 190 | 47 | 77  | 2  | 94 | 02 |    |    | 53 |
| "XA53"   | 81 | . 99 | 994 | 06 | 39  | 3  | 33 | 8  | 74 | .0 | 5: |
|          |    |      |     |    |     |    |    |    |    |    | -  |

| "genotyp | e"  | "ce  | 11.1 | widt | :h"  |      | "   |
|----------|-----|------|------|------|------|------|-----|
| "XA53"   | 28. | 9213 | 2743 | 2330 | )43  |      | 93  |
| "XA53"   | 18. | 9921 | 700  | 9656 | 513  |      | з.  |
| "XA53"   | 40. | 9197 | 598: | 1611 | 176  |      | 2   |
| "XA53"   | 33. | 1389 | 955  | 8065 | 546  |      | M?  |
| "control |     | 72.  | 1093 | 2449 | 96   | 084  |     |
| "control |     | 35.  | 8888 | 55   | o91  | .898 |     |
| "XA53"   | 39. | 8640 | 6661 | 9610 | 87   |      | 58  |
| "XA53"   | 13. | 1415 | 257  | 9056 | 51 1 | 5.1  | .11 |
| "XA53"   | 15. | 0448 | 761  | 0124 | 105  |      | 27  |
| "XA53"   | 47. | 0790 | 477  | 7294 | 02   |      | 53  |
| "XA53"   | 81. | 9994 | 063  | 9333 | 38 7 | 4.0  | )51 |
|          |     |      |      |      |      |      |     |

| "genotyp | e" |      | 'ce | 11 | ι., | wi | dt | h  | "  |     |   | "/ |
|----------|----|------|-----|----|-----|----|----|----|----|-----|---|----|
| "XA53"   | 28 | . 92 | 213 | 2  | 74  | 23 | 30 | )4 | 3  |     | 4 | 0  |
| "XA53"   | 18 | .99  | 921 | 70 | 00  | 96 | 56 | 51 | 3  |     |   | 3. |
| "XA53"   | 40 | . 91 | 197 | 59 | 98  | 16 | 11 | 17 | 6  |     |   | 75 |
| "XA53"   | 33 | .13  | 389 | 95 | 55  | 80 | 65 | 54 |    |     |   | NZ |
| "control |    | 1    | 72. | 10 | 9   | 24 | 47 |    | 36 | 508 | 4 |    |
| "control |    |      | 35. | 88 | 38  | 55 | ۲  | 6  | 91 | 89  | 8 |    |
| "XA53"   | 39 | .86  | 640 | 66 | 56  | 86 | 10 | 8  | 7  |     |   | 58 |
| "XA53"   | 13 | .14  | 415 | 25 | 57  | 90 | 56 | 51 | 1  | 5.  | 1 | 11 |
| "XA53"   | 15 | .04  | 448 | 76 | 51  | 01 | 24 | 10 | 5  |     |   | 27 |
| "XA53"   | 47 | .01  | 790 | 41 | 17  | 72 | 94 | 10 | 2  |     |   | 53 |
| "XA53"   | 81 | .99  | 994 | 00 | 53  | 93 | 33 | 88 | 7  | 14. | 0 | 51 |
|          |    | -    |     |    |     |    | -  |    |    |     |   |    |









#### Scenario 3: Many plots needed

| - |         |     |      |    |     |    |      |     | _     |
|---|---------|-----|------|----|-----|----|------|-----|-------|
| Γ | "genoty | pe" | "ce  | 11 | . w | id | th"  |     | "     |
|   | "XA53"  | 28. | 9213 | 27 | 42  | 33 | 043  |     | 93    |
|   | "XA53"  | 18. | 9921 | 70 | 09  | 65 | 613  | £   | 3.    |
|   | "XA53"  | 40. | 9197 | 59 | 81  | 61 | 176  | 5   | - 75  |
|   | "XA53"  | 33. | 1389 | 95 | 58  | 06 | 546  | 5   | N7    |
|   | "contro | 1"  | 72.  | 10 | 92  | 44 | 993  | 608 | 34    |
|   | "contro | 1"  | 35.  | 88 | 85  | 57 | 0.00 | 100 | 10    |
|   | "XA53"  | 39. | 8640 | 66 | 68  | 61 | 087  |     | - 58  |
|   | "XA53"  | 13. | 1415 | 25 | 79  | 05 | 61   | 15. | . 111 |
|   | "XA53"  | 15. | 0448 | 76 | 10  | 12 | 405  |     | 27    |
|   | "XA53"  | 47. | 0790 | 47 | 77  | 29 | 402  |     | - 53  |
|   | "XA53"  | 81. | 9994 | 06 | 39  | 33 | 38   | 74. | .051  |
|   | "XA53"  | 13  | 9409 | 30 | 47  | 67 | 847  |     | 71    |

\\\{r} **X** ) setwd("D:/!ecolgen/resources/orthofinder/ brassicaceae 2/") old.par<-par(no.readonly = T) spec.overlap <- read.table(file =</pre> "orthofinder res \_\_\_\_\_ults\_brassicaceae \_2/Comparative\_enomics\_\_atistics/Orthog -oup \_pecies( erlaps.ts) ## heatmap wit values pdf ("R\_analysis/Orthogroups\_Species aps\_heatmap.pdf", width=14, height=7, onefile = T) par(mar = c(2, 12, 12, 2) + 0.1)# input data gdata <- spec.overlap











Scenario 4: Someone wants to understand or repeat the analysis

# input data gdata <- spec.overlap



Scenario 4: Someone wants to understand or repeat the analysis

setwd("D:/!ecolgen/resources/orthofinder/ brassicaceae\_2/") old.par<-par(no.readonly = T) spec.overlap <- read.table(file = "orthofinder\_results/Results\_brassicaceae \_2/Comparative\_Genomics\_Statistics/orthog roups\_Species0verlaps.tsv") ## heatmap with values

gdf ("R\_analysis/orthogroups\_SpeciesOver]
aps\_heatmap.pdf", width=14, height=7,
onefile = T)
par(mar = c(2, 12, 12, 2) + 0.1)
# input data
gdata <- spec.overlap</pre>





Me in 2 months

Scenario 4: Someone wants to understand or repeat the analysis

setwd("D:/!ecolgen/resources/orthofinder/ brassicaceae\_2/") old.par<-par(no.readonly = T) spec.overlap <- read.table(file = "orthofinder\_results/Results\_brassicaceae \_2/Comparative\_Genomics\_Statistics/orthog roups\_Speciesoverlaps.tsv")

## heatmap with values
pdf ("R\_amalysis/orthogroups\_SpeciesOverl
aps\_heatmap.pdf", width=14, height=7,
onefile = T)
par(mar = c(2, 12, 12, 2) + 0.1)
# input data
gdata <- spec.overlap</pre>



Me in 2 months

Me in 2 years



Scenario 4: Someone wants to understand or repeat the analysis

{r}
{r}
spec.overlap <- read.table(file =</pre>

"orthofinder\_results/Results\_brassicaceae \_2/Comparative\_Genomics\_Statistics/Orthog roups\_SpeciesOverlaps.tsv")

## heatmap with values
pdf ("R\_amalysis/orthogroups\_SpeciesOverl
aps\_heatmap.pdf", width=14, height=7,
onefile = T)
par(mar = c(2, 12, 12, 2) + 0.1)
# input data
gdata <- spec.overlap</pre>



Me in 2 months



Collaborator



Scenario 4: Someone wants to understand or repeat the analysis

image: Transmitter (The set work of the s

spec.overlap <- read.table(file =
 "orthofinder\_results/Results\_brassicaceae
 \_2/comparative\_Genomics\_statistics/orthog
 roups\_SpeciesOverlaps.tsv")</pre>

## heatmap with values
pdf ("R\_amalysis/orthogroups\_SpeciesOverl
aps\_heatmap.pdf", width=14, height=7,
onefile = T)
par(mar = c(2, 12, 12, 2) + 0.1)
# input data
gdata <- spec.overlap</pre>

Me in 2 months



Me in 2 years



Collaborator



Paper reader



Scenario 4: Someone wants to understand or repeat the analysis

{r}
setwd("D:/!ecolgen/resources/orthofinder,
brassicaceae\_2/")
old.par<-par(no.readonly = T)</pre>

spec.overlap <- read.table(file )</pre>

### Reproducibility

pdf ( R\_analysis/Orthogroups\_speciesove aps\_heatmap.pdf", width=14, height=7, onefile = T) par(mar = c(2, 12, 12, 2) + 0.1) # input data gdata <- spec.overlap</pre>



Me in 2 months







Collaborator



Paper reader



- Automation
  - Many plots in one loop
  - Easily repeated if the data changes
- Reproducibility and transparency
  - You will know later what you did with the data
  - Other people will know what you did with the data
  - You can publish your code with your paper
- Excel tends to change some numbers to dates etc.

| •       |           |         |
|---------|-----------|---------|
| wt      | 10.233333 | 1007.22 |
| psbo1cr | 12.566666 | 71.56   |
| psbo2cr | 18.III    | 516.33  |
| wt      | 20.733333 | 1666.67 |
| psbo1cr | 23.166666 | 72.34   |

## **R** Studio

### Integrated development environment (IDE) for R





## Help in R Studio

### Press F1 when the cursor is in the name of the function



The help will open here

Console? Not good for reproducibility.

Console



Console? Not good for reproducibility.



Console



### R Script / R Markdown



### R Script: Code + # Comments

```
🔊 Evomics 2025 R ggplot.rmd 🛛
          Annotations serpentine candidates.R
                                                                🔊 Evomics_2025_R_ggplot_solution.rm >> 👝 🥅
ie 2.Rmd
       🚛 🛛 🚍 🗖 Source on Save 🛛 🔍 🎢 🗸 🗐
 📑 Run 🛛 💁 🛧 🤳 📑 Source 👻
   66
   67
   68
       ## 1. List of genes (AGI codes; there can be multiple genes per line separated by
        e.q. ";")
   69
       # data (gene numbers)
   70
   71
       genes.pre0 <- read.csv2("data/Konecna2021_NatCom_Supplementary_data_7_for_R.csv",</pre>
   72
                              stringsAsFactors = F)
   73
   74
       genes <- genes.pre0[!duplicated(genes.pre0$ID), 1:2]</pre>
   75
       colnames(genes)[c(1, 2)] <- c("Al.ids", "ids")</pre>
   76
       head(genes)
   77
   78
       # new orthologs from thaliana (according to Brassicaceae_orthology_0)
   79
       ortho <- read.table(file = "data/A_lyrata_Rawat_v_A_thaliana.tsv", header = T,
       sep = "\t")
   80
       head(ortho)
       ids <- sapply(X = genes $Al.ids, FUN = gene.properties, table = ortho[, 2], feature
   81
        = ortho[, 3], split = ", ", USE.NAMES = F)
       cbind(genes$Al.ids, genes$ids, ids, genes$ids == ids)
   82
   83
       ortho[grep(pattern = "AL8G36200", x = ortho$A_lyrata_Rawat), ]
   84
       ortho[grep(pattern = "AL6G29060", x = ortho$A_lyrata_Rawat), ]
   85
       # Notes: Some orthologs are missing. Most (except of 2) are the same.
   86
       # I will use the old homologs for now.
```

### **R Markdown**: Formatted text + ```Code chunks```

| e_2.Rmd ×                              | Evomics_2025_R_ggplot_solution.rmd × P Annotations serpentine candidates.R ×                                                                                                                                                               | Evomics_2025_R_g                                   | gplot.rm »>                 |         |
|----------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------|-----------------------------|---------|
| <b>←</b> ⇒   .                         | 💼 🔚 💼 Knit on Save 🖓 🔍 🖋 Knit 👻 🌣 👻                                                                                                                                                                                                        | ⁰₫ - 🚹 🖊                                           | 📑 Run 👻                     | · 💁 •   |
| Source                                 | Visual                                                                                                                                                                                                                                     |                                                    | ≡(                          | Dutline |
| 260                                    | After that, we will remove plants that have died during the plants have *NA* values in columns `size_mm2` and `QY_max` not measured for all plants, and we are not going to plot is fine for now that there are some *NA* values there.    | he experiment.<br>`. The NPQ valu<br>those columns | These<br>es were<br>yet, so | it      |
| 262 ▼<br>263<br>264<br>265<br>266 ▲    | <pre>```{r Clean your data} # Remove all NA values from size_mm2 &amp; QY_max column, as 1 plants died during the experiment and we do not have data pD_clean &lt;- plantData %&gt;%    filter(!is.na(size_mm2), !is.na(QY_max)) ```</pre> | this indicates<br>for them                         | ✿ ≚<br>that                 | •       |
| 267<br>268<br>269<br>270<br>271<br>272 | <pre>**Exercise 3:** Check how many lines we have removed. Hint: Use the `nrow()` function or `dim()` function on the data.frame and on the new `pD_clean` data.frame.</pre>                                                               | e original `pla                                    | IntData`                    | •       |
| 273 ↓<br>274<br>275<br>276             | <pre>```{r solution dimensions, class.source= 'fold-hide', eval # Dimensions of the original data.frame (number of rows ar dim(plantData) # Dimensions of the cleaned data.frame</pre>                                                     | l=FALSE}<br>nd number of co                        | olumns)                     |         |

### **R Markdown**

Can be "knitted" to produce report in html, pdf, docx etc.

#### 4.3 Modify your graph aesthetics

We will now make our box plot a bit fancier. Although the defaults often work well, you can modify almost everything within the ggplot2 package.

Here you can see how to modify various things in the plot.





geom\_boxplot() + # add a boxplot layer (same as before)
geom point() + # add points to the boxplot

Hide

### rmarkdown : : **снеатзнеет**

#### What is rmarkdown? 1. New File ideas side-by-side in a single



w Co

formats like HTML, PDF, MS Word, or MS Powerpoint. Reproducible Research · Upload, link to, or attach your report to share. Anyone can read or run your code to reproduce your work.

.Rmd files · Develop your code and

document. Run code as individual

chunks or as an entire document.

plots, tables, and results with

Dynamic Documents · Knit together

narrative text. Render to a variety of

#### Workflow

- Open a new .Rmd file in the RStudio IDE by going to File > New File > R Markdown.
- 2 Embed code in chunks, Run code by line, by chunk, or all at once.
- Write text and add tables, figures, images, and 3 citations. Format with Markdown syntax or the RStudio Visual Markdown Editor.
- 4 Set output format(s) and options in the YAML header. Customize themes or add parameters to execute or add interactivity with Shiny.
- 5 Save and render the whole document. Knit periodically to preview your work as you write.
- 6 Share your work!





warning

results

fig.align

fig.alt

fig.cap

fig.path

collapse

child

puri



authoring HTML, PDF, and MS Word documents.

#### Embed Code with knitr

#### **CODE CHUNKS**

| Surround code chunks with       | <pre>{r} and ``` or use</pre> |
|---------------------------------|-------------------------------|
| the Insert Code Chunk button.   | Add a chunk label             |
| and/or chunk options inside the | curly braces after r.         |

| ```{r  | chunk-label, | include=FALSE} |
|--------|--------------|----------------|
| summar | y(mtcars)    |                |

#### SET GLOBAL OPTIONS

Set options for the entire document in the first chunk

| ```{r include=FALSE}           |   |       |
|--------------------------------|---|-------|
| knitr::opts_chunk\$set(message | = | FALSE |
| * * *                          |   |       |

#### INLINE CODE

| Insert 'r <code< th=""><th>into text sections. Code is evaluate</th></code<> | into text sections. Code is evaluate |
|------------------------------------------------------------------------------|--------------------------------------|
| at render and re                                                             | sults appear as text.                |

"Built with `r getRversion()`"--> "Built with 4.1.0"



| OPTION  | DEFAULT | EFFECTS                                                                  |
|---------|---------|--------------------------------------------------------------------------|
| echo    | TRUE    | display code in output document                                          |
| error   | FALSE   | TRUE (display error messages in do<br>FALSE (stop render when error occu |
| eval    | TRUE    | run code in chunk                                                        |
| include | TRUE    | include chunk in doc after running                                       |
| message | TRUE    | display code messages in documen                                         |

TRUE display code messages in document TRUE display code warnings in document "asis" (passthrough results) "markun"

messages in doc)

when error occurs)

- "hide" (don't display results) "hold" (put all results below all code) "default" "left", "right", or "center"
- NULL alt text for a figure NULL figure caption as a character string
- "figure/" prefix for generating figure file paths
  - 7 plot dimensions in inches
- fig.width & fig.height out.width rescales output width, e.g. "75%", "300px" FALSE collapse all sources & output into a single block comment "##" prefix for each line of results NULL files(s) to knit and then include include or exclude a code chunk when
- TRUE extracting source code with knitr::purl() See more options and defaults by running str(knitr::opts\_chunk\$get())



#### Insert Citations

Create citations from a bibliography file, a Zotero library, or from DOI references.

BUILD YOUR BIBLIOGRAPHY

Add BibTeX or CSL bibliographies to the YAML header.

title: "My Document" bibliography: references.bib link-citations: TRUE

- · If Zotero is installed locally, your main library will automatically be available.
- Add citations by DOI by searching "from DOI" in the Insert Citation dialog.

#### INSERT CITATIONS

. Outre

- · Access the Insert Citations dialog in the Visual Editor Insert > Citation.
- Add citations with markdown syntax by typing [@cite] or @cite.

#### Insert Tables

Output data frames as tables using kable(data, caption).

· · · {r} data <- faithful[1:4. knitr::kable(data. caption = "Table with kable")

Other table packages include flextable, gt, and kableExtra.

#### Write with Markdown

#### The syntax on the left renders as the output on the right.

Plain text

End a line with two spaces to start a new paragraph. Also end with a backslash\ to make a new line. "italics" and ""bold"" superscript^2^/subscript~2~ ~~strikethrough~~ escaped: \\* \\_ \\ endash: --- emdash: ---

Plain text

# Header 1

## Header 2

###### Header 6

unordered list

- item 2a (indent 1 tab)

- item 2a (indent 1 tab)

[This is a link.](link url)

[This is another link][id].

[Caption](image.png)

[id2]: image.png

[id]: link url

\$\$E = mc^{2}\$\$

horizontal rule:

### Plots

### Tables

more text

text

At the end of the document:

At the end of the document:

- item 2

2 item 2

- item 2b

- item 2b

<link url>

1 ordered list

End a line with two spaces to start a new paragraph Also end with a backslash to make a new line. italics and bold superscript<sup>2</sup>/subscript<sub>2</sub> strikethrough escaped: \*\_\ endash: -, emdash: --

ŕmarkdown

#### Header 1 Header 2

Header 6

- unordered list · item 2 item 2a (indent 1 tab) item 2h 1. ordered list
- 2. item 2 item 2a (indent 1 tab) item 2b
  - http://www.posit.co/ This is a link.

This is another link



Caption.

verbatim code

multiple lines of verbatim code

block quotes

equation:  $e^{i\pi} + 1 = 0$ equation: \$e^{i \pi} + 1 = 0\$ equation block equation block:

 $E = mc^2$ 

horizontal rule

| Right   Left   Default   Center                      | Right   | Left | Default | Center |
|------------------------------------------------------|---------|------|---------|--------|
| 12 12 12 12 12<br>123 123 123 123 123<br>1 1 1 1 1 1 | 12      | 12   | 12      | 12     |
|                                                      | 123     | 123  | 123     | 123    |
|                                                      | 1       | 1    | 1       | 1      |
| WTMI Tabrate                                         |         | 8.51 |         |        |
| ## Results (tabset)                                  | Results |      |         |        |

| ł | Result |        |   |
|---|--------|--------|---|
|   | Plots  | Tables |   |
|   | text   |        |   |
|   | -      |        | 7 |

or [Caption][id2] `verbatim code` multiple lines of verbatim code > block quotes

> 3.600 79

1.800 64

3.333 74

2 283 62

by clicking the @ symbol in the toolbar or by clicking

## **General data structures**

- •Vector ordered collection of data
  vector\_1 <- c(2, 3, 4, 10)
  vector\_2 <- c("potato", "lemonade", "avocado")</pre>
- Matrix 2D collection of vectors with same data type
- Array multiple dimension collection of vectors
- **Dataframe** matrix-like with multiple data types (like an excel table with text and numbers)
- Lists ordered collection of any objects (can contain also other lists inside it)



http://venus.ifca.unican.es/Rintro/dataStruct.html



### which dataset should we use to try R?

# Arabidopsis thaliana mutants psbo1 and psbo2





### psbo1



### psbo2



## **PsbO protein**

- Subunit of photosystem II
- Important for water splitting
- Arabidopsis: PsbO1 and PsbO2



Photosystem II

## **PsbO protein**

- Subunit of photosystem II
- Important for water splitting
- Arabidopsis: PsbO1 and PsbO2



Photosystem II

### **Experimental design**



- water

+ NaCl

### Measurement – chlorophyl fluorescence

- Leaf rosette area
- $F_V/F_M$  (QY\_max) maximum quantum yield of photosystem II





Images from FluorCam (PSI) device

### Let's start the practical! Open the Rstudio server by typing in browser: <your IP>:8787



### Remember:

- Practise makes the masters.
- Do sanity checks. Always.
- Use AI, but try to understand, check and improve the code.